Effects of Dietary Hempseed or Camelina Cakes on Fatty Acid Composition of Quail Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Poultry, Management and Study Design
2.2. Fatty Acid Analyses
2.3. Lipid Quality Indices
2.4. Cholesterol Determination
2.5. Statistical Analyses
3. Results and Discussion
3.1. Growth Performance
3.2. Carcass Dissection Data
3.3. Fatty Acid Profiles of Intramuscular Fat in the Muscles of Quail
3.3.1. Saturated Fatty Acids
3.3.2. Monosaturated Fatty Acids
3.3.3. Polyunsaturated Fatty Acids
3.3.4. Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed]
- Statista. Number of Chickens Worldwide from 1990 to 2021 (in Million Animals). Available online: https://www.statista.com/statistics/263962/number-of-chickens-worldwide-since-1990/ (accessed on 24 April 2023).
- Lima, H.J.D.; Morais, M.V.M.; Pereira, I.D.B. Updates in research on quail nutrition and feeding: A review. Worlds Poult. Sci. J. 2023, 79, 69–93. [Google Scholar] [CrossRef]
- Compassion in World Farming. Farm Animals. About Quail. Available online: https://www.ciwf.eu/farm-animals/quail/ (accessed on 22 April 2023).
- Minvielle, F. The future of Japanese quail for research and production. Worlds Poult. Sci. J. 2004, 60, 500–507. [Google Scholar] [CrossRef]
- Filho, J.J.; Vilar da Silva, J.H.; Silva, C.T.; Perazzo Costa, F.G.; Batista de Souza, J.M.; Givisiez, P.E.N. Energy requirement for maintenance and gain for two genotypes of quails housed in different breeding rearing systems. Rev. Bras. Zootec. 2011, 40, 2415–2422. [Google Scholar] [CrossRef]
- Aziza, A.E.; Quezada, N.; Cherian, G. Feeding Camelina sativa meal to meat-type chickens: Effect on production performance and tissue fatty acid composition. J. App. Poult. Res. 2010, 19, 157–168. [Google Scholar] [CrossRef]
- Ciurescu, G.; Ropota, M.; Toncea, I.; Habeanu, M. Camelia (Camelia sativa L. Crantz Variety) Oil and Seeds as n-3 Fatty Acids Rich Products in Broiler Diets and Its Effects on Performance, Meat Fatty Acid Composition, Immune Tissue Weights, and Plasma Metabolic Profile. J. Agr. Sci. Technol. 2016, 18, 315–326. [Google Scholar]
- Gecgel, U.; Yilmaz, I.; Gurcan, E.K.; Karasu, S.; Dulger, G.C. Comparison of Fatty Acid Composition between Female and Male Japanese Quail Meats. J. Chem. 2015, 2015, 569746. [Google Scholar] [CrossRef]
- Orczewska-Dudek, S.; Pietras, M. The Effect of Dietary Camelina sativa Oil or Cake in the Diets of Broiler Chickens on Growth Performance, Fatty Acid Profile, and Sensory Quality of Meat. Animals 2019, 9, 734. [Google Scholar] [CrossRef]
- Pietras, M.P.; Orczewska-Dudek, S. The effect of dietary Camelina Sativa oil on quality of broiler chicken meat. Ann. Anim. Sci. 2013, 13, 869–882. [Google Scholar] [CrossRef]
- Tavaniello, S.; Siwek, M.; Maiorano, G.; Knaga, S.; Witkowski, A.; Manchisi, A.; Bednarczyk, M. Fatty acid composition of meat and genetic mapping of quantitative trait loci in 3 generations of Japanese quail populations. J. Cent. Eur. Agric. 2017, 18, 806–822. [Google Scholar] [CrossRef]
- Quaresma, M.A.G.; Antunes, I.C.; Ferreira, B.G.; Parada, A.; Elias, A.; Barros, M.; Santos, C.; Partidario, A.; Mourato, M.; Roseiro, L.C. The composition of the lipid, protein and mineral fractions of quail breast meat obtained from wild and farmed specimens of Common quail (Coturnix coturnix) and farmed Japanese quail (Coturnix japonica domestica). Poult. Sci. 2022, 101, 101505. [Google Scholar] [CrossRef] [PubMed]
- Trembecka, L.; Haščik, P.; Čuboň, J.; Bobko, M.; Pavelkova, A. Fatty acids profile of breast and thigh muscles of broiler chickens fed diets with propolis and probiotics. J. Cent. Eur. Agric. 2016, 17, 1179–1193. [Google Scholar] [CrossRef]
- Del Puerto, M.; Cabrera, M.C.; Saadoun, A. A Note on Fatty Acids Profile of Meat from Broiler Chickens Supplemented with Inorganic or Organic Selenium. Int. J. Food Sci. 2017, 2017, 7613069. [Google Scholar] [CrossRef] [PubMed]
- Okrouhla, M.; Stupka, R.; Cítek, J.; Šprysl, M.; Brzobohatý, L. Effect of dietary linseed supplementation on the performance, meat quality, and fatty acid profile of pigs. Czech J. Anim. Sci. 2013, 58, 279–288. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Nuijens, N.C.G.A.; Everts, H.; Salden, H.; Beynen, A.C. Mathematical relationships between the intake of n-6 and n-3 polyunsaturated fatty acids and their contents in adipose tissue of growing pig. Meat Sci. 2003, 65, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, F.; Alberghini, B.; Marjanović Jeromela, A.; Grahovac, N.; Rajković, D.; Kiprovski, B.; Monti, A. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agron. Sustain. Dev. 2021, 41, 2. [Google Scholar] [CrossRef]
- Feng, X.; Sun, G.; Fang, Z. Effect of Hempseed Cake (Cannabis sativa L.) Incorporation on the Physicochemical and Antioxidant Properties of Reconstructed Potato Chips. Foods 2022, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Shariatmadari, F. Emergence of hemp as feed for poultry. Worlds Poult. Sci. J. 2023, 79, 1–14. [Google Scholar] [CrossRef]
- Hryhoriv, Y.; Lyshenko, M.; Butenko, A.; Nechyporenko, V.; Makarova, V.; Mikulina, M.; Bahorka, M.; Tymchuk, D.S.; Samoshkina, I.; Torianyk, I. Competitiveness and Advantages of Camelina sativa on the Market of Oil Crops. Ecol. Eng. Environ. Technol. 2023, 24, 97–103. [Google Scholar] [CrossRef]
- Singh, Y.; Cullere, M.; Tůmová, E.; Dalle Zotte, A. Camelina sativa as a sustainable and feasible feedstuff for broiler poultry species: A review. Czech J. Anim. Sci. 2023, 68, 277–295. [Google Scholar] [CrossRef]
- Hilbrands, M.; Johnston, L.J.; Cox, R.B.; Forcella, F.; Gesch, R.; Li, Y.Z. Effects of increasing dietary inclusion of camelina cake on growth performance of growing-finishing pigs. Transl. Anim. Sci. 2021, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Riaz, R.; Ahmed, I.; Sizmaz, O.; Ahsan, U. Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals 2022, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Habeanu, M.; Lefter, A.N.; Ropota, M. Effects of the camelina cake on fatty acids composition in different organs of the pigs. Arch. Zootech. 2016, 19, 5–16. [Google Scholar]
- Juodka, R.; Juska, R.; Juskiene, V.; Leikus, R.; Stankeviciene, D.; Nainiene, R. The effect of feeding with hemp and Camelina cakes on the fatty acid profile of duck muscles. Arch. Anim. Breed. 2018, 61, 293–303. [Google Scholar] [CrossRef]
- Nain, S.; Oryschak, M.A.; Betti, M.; Beltranena, E. Camelina sativa cake for broilers: Effects of increasing dietary inclusion from 0 to 24% on tissue fatty acid proportions at 14, 28, and 42 d of age. Poult. Sci. 2015, 94, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Oryschak, M.A.; Christianson, C.B.; Beltranena, E. Camelina sativa cake for broiler chickens: Effects of increasing dietary inclusion on clinical signs of toxicity, feed disappearance, and nutrient digestibility. Transl. Anim. Sci. 2020, 4, 1263–1277. [Google Scholar] [CrossRef] [PubMed]
- Arango, S.; Guzzo, N.; Raffrenato, E.; Bailoni, L. Effect of Dietary Hemp Cake Inclusion on the In Vivo and Post Mortem Performances of Holstein Veal Calves. Animals 2022, 12, 2922. [Google Scholar] [CrossRef]
- Bailoni, L.; Bacchin, E.; Trocino, A.; Arango, S. Hemp (Cannabis sativa L.) Seed and Co-Products Inclusion in Diets for Dairy Ruminants: A Review. Animals 2021, 11, 856. [Google Scholar]
- Šťastník, O.; Jůzl, M.; Karásek, F.; Fernandová, D.; Mrkvicová, E.; Pavlata, L.; Nedomová, Š.; Vyhnánek, T.; Trojan, V.; Doležal, P. The effect of hempseed expellers on selected quality indicators of broiler chicken’s meat. Acta Vet. Brno. 2019, 88, 121–128. [Google Scholar] [CrossRef]
- Mierlita, D. Effects of diets containing hemp seeds or hemp cake on fatty acid composition and oxidative stability of sheep milk. S. Afr. J. Anim. Sci. 2018, 48, 504–515. [Google Scholar] [CrossRef]
- Aronen, I.; Valkonen, E.; Tupasela, T.; Hiidenhovi, J.; Valaja, J. The Effect of Camelina Sativa Cake on Fatty Acid Composition and Sensory Quality of Eggs and Broiler Meat. 2009. Available online: https://pdfs.semanticscholar.org/748c/be17aeb67241466db54687c3dc5d96642336.pdf?_ga=2.253177551.710654730.1589791031-675995229.1575974901 (accessed on 7 February 2023).
- Ryhänen, E.-L.; Pertilä, S.; Tupasela, T.; Valaja, J.; Eriksson, C.; Larkka, K. Effect of Camelina sativa expeller cake on performance and meat quality of broilers. J. Sci. Food Agric. 2007, 87, 1489–1494. [Google Scholar] [CrossRef]
- Jing, M.; Zhao, S.; House, J.D. Performance and tissue fatty acid profile of broiler chickens and laying hens fed hemp oil and HempOmegaTM. Poult. Sci. 2017, 96, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Seimas of the Republic of Lithuania. The Provisions of the Republic of Lithuania (2012-10-03) for Animal Welfare and Handling: Vilnius, Lithuania. 2012. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.434660 (accessed on 27 April 2023).
- State Food and Veterinary Service of Lithuania. Sub-Statutory Act by the State Food and Veterinary Service of Lithuanian Republic Regarding the Confirmation of the Requirements for Keeping, Maintenance and Use of Animals Intended for Science and Education Purposes: Vilnius, Lithuania 2012. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.437081/asr (accessed on 27 April 2023).
- Lukashenko, V.S.; Lisenko, M.A.; Stoliar, T.A. Methodological Recommendation of Anatomic Carcass Dissection and Organoleptic Evaluation of Poultry; VASCHNIL: Moscow, Russia, 1984. [Google Scholar]
- Folch, J.; Less, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Christopherson, S.W.; Glass, R.L. Preparation of milk fat methylesters by alcoholysis in an essentially nonalcoholic solution. J. Dairy Sci. 1969, 52, 1289–1290. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary disease seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; de la Hoz, L. Fatty acid composition of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Arakawa, K.; Sagai, M. Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipids 1986, 21, 769–775. [Google Scholar] [CrossRef]
- Medeiros, E.; Queiroga, R.; Oliveira, M.; Medeiros, A.; Sabedot, M.; Bomfim, M.; Madruga, M. Fatty Acid Profile of Cheese from Dairy Goats Fed a Diet Enriched with Castor, Sesame and Faveleira Vegetable Oils. Molecules 2014, 19, 992–1003. [Google Scholar] [CrossRef]
- Renna, M.; Cornale, P.; Lussiana, C.; Malfatto, V.; Mimosi, A.; Battaglini, L.M. Fatty acid profile of milk from goats fed diets with different levels of conserved and fresh forages. Int. J. Dairy Technol. 2012, 65, 201–207. [Google Scholar] [CrossRef]
- Polak, T.; Rajar, A.; Gašperlin, L.; Žlender, B. Cholesterol concentration and fatty acid profile of red deer (Cervus elaphus) meat. Meat Sci. 2008, 80, 864–869. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, W.K. Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals 2021, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Bulbul, T.; Rahman, A.; Ozdemir, V. Effect of False flax meal on certain growth, serum and meat parameters of Japanese quails. J. Anim. Plant Sci. 2015, 25, 1245–1250. [Google Scholar]
- Cullere, M.; Singh, Y.; Pellattiero, E.; Berzuini, S.; Galasso, I.; Clemente, C.; Zotte, A.D. Effect of the dietary inclusion of Camelina sativa cake into quail diet on live performance, carcass traits and meat quality. Poult. Sci. 2023, 102, 102650. [Google Scholar] [CrossRef] [PubMed]
- Konca, Y.; Yalcin, H.; Karabacak, M.; Kaliber, M.; Durmuscelebi, F.Z. Effect of hempseed (Cannabis sativa L.) on performance, egg traits and blood biochemical parameters and antioxidant activity in laying Japanese Quail (Coturnix coturnix japonica). Br. Poult. Sci. 2014, 55, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Sichetti Munekata, P.E.; Pateiro, M.; Barba, F.J.; Domínguez, R. Foods Lipids. Sources, Health Implications, and Future Trends; Lorenzo, J.M., Sichetti Munekata, P.E., Pateiro, M., Barba, F.J., Domínguez, R., Eds.; Academic Press: Cambridge, MA, USA, 2022; ISBN 978-0-12-823371-9. [Google Scholar]
- Jaskiewicz, T.; Sagan, A.; Puzio, I. Effect of the Camelina sativa oil on the performance, essential fatty acid level in tissues and fat—Soluble vitamins content in the livers of broiler chickens. Livest. Sci. 2014, 165, 74–79. [Google Scholar] [CrossRef]
- Malik, V.S.; Chiuve, S.E.; Campos, H.; Rimm, E.B.; Mozaffarian, D.; Hu, F.B.; Sun, Q. Circulating Very-Long Chain Saturated Fatty Acids and Incident Coronary Heart Disease in U.S. Men and Women. Circulation 2015, 28, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.H.; Omar, M.B.; Hussein, S.M.; Abdel-Mobdy, H.E. Nutritional Value of Farmed and Wild Quail Meats. Assiut J. Agric. Sci. 2016, 47, 58–71. [Google Scholar]
- European Community. Council Directive 76/621/EEC. Official Journal L 202, 28.07.1976, 35–37. 1976. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31976L0621 (accessed on 18 April 2023).
- Aziza, A.E.; Awadin, W.F.; Quezada, N.; Cherian, G. Gastrointestinal morphology, fatty acid profile, and production performance of broiler chicken fed camelina meal or fish oil. Eur. J. Lipid Sci. Technol. 2014, 116, 1727–1733. [Google Scholar] [CrossRef]
- Palmquist, D.L. Omega-3 fatty acids in metabolism, health, and nutrition and for modified animal product foods. Prof. Anim. Sci. 2009, 25, 207–249. [Google Scholar] [CrossRef]
- Villaverde, C.; Baucells, M.D.; Cortinas, L.; Barroeta, A.C. Effects of dietary concentration and degree of polyunsaturation of dietary fat on endogenous synthesis and deposition of fatty acids in chickens. Br. Poult. Sci. 2006, 47, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Monounsaturated Fatty Acids and Risk of Cardiovascular Disease: Synopsis of the Evidence Available from Systematic Reviews and Meta-Analyses. Nutrients 2012, 4, 1989–2007. [Google Scholar] [CrossRef] [PubMed]
- Janiszewski, P.; Lisiak, D.; Borzuta, K.; Grzeskowiak, E.; Schwarz, T.; Siekierko, U.; Andres, K.; Swiatkiewicz, S. The Effect of Feeding Chicken and Geese Broilers with Different Cereals on the Fatty Acids Profile in Meat. Foods 2021, 10, 2879. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-Y.; Chapkin, R.S. Importance of Dietary γ-Linolenic Acid in Human Health and Nutrition. J. Nutr. 1998, 128, 1411–1414. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Huang, Y.S. Gamma linolenic acid: An antiinflammatory omega-6 fatty acid. Curr. Pharm. Biotechnol. 2006, 7, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef]
- Van Hoorn, R.; Kapoor, R.; Kamphuis, J. A short review on sources and health benefits of GLA, The GOOD omega-6. OCL 2008, 15, 262–264. [Google Scholar] [CrossRef]
- Yalcin, H.; Konca, Y.; Durmuscelebi, F. Effect of dietary supplementation of hemp seed (Cannabis sativa L.) on meat quality and egg fatty acid composition of Japanese quail (Coturnix coturnix japonica). J. Anim. Physiol. Anim. Nutr. 2018, 102, 131–141. [Google Scholar] [CrossRef]
- Skrivan, M.; Englmaierová, M.; Taubner, T.; Skrivanová, E. Effects of Dietary Hemp Seed and Flaxseed on Growth Performance, Meat Fatty Acid Compositions, Liver Tocopherol Concentration and Bone Strength of Cockerels. Animals 2020, 10, 458. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. Br. J. Nutr. 1997, 78, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Gakhar, N.; Gibson, R.A.; House, J.D. Dietary and ontogenic regulation of fatty acid desaturase and elongase expression in broiler chickens. Prostaglandins Leukot. Essent. Fatty Acids 2013, 89, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Gou, Z.Y.; Cui, X.Y.; Li, L.; Fan, Q.L.; Lin, X.J.; Wang, Y.B.; Jiang, Z.Y.; Jiang, S.Q. Effects of dietary incorporation of linseed oil with soybean isoflavone on fatty acid profiles and lipid metabolism-related gene expression in breast muscle of chickens. Animal 2020, 14, 2414–2422. [Google Scholar] [CrossRef] [PubMed]
- European Commission. European Commission Nutrition Claims. Available online: https://ec.europa.eu/food/safety/labelling_nutrition/claims/nutrition_claims_en (accessed on 25 November 2022).
- Brenna, J.T.; Salem, N., Jr.; Sinclair, A.J.; Cunnane, S.C. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fatty Acids. 2009, 80, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Calder, P.C. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef]
- Ghaeni, M.; Ghahfarokhi, K.N.; Zaher, L. Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in Leiognathusbindus and Upeneussulphureus. J. Marine Sci. Res. Dev. 2013, 3, 1000138. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mancinelli, A.C.; Vaudo, G.; Cavallo, M.; Castellini, C.; Mattioli, S. Indexing of Fatty Acids in Poultry Meat for Its Characterization in Healthy Human Nutrition: A Comprehensive Application of the Scientific Literature and New Proposals. Nutrients 2022, 14, 3110. [Google Scholar] [CrossRef]
- Popova, T.; Petkov, E.; Ignatova, M.; Lukić, M. Fatty Acid Composition of Thigh Meat in Two Lines of Slow-Growing Chickens as Affected by the Access to Pasture. IJIAAR 2018, 2, 123–132. [Google Scholar] [CrossRef]
- Skiepko, N.; Chwastowska-Siwecka, I.; Kondratowicz, J.; Mikulski, D. Fatty acid profile, total cholesterol, vitamin content TBARS value of Turkey breast muscle cured with the addition lycopene. Poult. Sci. 2016, 95, 1182–1190. [Google Scholar] [CrossRef]
- Werenska, M.; Haraf, G.; Woloszyn, J.; Goluch, Z.; Okruszek, A.; Teleszko, M. Fatty acid profile and health lipid indicies of goose meat in relation to various types of heat treatment. Poult. Sci. 2021, 100, 101237. [Google Scholar] [CrossRef]
- Woloszyn, J.; Haraf, G.; Okruszek, A.; Werenska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Banaszak, M.; Kuźniacka, J.; Biesek, J.; Maiorano, G.; Adamski, M. Meat quality traits and fatty acid composition of breast muscles from ducks fed with yellow lupin. Animal 2020, 14, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.E.; da Silva Vasconcelos, M.A.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; de Molo Filho, A.B. Nutritional and lipid profiles in marine fish species from Brasil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Goluch, Z.; Okruszek, A.; Haraf, G.; Moroch, R.; Rybarczyk, A.; Werenska, M.; Teleszko, M. Fatty acid composition of turkey breast muscle and the salutogenic feeding regimen formulations (a pilot study). J. Elem. 2020, 25, 59–69. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int. J. Prev. Med. 2014, 5, 927–946. [Google Scholar] [PubMed]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar]
- Frota, K.M.G.; Matias, A.C.G.; Areas, J.A.G. Influence of food components on lipid metabolism: Scenarios and perspective on the control and prevention of dyslipidemias. Ciênc. Tecnol. Aliment. 2010, 30 (Suppl. S1), 7–14. [Google Scholar] [CrossRef]
- Carneiro, M.M.Y.; de Tonissi e Buschinelli de Goes, R.H.; Barros, B.C.B.; de Oliveira, R.T.; Fernandes, A.R.M.; Gonçalves da Silva, N.; Anschau, D.G.; Cardoso, C.A.L.; Silva Oliveira, S.; dos Santos Picanço, Y. Fatty acids profile, atherogenic and thrombogenic health lipid indices in the meat of lambs that received canola grain. Braz. J. Vet. Res. Anim. Sci. 2021, 58, e178023. [Google Scholar] [CrossRef]
- Dietschy, J.M. Dietary Fatty Acids and the Regulation of Plasma Low Density Lipoprotein Cholesterol Concentrations. J. Nutr. 1998, 128, 444S–448S. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles, hypocholesterolemic, atherogenic, and thrombogenic indices of broiler meat in the retail market. Lipids Health Dis. 2017, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Haraf, G.; Woloszyn, J.; Okruszek, A.; Goluch, Z.; Werenska, M.; Teleszko, M. The protein and fat quality of thigh muscles from Polish goose varieties. Poult. Sci. 2021, 100, 100992. [Google Scholar] [CrossRef] [PubMed]
Specification | Control Group (C) | Experimental 1 (HE) | Experimental 2 (CA) | |||
---|---|---|---|---|---|---|
Until 28 Days | Over 28 Days | Until 28 Days | Over 28 Days | Until 28 Days | Over 28 Days | |
Wheat, % | 19.93 | 31.76 | 18.48 | 29.84 | 20.67 | 32.74 |
Barley, % | 4.00 | 6.00 | 4.00 | 6.00 | 4.00 | 6.00 |
Maize, % | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Peas, % | 8.00 | 10.00 | 8.00 | 10.00 | 8.00 | 10.00 |
Sunflower meal, % | 10.00 | 8.61 | 10.00 | 10.60 | 10.00 | 7.63 |
Rape cake, % | 10.00 | 10.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Hempseed cake, % | 0.00 | 0.00 | 10.00 | 10.00 | 0.00 | 0.00 |
Camelina cake, % | 0.00 | 0.00 | 0.00 | 0.00 | 10.00 | 10.00 |
Soybean meal, % | 18.07 | 4.00 | 19.56 | 4.00 | 17.34 | 4.00 |
Brewers’ yeast, % | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Oyster shells, % | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Feeder’s chalk, % | 1.24 | 1.25 | 1.39 | 1.43 | 1.25 | 1.27 |
Premix, % * | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Sunflower oil, % | 1.50 | 1.00 | 1.50 | 1.00 | 1.50 | 1.00 |
Fodder salt, % | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Monocalcium phosphate, % | 0.66 | 0.78 | 0.47 | 0.53 | 0.64 | 0.76 |
Calculated nutritional value of feed mixture | ||||||
Dry matter, kg/kg | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 |
Metabolizable energy, MJ/kg | 10.93 | 11.20 | 11.17 | 11.39 | 11.03 | 11.32 |
Crude protein, g/kg | 240.04 | 190.51 | 240.03 | 190.51 | 240.03 | 190.50 |
Lysine, g/kg | 12.62 | 9.24 | 12.24 | 8.71 | 12.28 | 8.98 |
Methionine + Cysteine, g/kg | 6.96 | 5.88 | 6.96 | 6.05 | 7.32 | 6.16 |
Threonine, g/kg | 8.92 | 7.23 | 8.53 | 6.87 | 8.74 | 7.02 |
Tryptophan, g/kg | 2.81 | 2.33 | 2.63 | 2.17 | 2.78 | 2.28 |
Fiber, g/kg | 59.39 | 49.89 | 75.00 | 70.53 | 60.96 | 50.27 |
Fat, g/kg | 47.39 | 42.59 | 40.96 | 36.59 | 42.16 | 37.15 |
Calcium, g/kg | 12.48 | 12.37 | 12.46 | 12.39 | 12.46 | 12.38 |
Phosphorus, g/kg | 7.23 | 7.02 | 7.30 | 7.09 | 7.28 | 7.01 |
Glucosinolates, g/kg | 0.16 | 0.16 | 0.00 | 0.00 | 0.25 | 0.25 |
Item | Rapeseed Cake | Hempseed Cake | Camelina Cake |
---|---|---|---|
Dry matter % | 88.86 | 94.88 | 89.42 |
Metabolizable energy MJ/kg | 8.24 | 11.01 | 9.03 |
Crude protein % | 36.12 | 30.95 | 38.61 |
Lysine g/kg | 17.80 | 10.30 | 16.20 |
Methionine + cysteine g/kg | 10.90 | 9.90 | 15.00 |
Threonine g/kg | 14.50 | 8.80 | 13.60 |
Tryptophan g/kg | 4.30 | 2.00 | 4.20 |
Ether extract % | 12.71 | 6.30 | 7.46 |
Crude fiber % | 12.35 | 27.32 | 14.23 |
Calcium % | 0.58 | 0.25 | 0.57 |
Phosphorus % | 0.95 | 1.42 | 1.07 |
Glucosinolates % | 0.16 | 0.00 | 0.25 |
Fatty acids (% of total fatty acids): | |||
Capric (C10:0) | 0.00 | 0.04 | 0.00 |
Myristic (C14:0) | 0.13 | 0.05 | 0.06 |
Pentadecanoic (C15:0) | 0.10 | 0.04 | 0.04 |
Palmitic (C16:0) | 8.22 | 6.34 | 6.12 |
Margaric (C17:0) | 0.07 | 0.05 | 0.04 |
Stearic (C18:0) | 1.36 | 2.35 | 2.17 |
Arachidic (C20:0) | 0.36 | 0.70 | 1.28 |
Behenic (C22:0) | 0.20 | 0.32 | 0.33 |
Lignoceric (C24:0) | 0.16 | 0.12 | 0.23 |
SFA * | 10.60 | 10.01 | 10.27 |
Palmitoleic (C16:1n-9) | 1.13 | 0.02 | 0.05 |
Hexadecenoic (C16:1n-7) | 0.10 | 0.10 | 0.13 |
Heptadecenoic (C17:1n-9) | 0.17 | 0.02 | 0.00 |
Elaidic (C18:1n-9t) | 0.31 | 0.00 | 0.22 |
Oleic (C18:1n-9) | 41.34 | 8.84 | 12.57 |
Vaccenic (C18:1n-7) | 10.55 | 0.91 | 1.33 |
Eicosenoic (C20:1n-9) | 0.66 | 0.35 | 11.73 |
Erucic (C22:1n-9) | 0.21 | 0.00 | 2.52 |
Nervonic (C24:1) | 0.00 | 0.06 | 1.16 |
MUFA * | 54.47 | 10.30 | 29.71 |
Octadecadienoic (C18:2n-6c,t) | 0.33 | 0.07 | 0.00 |
Linoleic (C18:2n-6) | 28.42 | 57.26 | 20.65 |
γ-linolenic (C18:3n-6) | 0.06 | 1.99 | 0.11 |
Eicosadienoic (C20:2n-6) | 0.00 | 0.80 | 1.85 |
Docosadienoic (C22:2n-6) | 0.00 | 0.00 | 0.40 |
n-6 PUFA | 28.81 | 60.12 | 23.01 |
α-linolenic (C18:3n-3) | 6.12 | 19.51 | 35.54 |
Eicosatrienoic (C20:3n-3) | 0.00 | 0.06 | 1.47 |
n-3 PUFA | 6.12 | 19.57 | 37.01 |
PUFA * | 34.93 | 79.69 | 60.02 |
n-6/n-3 PUFA ratio | 4.71 | 3.07 | 0.62 |
linoleic (C18:2)/α-linolenic (C18:3n-3) ratio | 4.64 | 2.93 | 0.58 |
Fatty Acid | Control (C) | Experimental 1 (HE) | Experimental 2 (CA) |
---|---|---|---|
Capric (C10:0) | 0.05 | 0.01 | 0.03 |
Myristic (C14:0) | 0.07 | 0.06 | 0.07 |
Palmitic (C16:0) | 9.05 | 8.75 | 9.68 |
Margaric (C17:0) | 0.05 | 0.04 | 0.00 |
Stearic (C18:0) | 2.50 | 2.51 | 2.26 |
Arachidic (C20:0) | 0.32 | 0.35 | 0.63 |
Behenic (C22:0) | 0.37 | 0.38 | 0.29 |
Lignoceric (C24:0) | 0.17 | 0.19 | 0.20 |
SFA * | 12.58 | 12.29 | 13.16 |
Oleic (C18:1n-9) | 17.08 | 16.07 | 15.46 |
Eicosenoic (C20:1n-9) | 0.33 | 0.37 | 3.34 |
Erucic (C22:1n-9) | 0.04 | 0.00 | 0.73 |
MUFA * | 19.27 | 17.80 | 21.13 |
Octadecadienoic (C18:2n-6c, t) | 0.06 | 0.05 | 0.00 |
Linoleic (C18:2n-6) | 63.11 | 63.88 | 50.19 |
γ –linolenic (C18:3n-6) | 0.36 | 0.53 | 0.50 |
Eicosadienoic (C20:2n-6) | 0.11 | 0.16 | 0.71 |
Arachidonic (C20:4n-6) | 0.46 | 0.21 | 0.39 |
Docosadienoic (C22:2n-6) | 0.01 | 0.11 | 0.10 |
n-6 PUFA | 64.11 | 64.94 | 51.89 |
α-linolenic (C18:3n-3) | 4.01 | 4.96 | 13.43 |
Eicosatrienoic (C20:3n-3) | 0.03 | 0.01 | 0.39 |
n-3 PUFA | 4.04 | 4.97 | 13.82 |
PUFA * | 68.15 | 69.91 | 65.71 |
n-6/n-3 PUFA ratio | 15.87 | 13.07 | 3.75 |
Linoleic/α-linolenic ratio | 15.74 | 12.88 | 3.74 |
Item | Group | |||||
---|---|---|---|---|---|---|
Control (C) | Experimental 1 (HE) | Experimental 2 (CA) | ||||
Mean | SE | Mean | SE | Mean | SE | |
Live weight, g | ||||||
28 days | 165.56 A | 1.945 | 155.73 B | 1.737 | 161.64 | 1.694 |
42 days | 214.01 A | 2.624 | 202.00 B | 2.371 | 208.40 | 2.547 |
Feed intake (g/bird) | ||||||
1–28 day | 277.00 | 3.873 | 267.57 | 3.022 | 273.71 | 3.205 |
29–42 day | 288.29 | 4.224 | 278.00 | 2.370 | 281.43 | 3.108 |
1–42 day | 565.29 a | 6.998 | 545.57 b | 3.265 | 555.14 | 5.152 |
Feed conversion ratio | ||||||
1–28 day | 1.77 B | 0.004 | 1.82 A | 0.018 | 1.79 | 0.013 |
29–42 day | 5.97 | 0.124 | 6.02 | 0.079 | 6.03 | 0.085 |
1–42 day | 2.75 b | 0.012 | 2.82 a | 0.025 | 2.78 | 0.020 |
Item | Group | |||||
---|---|---|---|---|---|---|
Control (C) | Experimental 1 (HE) | Experimental 2 (CA) | ||||
Mean | SE | Mean | SE | Mean | SE | |
Carcass yield | 71.31 | 2.174 | 72.44 | 0.820 | 71.71 | 0.460 |
Non-edible internal parts | 9.84 | 0.930 | 7.80 | 0.467 | 8.72 | 0.672 |
Heart | 1.21 | 0.037 | 1.25 | 0.039 | 1.19 | 0.034 |
Gizzard | 2.34 A | 0.116 | 2.08 | 0.080 | 1.95 B | 0.085 |
Liver | 2.18 | 0.140 | 2.34 | 0.089 | 2.35 | 0.233 |
Abdominal fat | 2.44 | 0.373 | 2.76 | 0.459 | 1.96 | 0.286 |
Breast muscle | 22.40 | 3.194 | 22.49 | 1.795 | 22.33 | 2.796 |
Leg muscle | 18.29 | 2.099 | 19.86 | 0.777 | 19.50 | 0.851 |
Fatty Acid | Group | |||||
---|---|---|---|---|---|---|
Control (C) | Experimental 1 (HE) | Experimental 2 (CA) | ||||
Mean | SE | Mean | SE | Mean | SE | |
Lauric (C12:0) | 0.01 | 0.003 | 0.01 | 0.003 | 0.01 | 0.003 |
Myristic (C14:0) | 0.34 b | 0.008 | 0.33 b | 0.010 | 0.37 a | 0.010 |
Pentadecanoic (C15:0) | 0.04 A | 0.001 | 0.03 B,b | 0.001 | 0.04 A,a | 0.001 |
Palmitic (C16:0) | 18.13 B | 0.158 | 18.10 B,b | 0.277 | 19.12 A,a | 0.275 |
Margaric (C17:0) | 0.09 | 0.004 | 0.08 | 0.003 | 0.09 | 0.005 |
Stearic (C18:0) | 9.79 | 0.261 | 9.49 | 0.238 | 9.53 | 0.264 |
Arachidic (C20:0) | 0.06 | 0.002 | 0.06 | 0.002 | 0.07 | 0.002 |
Behenic (C22:0) | 0.06 A | 0.005 | 0.03 B | 0.002 | 0.08 A | 0.011 |
Total SFA | 28.52 a,b | 0.374 | 28.14 b | 0.414 | 29.30 a | 0.323 |
Myristoleic (C14:1n-7) | 0.09 | 0.007 | 0.08 | 0.007 | 0.09 | 0.006 |
Palmitelaidic (C16:1n-7t) | 0.01 | 0.003 | 0.01 | 0.003 | 0.01 | 0.004 |
Hexadecenoic (C16:1n-9) | 0.25 | 0.007 | 0.26 | 0.011 | 0.27 | 0.006 |
Palmitoleic (C16:1n-7) | 4.88 | 0.304 | 4.61 | 0.312 | 4.98 | 0.277 |
Heptadecenoic (C17:1n-9) | 0.05 A | 0.003 | 0.03 B | 0.004 | 0.05 A | 0.004 |
Elaidic (C18:1n-9t) | 0.07 | 0.003 | 0.07 | 0.002 | 0.08 | 0.010 |
Oleic (C18:1n-9) | 24.53 b | 0.514 | 25.69 a,b | 0.597 | 26.83 a | 0.811 |
Vaccenic (C18:1n-7) | 1.87 | 0.027 | 1.79 | 0.056 | 1.92 | 0.063 |
Eicosenoic (C20:1n-9) | 0.19 B | 0.005 | 0.20 B | 0.006 | 0.57 A | 0.024 |
Erucic (C22:1n-9) | 0.00 B | 0.000 | 0.00 B | 0.000 | 0.03 A | 0.005 |
Total MUFA | 31.93 b | 0.786 | 32.74 a,b | 0.717 | 34.82 a | 1.070 |
Fatty Acid | Group | |||||
---|---|---|---|---|---|---|
Control (C) | Experimental 1 (HE) | Experimental 2 (CA) | ||||
Mean | SE | Mean | SE | Mean | SE | |
Lauric (C12:0) | 0.010 A | 0.003 | 0.010 a | 0.003 | 0.00 B,b | 0.000 |
Myristic (C14:0) | 0.39 A,B | 0.008 | 0.38 B | 0.006 | 0.42 A | 0.009 |
Pentadecanoic (C15:0) | 0.05 A | 0.001 | 0.04 B,b | 0.002 | 0.05 a | 0.001 |
Palmitic (C16:0) | 17.45 b | 0.183 | 16.90 B | 0.271 | 18.27 A,a | 0.275 |
Margaric (C17:0) | 0.08 | 0.004 | 0.08 | 0.003 | 0.08 | 0.004 |
Stearic (C18:0) | 7.14 | 0.210 | 7.11 | 0.318 | 7.36 | 0.347 |
Arachidic (C20:0) | 0.06 B,b | 0.002 | 0.08 a | 0.005 | 0.08 A | 0.004 |
Behenic (C22:0) | 0.05 A | 0.004 | 0.03 B | 0.005 | 0.05 A | 0.005 |
Total SFA | 25.22 a,b | 0.340 | 24.62 b | 0.475 | 26.31 a | 0.448 |
Myristoleic (C14:1n-7) | 0.09 a,b | 0.006 | 0.07 b | 0.005 | 0.09 a | 0.006 |
Palmitelaidic (C16:1n-7t) | 0.01 | 0.003 | 0.01 | 0.003 | 0.01 | 0.003 |
Hexadecenoic (C16:1n-9) | 0.26 | 0.010 | 0.26 | 0.012 | 0.27 | 0.008 |
Palmitoleic (C16:1n-7) | 5.12 | 0.284 | 4.69 | 0.261 | 5.44 | 0.356 |
Heptadecenoic (C17:1n-9) | 0.04 B | 0.002 | 0.04 B | 0.004 | 0.06 A | 0.003 |
Elaidic (C18:1n-9t) | 0.01 | 0.011 | 0.08 | 0.002 | 0.08 | 0.004 |
Oleic (C18:1n-9) | 30.03 b | 0.463 | 30.76 a,b | 0.676 | 32.72 a | 1.014 |
Vaccenic (C18:1n-7) | 1.80 A | 0.020 | 1.63 B | 0.045 | 1.85 A | 0.062 |
Eicosenoic (C20:1n-9) | 0.23 B | 0.005 | 0.24 B | 0.007 | 0.79 A | 0.045 |
Erucic (C22:1n-9) | 0.00 B | 0.000 | 0.00 B | 0.000 | 0.04 A | 0.003 |
Total MUFA | 37.67 b | 0.691 | 37.78 b | 0.818 | 41.35 a | 1.314 |
Fatty Acid | Group | |||||
---|---|---|---|---|---|---|
Control (C) | Experimental 1 (HE) | Experimental 2 (CA) | ||||
Mean | SE | Mean | SE | Mean | SE | |
Linolelaidic (C18:2n-6t) | 0.03 A | 0.002 | 0.02 B | 0.003 | 0.03 A | 0.002 |
Octadecadienoic (C18:2n-6c,t) | 0.02 A | 0.004 | 0.00 B | 0.000 | 0.023 A | 0.003 |
Octadecadienoic (C18:2n-6t,c) | 0.01 B | 0.004 | 0.03 A | 0.001 | 0.00 C | 0.000 |
Linoleic (C18:2n-6) | 25.79 A | 0.352 | 25.59 A | 0.372 | 21.00 B | 0.542 |
γ-linolenic (C18:3n-6) | 0.14 B | 0.004 | 0.17 A | 0.007 | 0.13 B | 0.004 |
Eicosadienoic (C20:2n-6) | 0.14 B | 0.005 | 0.16 B | 0.008 | 0.23 A | 0.011 |
Eicosatrienoic (C20:3n-6) | 0.26 B | 0.009 | 0.26 B | 0.010 | 0.31 A | 0.013 |
Arachidonic (C20:4n-6) | 7.52 A | 0.350 | 7.07 A,a | 0.258 | 6.28 B,b | 0.238 |
Docosatetraenoic (C22:4n-6) | 0.23 A | 0.009 | 0.18 B | 0.009 | 0.14 C | 0.008 |
Total LC n-6 PUFA | 8.15 a | 0.356 | 7.66 a,b | 0.264 | 6.96 b | 0.248 |
Total n-6 PUFA | 34.14 A | 0.434 | 33.47 A | 0.492 | 28.14 B | 0.686 |
α-linolenic (C18:3n-3) | 0.90 C | 0.031 | 1.15 B | 0.036 | 2.26 A | 0.090 |
Eicosatrienoic (C20:3n-3) | 0.00 B | 0.000 | 0.00 B | 0.000 | 0.07 A | 0.004 |
Eicosapentaenoic (C20:5n-3) | 0.11 B | 0.008 | 0.13 B | 0.008 | 0.37 A | 0.023 |
Docosapentaenoic (C22:5n-3) | 0.56 B | 0.027 | 0.57 B | 0.025 | 0.69 A | 0.028 |
Docosahexaenoic (C22:6n-3) | 1.59 B | 0.090 | 1.66 B | 0.064 | 2.08 A | 0.093 |
Total LC n-3 PUFA | 2.27 B | 0.102 | 2.36 B | 0.079 | 3.22 A | 0.122 |
Total n-3 PUFA | 3.17 C | 0.082 | 3.51 B | 0.091 | 5.48 A | 0.179 |
Total PUFA | 37.31 A | 0.462 | 36.99 A | 0.546 | 33.63 B | 0.839 |
n-6/n-3 ratio | 10.85 A | 0.261 | 9.89 B | 0.209 | 5.17 C | 0.094 |
Linoleic (C18:2n-6)/α-linolenic (C18:3n-3) ratio | 29.07 A | 0.860 | 22.53 B | 0.660 | 9.377 C | 0.216 |
PUFA/SFA | 1.31 A | 0.018 | 1.32 A | 0.027 | 1.15 B | 0.027 |
PUFA/MUFA | 1.18 A | 0.044 | 1.14 A,a | 0.044 | 0.99 B,b | 0.050 |
Fatty Acid | Group | |||||
---|---|---|---|---|---|---|
Control (C) | Experimental 1 (HE) | Experimental 2 (CA) | ||||
Mean | SE | Mean | SE | Mean | SE | |
Linolelaidic (C18:2n-6t) | 0.03 a | 0.002 | 0.02 b | 0.002 | 0.04 a,b | 0.007 |
Octadecadienoic (C18:2n-6c,t) | 0.03 A | 0.003 | 0.00 B | 0.000 | 0.04 A | 0.007 |
Octadecadienoic (C18:2n-6t,c) | 0.00 B | 0.003 | 0.03 A | 0.002 | 0.00 B | 0.000 |
Linoleic (C18:2n-6) | 29.03 A | 0.399 | 29.44 A | 0.540 | 22.60 B | 0.653 |
γ-linolenic (C18:3n-6) | 0.13 B | 0.002 | 0.17 A | 0.006 | 0.13 B | 0.004 |
Eicosadienoic (C20:2n-6) | 0.11 C | 0.003 | 0.13 B | 0.005 | 0.18 A | 0.011 |
Eicosatrienoic (C20:3n-6) | 0.16 B | 0.006 | 0.15 B | 0.008 | 0.20 A | 0.014 |
Arachidonic (C20:4n-6) | 3.51 | 0.161 | 3.27 | 0.234 | 3.03 | 0.200 |
Docosatetraenoic (C22:4n-6) | 0.27 A | 0.014 | 0.24 A | 0.017 | 0.16 B | 0.013 |
Total LC n-6 PUFA | 4.04 | 0.178 | 3.77 | 0.261 | 3.58 | 0.232 |
Total n-6 PUFA | 33.27 A | 0.463 | 33.44 A | 0.579 | 26.38 B | 0.808 |
α-linolenic (C18:3n-3) | 1.05 C | 0.029 | 1.36 B | 0.048 | 2.71 A | 0.116 |
Eicosatrienoic (C20:3n-3) | 0.00 B | 0.000 | 0.00 B | 0.000 | 0.07 A | 0.005 |
Eicosapentaenoic (C20:5n-3) | 0.05 B | 0.003 | 0.05 B | 0.004 | 0.15 A | 0.012 |
Docosapentaenoic (C22:5n-3) | 0.38 b | 0.020 | 0.40 a,b | 0.028 | 0.47 a | 0.036 |
Docosahexaenoic (C22:6n-3) | 0.97 b | 0.052 | 1.03 a,b | 0.073 | 1.25 a | 0.090 |
Total LC n-3 PUFA | 1.40 B | 0.069 | 1.47 B | 0.100 | 1.94 A | 0.135 |
Total n-3 PUFA | 2.45 C | 0.069 | 2.86 B | 0.085 | 4.64 A | 0.197 |
Total PUFA | 35.72 A | 0.491 | 36.28 A | 0.628 | 31.02 B | 0.990 |
Total trans acid | 0.17 | 0.013 | 0.14 | 0.005 | 0.16 | 0.011 |
n-6/n-3 ratio | 13.69 A | 0.380 | 11.90 B | 0.310 | 5.74 C | 0.119 |
Linoleic (C18:2n-6)/α-linolenic (C18:3n-3) ratio | 27.88 A | 0.896 | 21.85 B | 0.651 | 8.46 C | 0.211 |
PUFA/SFA | 1.42 A | 0.025 | 1.48 A | 0.035 | 1.18 B | 0.035 |
PUFA/MUFA | 0.96 A | 0.029 | 0.97 A | 0.041 | 0.77 B | 0.046 |
Item | Group | |||||
---|---|---|---|---|---|---|
Control (C) | Experimental 1 (HE) | Experimental 2 (CA) | ||||
Mean | SE | Mean | SE | Mean | SE | |
Atherogenic index | 0.26 b | 0.004 | 0.25 B | 0.005 | 0.28 A,a | 0.005 |
Thrombogenic index | 0.58 a | 0.010 | 0.55 a,b | 0.015 | 0.54 b | 0.011 |
Hypo/hypercholesterolemic index | 3.78 B,b | 0.054 | 3.98 A,a | 0.072 | 3.50 C | 0.061 |
Peroxidation index | 58.28 | 1.260 | 58.81 | 1.716 | 56.58 | 2.314 |
Unsaturation index | 123.18 | 0.792 | 124.46 | 1.204 | 119.73 | 1.557 |
Desirable fatty acids | 79.04 A | 0.219 | 79.21 | 0.279 | 77.98 B | 0.273 |
Hypercholesterolemic saturated fatty acids | 19.51 B | 0.171 | 19.45 | 0.030 | 20.60 A | 0.299 |
Cholesterol mg/100 g | 67.53 | 2.637 | 59.44 | 3.532 | 65.25 | 2.769 |
Total lipids, % | 2.99 | 0.142 | 2.80 | 0.178 | 2.72 | 0.168 |
Item | Group | |||||
---|---|---|---|---|---|---|
Control (C) | Experimental 1 (HE) | Experimental 2 (CA) | ||||
Mean | SE | Mean | SE | Mean | SE | |
Atherogenic index | 0.26 b | 0.004 | 0.25 B | 0.005 | 0.28 A,a | 0.005 |
Thrombogenic index | 0.58 a | 0.010 | 0.55 a,b | 0.015 | 0.54 b | 0.011 |
Hypo/hypercholesterolemic index | 3.78 B,b | 0.054 | 3.98 A,a | 0.072 | 3.50 C | 0.061 |
Peroxidation index | 58.28 | 1.260 | 58.81 | 1.716 | 56.58 | 2.314 |
Unsaturation index | 123.18 | 0.792 | 124.46 | 1.204 | 119.73 | 1.557 |
Desirable fatty acids | 80.52 a | 0.216 | 81.17 | 0.268 | 79.73 b | 0.280 |
Hypercholesterolemic saturated fatty acids | 19.04 b | 0.199 | 18.42 | 0.286 | 19.95 a | 0.295 |
Cholesterol mg/100 g | 67.53 | 2.637 | 59.44 | 3.532 | 65.25 | 2.769 |
Total lipids, % | 4.74 | 0.186 | 4.87 | 0.242 | 4.97 | 0.277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juodka, R.; Nainienė, R.; Šiukščius, A.; Leikus, R.; Šarauskas, G. Effects of Dietary Hempseed or Camelina Cakes on Fatty Acid Composition of Quail Meat. Life 2024, 14, 53. https://doi.org/10.3390/life14010053
Juodka R, Nainienė R, Šiukščius A, Leikus R, Šarauskas G. Effects of Dietary Hempseed or Camelina Cakes on Fatty Acid Composition of Quail Meat. Life. 2024; 14(1):53. https://doi.org/10.3390/life14010053
Chicago/Turabian StyleJuodka, Robertas, Rasa Nainienė, Artūras Šiukščius, Raimondas Leikus, and Giedrius Šarauskas. 2024. "Effects of Dietary Hempseed or Camelina Cakes on Fatty Acid Composition of Quail Meat" Life 14, no. 1: 53. https://doi.org/10.3390/life14010053
APA StyleJuodka, R., Nainienė, R., Šiukščius, A., Leikus, R., & Šarauskas, G. (2024). Effects of Dietary Hempseed or Camelina Cakes on Fatty Acid Composition of Quail Meat. Life, 14(1), 53. https://doi.org/10.3390/life14010053