Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = oilseed by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1167 KiB  
Article
Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies
by Iwona Jasińska-Kuligowska, Maciej Kuligowski, Mateusz Wyszyński and Marcin Kidoń
Sustainability 2025, 17(15), 7056; https://doi.org/10.3390/su17157056 - 4 Aug 2025
Viewed by 177
Abstract
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic [...] Read more.
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic content, and antioxidant activity, and HPLC analysis of the phenolic compounds was performed. Subsequently, cookies were prepared by replacing wheat flour with 30% or 50% press cake. The addition of sunflower press cake significantly increased the total phenolic content (up to 8.6 mg GAE/g dm) and antioxidant activity (up to 75.9%) in the cookies, whereas adding sesame press cake showed a less pronounced effect, reaching 0.91 g GAE/g dm and 8.9% for total phenolic content and antioxidant activity, respectively. HPLC analysis indicated that chlorogenic acid and its derivatives dominated in sunflower-enriched cookies, while sesame samples contained lignans such as sesamol and sesamin. Our study shows that 50% substitution improves the health-promoting properties of cookies and does not differ significantly from the 30% level in consumer sensory evaluations. These findings support the use of sunflower and sesame press cakes as valuable ingredients in food applications. This represents an important step toward developing healthier and more nutritious food products while supporting the principles of the circular economy through the upcycling of valuable raw materials. Full article
(This article belongs to the Special Issue By-Products of the Agri-Food Industry: Use for Food Fortification)
Show Figures

Figure 1

22 pages, 1203 KiB  
Review
Impact of Use of Ultrasound-Assisted Extraction on the Quality of Brazil Nut Oil (Bertholletia excelsa HBK)
by Orquidea Vasconcelos dos Santos, Sara Camila Vidal Freires, Helen Cristina de Oliveira Palheta and Paulo Henrique de Melo Ferreira
Separations 2025, 12(7), 182; https://doi.org/10.3390/separations12070182 - 8 Jul 2025
Viewed by 422
Abstract
The quality of materials extracted from plant sources, such as oilseeds, is significantly affected by the extraction techniques employed. Thermo-photosensitive bioactive compounds are especially susceptible, often resulting in a loss of functional properties during conventional processing. In this context, studies involving unconventional or [...] Read more.
The quality of materials extracted from plant sources, such as oilseeds, is significantly affected by the extraction techniques employed. Thermo-photosensitive bioactive compounds are especially susceptible, often resulting in a loss of functional properties during conventional processing. In this context, studies involving unconventional or “innovative” extraction methods have emerged as a strategic approach to preserve the quality of the extracted material (whether by-product or biomass) by aligning with the core principles of green chemistry and the expansion of sustainable production chains. This approach promotes both raw material integrity and the protection of human and environmental health. These efforts contribute to a virtuous cycle of technological innovation and environmentally sound practices. This review focuses on how ultrasound-assisted extraction affects the quality of plant-derived materials, particularly Brazil nut oil. The article compiles data published over the last five years (2020–2025), following the PRISMA methodology. Recent studies highlight the synergistic potential of ultrasound as a green technology for isolating Brazil nut oil, offering enhanced nutritional and functional properties. This aligns with the growing demand for healthier food products obtained through sustainable industrial processes and presents opportunities for diverse applications across several industry sectors. Full article
(This article belongs to the Special Issue Extraction and Characterization of Food Components)
Show Figures

Figure 1

20 pages, 534 KiB  
Review
Extraction and Valorization of Oilseed Cakes for Value-Added Food Components—A Review for a Sustainable Foodstuff Production in a Case Process Approach
by Nada Grahovac, Milica Aleksić, Biljana Trajkovska, Ana Marjanović Jeromela and Gjore Nakov
Foods 2025, 14(13), 2244; https://doi.org/10.3390/foods14132244 - 25 Jun 2025
Viewed by 555
Abstract
Oilseed cakes, by-products of oil extraction, represent an underutilized resource with significant potential for sustainable food and pharmaceutical applications. This comprehensive review examines the valorization strategies for oilseed cakes, focusing on their rich protein (up to 56%) and fiber (up to 66%) content. [...] Read more.
Oilseed cakes, by-products of oil extraction, represent an underutilized resource with significant potential for sustainable food and pharmaceutical applications. This comprehensive review examines the valorization strategies for oilseed cakes, focusing on their rich protein (up to 56%) and fiber (up to 66%) content. We analyze both conventional and innovative extraction methods, highlighting the advantages of ultrasound-assisted (96.64% phenolic compound yield), enzymatic (82–83% protein recovery), and subcritical water extraction techniques in improving efficiency while reducing environmental impact. This review demonstrates diverse applications of oilseed cake components from gluten-free bakery products and plant-based meat alternatives to advanced nanoencapsulation systems for bioactive compounds. Each major oilseed type (soybean, rapeseed, sunflower and flaxseed) exhibits unique nutritional and functional properties that can be optimized through appropriate processing. Despite technological advances, challenges remain in scaling extraction methods and balancing yield with functionality. This paper identifies key research directions, including the development of integrated biorefinery approaches and the further exploration of health-promoting peptides and fibers. By addressing these challenges, oilseed cakes can play a crucial role in sustainable food systems and the circular economy, transforming agricultural by-products into high-value ingredients while reducing waste. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Graphical abstract

19 pages, 533 KiB  
Review
Extraction of Phenolic Compounds from Agro-Industrial By-Products Using Natural Deep Eutectic Solvents: A Review of Green and Advanced Techniques
by Fernanda de Sousa Bezerra and Maria Gabriela Bello Koblitz
Separations 2025, 12(6), 150; https://doi.org/10.3390/separations12060150 - 3 Jun 2025
Cited by 1 | Viewed by 856
Abstract
As sustainability gains prominence, the circular economy has encouraged the valorization of agri-food by-products, which are rich in phenolic compounds known for their antioxidant and anti-inflammatory properties. Conventional extraction methods commonly employ organic solvents, which contradict green chemistry principles. Natural deep eutectic solvents [...] Read more.
As sustainability gains prominence, the circular economy has encouraged the valorization of agri-food by-products, which are rich in phenolic compounds known for their antioxidant and anti-inflammatory properties. Conventional extraction methods commonly employ organic solvents, which contradict green chemistry principles. Natural deep eutectic solvents (NaDESs) have emerged as environmentally friendly alternatives for recovering bioactive compounds from food waste. This review investigated recent studies (2020–2024) on ultrasound (UAE), microwave (MAE), and pressurized liquid extraction (PLE) using NaDESs to extract phenolic compounds from agri-food by-products. A total of 116 publications were initially identified, of which 19 met the inclusion criteria. UAE combined with NaDESs proved effective, particularly for fruit and oilseed residues. MAE achieved good yields for phenolic acids and flavonoids but showed limitations on high temperatures. PLE, though less explored, demonstrated promising results when optimized for temperature, pressure, and NaDES composition. The combination of NaDESs with assisted extraction techniques enhanced yield, selectivity, and environmental performance compared to conventional approaches. These findings highlight a greener and more efficient strategy for phenolic recovery within a biorefinery framework. Ultimately, this approach contributes to the sustainable management and valorization of agri-food by-products, supporting circular economy principles and the development of cleaner extraction technologies for functional ingredients. Full article
Show Figures

Figure 1

13 pages, 1027 KiB  
Article
DART-HRMS for the Rapid Assessment of Bioactive Compounds in Ultrasound-Processed Rapeseed Meal By-Product
by Anna Lante, Andrea Massaro, Carmela Zacometti, Dasha Mihaylova, Vesela Chalova, Albert Krastanov, Hristo Kalaydzhiev, Miluska Cisneros, Greta Morbin, Giorgia Riuzzi, Severino Segato and Alessandra Tata
Appl. Sci. 2025, 15(11), 5952; https://doi.org/10.3390/app15115952 - 25 May 2025
Viewed by 517
Abstract
In line with the recommended European policy for a zero-waste crop supply chain, a lab-pilot optimisation process to valorise the by-products of industrially produced rapeseed meal (RM) was performed. Three batches of RM were first processed into ethanol-wash solutes (EWS) and then optimised [...] Read more.
In line with the recommended European policy for a zero-waste crop supply chain, a lab-pilot optimisation process to valorise the by-products of industrially produced rapeseed meal (RM) was performed. Three batches of RM were first processed into ethanol-wash solutes (EWS) and then optimised (OEWS) by an ultrasound-assisted (UA) treatment. After direct analysis in real time–high resolution mass spectrometry (DART-HRMS) analysis, data were processed applying a partial least square–discriminant analysis (PLS-DA), which retrieved the 15 most discriminative ions able to characterise the biochemical changes during the ethanol-washing and UA optimisation process. The metabolomic fingerprinting of EWS and OEWS generated an accurate and well-defined 3D spatial clusterisation based on a restricted pool of informative bioactive compounds. A significantly higher relative abundance of sinapic, azelaic, and vernolic acids and a lower incidence of the oleic and palmitic fatty acids were detected in OEWS. DART-HRMS generated a vast amount of biochemical information in one single run, also demonstrating that its association with an untargeted multivariate statistical approach would be a valuable tool for revealing specific functional biomarkers. This would eventually enhance the circular and effective use of rapeseed residuals coming from this plant’s oilseed industry. Full article
Show Figures

Figure 1

31 pages, 2682 KiB  
Review
The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions
by Ali Mujtaba Shah, Huiling Zhang, Muhammad Shahid, Huma Ghazal, Ali Raza Shah, Mujahid Niaz, Tehmina Naz, Keshav Ghimire, Naqash Goswami, Wei Shi, Dongxu Xia and Hongxia Zhao
Animals 2025, 15(8), 1184; https://doi.org/10.3390/ani15081184 - 21 Apr 2025
Cited by 1 | Viewed by 2100
Abstract
Sustainable livestock production is a critical component of global food security and environmental stewardship. Agricultural crop residues, such as cereal straws, stovers, and hulls, as well as agro-industrial by-products, including oilseed meals, distillery wastes, and fruit/vegetable processing residues, are generated in large quantities [...] Read more.
Sustainable livestock production is a critical component of global food security and environmental stewardship. Agricultural crop residues, such as cereal straws, stovers, and hulls, as well as agro-industrial by-products, including oilseed meals, distillery wastes, and fruit/vegetable processing residues, are generated in large quantities worldwide, and these residues can be used in the diet of the animals to reduce the feed production cost and sustainability. In this review, we found that the use of treated crop residues in the diet of animals increased the production performance without causing any side effects on their health. Additionally, we also noticed that using these crop residues also mitigates the methane production in ruminants and feed costs, particularly for harvesting the feed crops. Traditionally, these materials have often been underutilized or even disposed of improperly, leading to wastage of valuable nutrients and potential environmental pollution. By incorporating these materials into animal feed formulations, livestock producers can benefit from several key advantages. The review further discusses the challenges and considerations involved in the effective utilization of these alternative feed resources, such as variability in nutrient composition, anti-nutritional factors, and the need for appropriate preprocessing and formulation strategies. Emerging technologies and innovative approaches to optimize the integration of crop residues and by-products into sustainable livestock production systems and also reduce global warming, particularly methane, CO2 and other particles that affect the environment after burning these crop residues, are also highlighted. By synthesizing the current knowledge and exploring the multifaceted benefits, this review underscores the vital roles that agricultural crop residues and agro-industrial by-products can play in fostering the sustainability and resilience of livestock production, ultimately contributing to global food security and environmental stewardship. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

21 pages, 5555 KiB  
Article
Glucosinolates from Seed-Press Cake of Camelina sativa (L.) Crantz Extend Yeast Chronological Lifespan by Modulating Carbon Metabolism and Respiration
by Francesco Abbiati, Ivan Orlandi, Stefania Pagliari, Luca Campone and Marina Vai
Antioxidants 2025, 14(1), 80; https://doi.org/10.3390/antiox14010080 - 11 Jan 2025
Viewed by 1723
Abstract
Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina (Camelina sativa (L.) Crantz) is an oilseed plant belonging to this family. Its seeds, in addition to a distinctive fatty acid composition, contain three [...] Read more.
Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina (Camelina sativa (L.) Crantz) is an oilseed plant belonging to this family. Its seeds, in addition to a distinctive fatty acid composition, contain three aliphatic GSLs: glucoarabin, glucocamelinin, and homoglucocamelinin. Our study explored the impact of these GSLs purified from Camelina press cake, a by-product of Camelina oil production, on yeast chronological aging, which is the established model for simulating the aging of post-mitotic quiescent mammalian cells. Supplementing yeast cells with GSLs extends the chronological lifespan (CLS) in a dose-dependent manner. This enhancement relies on an improved mitochondrial respiration efficiency, resulting in a drastic decrease of superoxide anion levels and an increase in ATP production. Furthermore, GSL supplementation affects carbon metabolism. In particular, GSLs support the pro-longevity preservation of TCA cycle enzymatic activities and enhanced glycerol catabolism. These changes contribute positively to the phosphorylating respiration and to an increase in trehalose storage: both of which are longevity-promoting prerequisites. Full article
Show Figures

Figure 1

12 pages, 916 KiB  
Article
Unconventional Ingredients from the Industrial Oilseed By-Products in Dairy Goat Feeding: Effects on the Nutritional Quality of Milk and on Human Health
by Marta Tristan Asensi, Giuditta Pagliai, Antonia Napoletano, Sofia Lotti, Monica Dinu, Federica Mannelli, Guido Invernizzi, Francesco Sofi, Barbara Colombini and Arianna Buccioni
Sustainability 2024, 16(19), 8604; https://doi.org/10.3390/su16198604 - 3 Oct 2024
Viewed by 1272
Abstract
Oilseed by-products (Cynara cardunculus and Camelina sativa) (CCCS) are rich in bioactive compounds. This study aimed to evaluate the health effects of consuming yogurt made from goat milk fed with CCCS industrial residues in adults. In this randomized, crossover clinical trial, [...] Read more.
Oilseed by-products (Cynara cardunculus and Camelina sativa) (CCCS) are rich in bioactive compounds. This study aimed to evaluate the health effects of consuming yogurt made from goat milk fed with CCCS industrial residues in adults. In this randomized, crossover clinical trial, 20 healthy adults (14F; 37.7 ± 14.2 years) consumed either yogurt made from goat milk fed with CCCS or regular goat yogurt (C) daily for 1 month in each phase. Anthropometric parameters and blood samples were collected at the beginning and end of each phase. CCCS yogurt consumption resulted in a significant fat mass reduction (−1.8% and −1.1 kg) and fat-free mass increase (+1.5% and +0.9 kg). Regarding blood parameters, a non-significant decrease in triglycerides, total cholesterol, and LDL cholesterol was observed, particularly after the CCCS intervention. Moreover, creatinine levels exhibited an opposite trend (p = 0.023) after CCCS, decreasing in subjects aged ≤30 years (−0.03 mg/dL) and increasing in older subjects (+0.05 mg/dL). Regarding inflammatory parameters, a non-significant trend in increased IL-1ra levels was observed especially after CCCS yogurt consumption compared to the C yogurt (+56.9 vs. +19.1 pg/mL, respectively). The use of unconventional feed derived from oilseed by-products for dairy goat feeding may have potential possible beneficial effects on human health. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

16 pages, 1586 KiB  
Article
Enhancing Gluten-Free Muffins with Milk Thistle Seed Proteins: Evaluation of Physicochemical, Rheological, Textural, and Sensory Characteristics
by Muhammed Ozgolet, Muhammed Zahid Kasapoglu, Esra Avcı and Salih Karasu
Foods 2024, 13(16), 2542; https://doi.org/10.3390/foods13162542 - 15 Aug 2024
Cited by 4 | Viewed by 2233
Abstract
This study investigated the potential utilization of milk thistle seed protein (MTP) isolates in gluten-free muffins to enhance the protein quantity and technological attributes. MTP was employed to partially substitute a blend including equal amounts of rice flour and corn starch (RCS) at [...] Read more.
This study investigated the potential utilization of milk thistle seed protein (MTP) isolates in gluten-free muffins to enhance the protein quantity and technological attributes. MTP was employed to partially substitute a blend including equal amounts of rice flour and corn starch (RCS) at 3%, 6%, 9%, and 12%. The study encompassed a rheological assessment of muffin batters and physicochemical, textural, and sensory analyses of the muffins. The consistency coefficient (K) of muffin batters exhibited an increase with the incorporation of MTP, with all batters demonstrating shear-thinning behavior (n < 1). The dough samples exhibited solid-like characteristics attributed to G′ > G″, indicative of their viscoelastic nature. The storage modulus (G′) and loss modulus (G″) escalated with higher levels of MTP, suggesting an overall enhancement in dough viscoelasticity. The muffin containing wheat flour displayed the lowest hardness value, followed by MTP-added muffins at ratios of 12% and 9%. Additionally, MTP-added muffins exhibited greater springiness values than control samples without MTP (C2). However, the oxidative stability of MTP-added muffins was lower than the wheat control muffin (C1) and gluten-free control muffin. The protein content in muffins increased with MTP addition, reaching parity with wheat flour muffins at 6% MTP replacement. Sensory analysis revealed that substituting RCS with up to 6% MTP did not significantly alter the overall quality (p > 0.05), whereas higher MTP levels (9% and 12%) led to a decline in sensory attributes. Incorporating MTP at up to 6% yielded protein-enriched muffins with sensory characteristics comparable to the wheat flour muffin (C1). Furthermore, higher MTP additions (9% and 12%) conferred more favorable textural properties than the C2 muffin. However, the oxidative stability of the control muffins was found to be higher than that of MTP-added muffins. This study suggested that MTP could be a potential ingredient to increase the protein amount and specific volume of gluten-free muffins and to improve textural attributes such as springiness and hardness. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

4 pages, 207 KiB  
Editorial
Special Issue “Pretreatment and Bioconversion of Crop Residues II”—Introduction to the Collection
by Carlos Martín and Eulogio Castro
Agronomy 2024, 14(5), 962; https://doi.org/10.3390/agronomy14050962 - 3 May 2024
Cited by 2 | Viewed by 1571
Abstract
Bioconversion in biorefineries is a way to valorize residues from agriculture and food processing. Pretreatment is an important step in the bioconversion of lignocellulosic materials, including crop residues. This Special Issue includes nine articles on several pretreatment and bioconversion approaches applied to different [...] Read more.
Bioconversion in biorefineries is a way to valorize residues from agriculture and food processing. Pretreatment is an important step in the bioconversion of lignocellulosic materials, including crop residues. This Special Issue includes nine articles on several pretreatment and bioconversion approaches applied to different agricultural residues and food-processing by-products. The materials addressed in this collection cover straw from wheat, rye, and miscanthus, olive tree pruning residue, almond shells and husks, avocado waste, sweet sorghum bagasse, soybean meal, and residues of non-edible oilseeds. Full article
(This article belongs to the Special Issue Pretreatment and Bioconversion of Crop Residues II)
17 pages, 1998 KiB  
Article
Solid-State Fermentation Using Bacillus licheniformis-Driven Changes in Composition, Viability and In Vitro Protein Digestibility of Oilseed Cakes
by Dan Rambu, Mihaela Dumitru, Georgeta Ciurescu and Emanuel Vamanu
Agriculture 2024, 14(4), 639; https://doi.org/10.3390/agriculture14040639 - 22 Apr 2024
Cited by 6 | Viewed by 2791
Abstract
The solid-state fermentation (SSF) efficiency of Bacillus licheniformis ATCC 21424 (BL) on various agro-industrial by-products such as oilseed cakes [hemp (HSC), pumpkin (PSC), and flaxseed (FSC)] was evaluated by examining the nutritional composition, reducing sugars, and in vitro protein digestibility (IVPD) for use [...] Read more.
The solid-state fermentation (SSF) efficiency of Bacillus licheniformis ATCC 21424 (BL) on various agro-industrial by-products such as oilseed cakes [hemp (HSC), pumpkin (PSC), and flaxseed (FSC)] was evaluated by examining the nutritional composition, reducing sugars, and in vitro protein digestibility (IVPD) for use in animal nutrition. SSF significantly decreased crude protein, along with changes in the total carbohydrates (p < 0.05) for all substrates fermented. An increase in crude fat for HSC (1.04%) and FSC (1.73%) was noted, vs. PSC, where the crude fat level was reduced (−3.53%). Crude fiber does not differ significantly between fermented and nonfermented oilseed cakes (p > 0.05). After fermentation, neutral detergent fiber (NDF) and acid detergent fiber (ADF) significantly increased for HSC and FSC (p < 0.05), as well as for PSC despite the small increase in ADF (4.46%), with a notable decrease in NDF (−10.25%). During fermentation, pH shifted toward alkalinity, and after drying, returned to its initial levels for all oilseed cakes with the exception of PSC, which maintained a slight elevation. Further, SSF with BL under optimized conditions (72 h) increases the reducing sugar content for FSC (to 1.46%) and PSC (to 0.89%), compared with HSC, where a reduction in sugar consumption was noted (from 1.09% to 0.55%). The viable cell number reached maximum in the first 24 h, followed by a slowly declining phase until the end of fermentation (72 h), accompanied by an increase in sporulation and spore production. After 72 h, a significant improvement in water protein solubility for HSC and FSC was observed (p < 0.05). The peptide content (mg/g) for oilseed cakes fermented was improved (p < 0.05). Through gastro-intestinal simulation, the bacterial survivability rate accounted for 90.2%, 101.5%, and 85.72% for HSC, PSC, and FSC. Additionally, IVPD showed significant improvements compared to untreated samples, reaching levels of up to 65.67%, 58.94%, and 80.16% for HSC, PSC, and FSC, respectively. This research demonstrates the advantages of oilseed cake bioprocessing by SSF as an effective approach in yielding valuable products with probiotic and nutritional properties suitable for incorporation into animal feed. Full article
Show Figures

Figure 1

19 pages, 1006 KiB  
Review
Impact of Using Oilseed Industry Byproducts Rich in Linoleic and Alpha-Linolenic Acid in Ruminant Nutrition on Milk Production and Milk Fatty Acid Profile
by Bojana Kokić, Slađana Rakita and Jelena Vujetić
Animals 2024, 14(4), 539; https://doi.org/10.3390/ani14040539 - 6 Feb 2024
Cited by 4 | Viewed by 2139
Abstract
Milk contains more than 400 different fatty acids, some of which play a positive role in promoting human health. The profile of fatty acids in milk can be enhanced by providing animals with plant-based resources that possess feeding characteristics adequate for favorable changes [...] Read more.
Milk contains more than 400 different fatty acids, some of which play a positive role in promoting human health. The profile of fatty acids in milk can be enhanced by providing animals with plant-based resources that possess feeding characteristics adequate for favorable changes in the fatty acid composition and increasing healthy fatty acids in milk. This review summarizes the available 41 research studies on the utilization of oilseed industry byproducts rich in linoleic acid (hemp, pumpkin, sunflower) and alpha-linolenic acid (camelina and linseed) in dairy cow, sheep, and goat nutrition; their impact on milk production characteristics; and potential to improve fatty acid composition of milk through the diet. This review illustrates that incorporating byproducts into the diet for dairy ruminants generally does not have any adverse effects on both milk production and composition. A similar trend of improvement in milk fatty acid profile was observed when ruminants were fed diets supplemented with camelina, linseed, and sunflower byproducts, while no significant changes were noted with pumpkin byproducts. Hempseed byproducts showed potential for use as an alternative ingredient in dairy ruminant diets. Nevertheless, more in-depth research investigating the inclusion of selected byproducts is required before valid conclusions can be drawn regarding their value. Full article
Show Figures

Figure 1

2 pages, 159 KiB  
Abstract
The Use of Unconventional Feedings from the Industrial Waste of Oilseeds in Dairy Goat Nutrition: Effects on the Nutritional Quality of Milk and Dairy Products and on Human Health
by Marta Tristan Asensi, Giuditta Pagliai, Monica Dinu, Antonia Napoletano, Guido Invernizzi, Arianna Buccioni and Francesco Sofi
Proceedings 2023, 91(1), 263; https://doi.org/10.3390/proceedings2023091263 - 5 Feb 2024
Viewed by 851
Abstract
Background and objectives: Industrial oilseed by-products (Cynara cardunculus and Camelina sativa) (CACD) are rich in bioactive compounds. In recent years, the use of these by-products as unconventional feed for dairy goat nutrition has been hypothesized. However, data on the effects of these by-products [...] Read more.
Background and objectives: Industrial oilseed by-products (Cynara cardunculus and Camelina sativa) (CACD) are rich in bioactive compounds. In recent years, the use of these by-products as unconventional feed for dairy goat nutrition has been hypothesized. However, data on the effects of these by-products on the nutritional quality of milk and on human health are limited. Our aim was to evaluate the potential effect of consuming yogurt made from goat milk from goats fed with unconventional ingredients derived from the industrial residues of CACD on adult human health. Methods: In this randomized, crossover clinical trial, 20 clinically healthy adults (14F; mean age 37.7 ± 14.2 years) were randomly assigned into two groups to take one yogurt made from goat milk from goats fed with CACD or regular goat yogurt (C) daily for 1 month in each phase. Anthropometric, body composition and blood samples were collected from each subject at the beginning and end of the intervention phase. Results: After consumption of CACD yogurt, a reduction in the percentage and kg of fat mass (−1.5%, p = 0.035; −0.9 kg, p = 0.042, respectively) and an increase in the percentage and kg of fat-free mass (+1.5%, p = 0.035; +0.9 kg, p = 0.023, respectively) were evident. As for the blood parameters, a decrease in calcium (−0.3 mg/dL; p = 0.028) and sodium levels (−1.6 mEq/L; p = 0.001) after taking CACD yogurt, with significant differences between the two groups in sodium levels (p = 0.045), was reported. Analyzing the differences in terms of sex, HDL showed an opposite trend in terms of the variation (p = 0.043) between men (−7.7 mg/dL) and women (+0.7 mg/dL) after taking CACD yogurt. Regarding inflammatory parameters, after CACD yogurt consumption, subjects showed an increased but not significant trend concerning the levels of IL-1ra (+38.5 pg/mL), especially in women (+60.4 pg/mL) compared to men. In addition, a similar non-significant trend of reduced IL-2 levels (−0.3 pg/mL) was also observed, especially in men (−0.6 pg/mL). Discussion: The use of unconventional feed obtained from the by-products of industrial oilseed waste for dairy goat nutrition reported possible beneficial effects on human health, suggesting an amelioration in body composition and an improved trend in terms of inflammatory profile. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
18 pages, 323 KiB  
Article
Effects of Dietary Hempseed or Camelina Cakes on Fatty Acid Composition of Quail Meat
by Robertas Juodka, Rasa Nainienė, Artūras Šiukščius, Raimondas Leikus and Giedrius Šarauskas
Life 2024, 14(1), 53; https://doi.org/10.3390/life14010053 - 28 Dec 2023
Cited by 4 | Viewed by 1710
Abstract
The purpose of the study was to investigate the effects of dietary hempseed or camelina cakes on the fatty acid profiles of intramuscular fat in quail. A total of 189 one-day-old quail were allocated to three dietary treatment groups. The diet of the [...] Read more.
The purpose of the study was to investigate the effects of dietary hempseed or camelina cakes on the fatty acid profiles of intramuscular fat in quail. A total of 189 one-day-old quail were allocated to three dietary treatment groups. The diet of the control (C) group was supplemented with 10% rapeseed cake, whereas the rapeseed in experimental 1 (HE) and experimental 2 (CA) groups was replaced by, respectively, hempseed cake and camelina cake in the same proportions. The length of the study was 42 days. Dietary enrichment with camelina cake increased the α-linolenic fatty acid (ALA) content in the meat of CA group 2.5 times (p < 0.01). The muscle tissues of CA contained 3.4–3 times more eicosapentaenoic acid (p < 0.01), 1.2 times more docosapentaenoic acid (p < 0.05–p < 0.01) and 1.3 times more docosahexaenoic acid (p < 0.01) and, thus, demonstrated the increase in total long chain (LC) n-3 polyunsaturated fatty acids (PUFA) (p < 0.01) and total n-3 PUFA (p < 0.01) compared with the C group. The ALA and total n-3 PUFA content in the breast and leg meat of HE-treated quail were, respectively, 1.3 and 1.1 times higher (p < 0.01) than in the C group but the accumulation was lower compared to the CA group. The content of γ-linolenic acid was found to be 1.21–1.31 times higher in HE quail meat (p < 0.01). However, hempseed cake supplementation had a negative effect on growth performance. The supplementation of quail feed with camelina or hempseed cakes resulted in the production of healthy meat with an increased n-3 PUFA content. Full article
14 pages, 1733 KiB  
Article
Physico-Chemical, Textural and Sensory Evaluation of Emulsion Gel Formulated with By-Products from the Vegetable Oil Industry
by Ana Leahu, Sorina Ropciuc, Cristina Ghinea and Cristina Damian
Gels 2023, 9(12), 964; https://doi.org/10.3390/gels9120964 - 8 Dec 2023
Cited by 3 | Viewed by 2693
Abstract
The aim of this study was to obtain low fat mayonnaise-like emulsion gels using sesame cake and walnut cake by-products resulting from vegetable oil extraction. The ingredients used to formulate the mayonnaise like emulsion gel samples were corn starch, sesame seed cake (SSC), [...] Read more.
The aim of this study was to obtain low fat mayonnaise-like emulsion gels using sesame cake and walnut cake by-products resulting from vegetable oil extraction. The ingredients used to formulate the mayonnaise like emulsion gel samples were corn starch, sesame seed cake (SSC), walnuts seed cake (WSC), lemon juice, sunflower oil, mustard, sugar, salt, gelatin and water. Five different samples were prepared: one control lab sample (M) containing only corn starch and the other ingredients (without SSC and WSC), two samples (SO1 and SO2) with 2 and 4% of SSC (without corn starch and WSC) and two samples (WO1 and WO2) with 2 and 4% of WSC (without corn starch and SSC). Also, an egg-free commercial mayonnaise (CM) was purchased and used for comparison. Physicochemical (fat, protein, moisture, ash, carbohydrate, water activity, emulsion stability, viscosity, density and color), textural (hardness, adhesiveness, springiness, cohesiveness, gumminess and chewiness), and sensory (aspect, color, texture/firmness, flavor, taste and acceptability) attributes of all samples were investigated. The results showed that carbohydrate content decreased in all four seed cakes samples compared to the control sample, while protein and fat content increased in all seed cakes samples, with the largest increases observed in the sesame seed cake samples. It was observed that the CM sample has a carbohydrate content value close to that obtained for the M sample, while the protein content has the lowest value for the CM sample compared to all samples analyzed. The stability of the emulsion gels increased from 70.73% (control sample) to 83.64% for the sample with 2% addition sesame seed cake and to 84.09% for the 2% walnut cake added, due to the coagulation capacity of the added cakes. The type and concentration of oil seeds cake added in emulsion gels affected their textural properties such as hardness, adhesiveness, gumminess, and chewiness. The hardness and adhesiveness of low-fat mayonnaise-like emulsion gels samples decreased with the addition of oil seeds cake. However, the addition of by-products improved the sensory properties of emulsion gels. This study provided a theoretical basis for the food industry’s application of oilseed cakes, especially for the development of low-fat mayonnaise. Full article
Show Figures

Graphical abstract

Back to TopTop