Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = oil–water black-oil model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3007 KiB  
Article
Enhancing Reservoir Modeling via the Black Oil Model for Horizontal Wells: South Rumaila Oilfield, Iraq
by Dhyaa H. Haddad, Sameera Hamd-Allah and Mohamed Reda
Resources 2025, 14(7), 110; https://doi.org/10.3390/resources14070110 - 9 Jul 2025
Viewed by 604
Abstract
Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator [...] Read more.
Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator is customized for horizontal well modeling and calibrated using extensive historical data from the South Rumaila Oilfield, Iraq. The simulator first achieves a strong match with historical pressure data (1954–2004) using vertical wells, with an average deviation of less than 5% from observed pressures, and is then applied to forecast the performance of hypothetical horizontal wells (2008–2011). The results validate the simulator’s reliability in estimating bottom-hole pressure (e.g., ±3% accuracy for HRU1 well) and water–oil ratios (e.g., WOR reduction of 15% when increasing horizontal well length from 1000 m to 2000 m). Notably, the simulator demonstrated that doubling the horizontal well length reduced WOR by 15% while increasing bottom-hole pressure by only 2%, highlighting the efficiency of longer wells in mitigating water encroachment. This work contributes to improved reservoir management by enabling efficient well placement strategies and optimizing extraction planning, thereby promoting both economic and resource-efficient hydrocarbon recovery. Full article
Show Figures

Figure 1

15 pages, 5067 KiB  
Article
Integrated Modeling of Time-Varying Permeability and Non-Darcy Flow in Heavy Oil Reservoirs: Numerical Simulator Development and Case Study
by Yongzheng Cui, Wensheng Zhou and Chen Liu
Processes 2025, 13(6), 1683; https://doi.org/10.3390/pr13061683 - 27 May 2025
Viewed by 392
Abstract
Studies have demonstrated that heavy oil flow exhibits threshold pressure gradient (TPG) which is closely related to the permeability and viscosity of the crude oil. Also, long-term water flooding continuously alters unconsolidated sandstone reservoir permeability through water flushing. These combined effects significantly influence [...] Read more.
Studies have demonstrated that heavy oil flow exhibits threshold pressure gradient (TPG) which is closely related to the permeability and viscosity of the crude oil. Also, long-term water flooding continuously alters unconsolidated sandstone reservoir permeability through water flushing. These combined effects significantly influence water flooding performance. Therefore, in this paper, a comprehensive oil–water two phase mathematical model is developed for waterflooded heavy oil unconsolidated sandstone reservoirs based on the traditional black oil model, incorporating both time-varying permeability and threshold pressure gradient. The water-flooding-dependent threshold pressure gradient is firstly proposed, accounting for time-varying permeability. Subsequently, a simulator is developed with finite volume and Newton iteration method. Good agreement is obtained with the commercial simulator based on traditional black oil model. Afterward, the influence of permeability time variation and threshold pressure gradient is analyzed in detail. Results demonstrate that the threshold pressure gradient and time-varying permeability both decrease the oil recovery. The threshold pressure gradient (TPG) reduces the oil flow region and displacement efficiency since production. The increases in permeability after long term water flooding exacerbate reservoir heterogeneity and reduce sweep efficiency. The lowest oil recovery is observed when non-Darcy flow and permeability time variation are considered simultaneously. Furthermore, the time-varying threshold pressure gradient is observed with permeability time variation. Finally, a field data history matching was successfully performed, demonstrating the practical applicability of the proposed model. This new model better aligns with reservoir development characteristics. It can provide a theoretical guide for the development of heavy oil reservoirs. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

16 pages, 1267 KiB  
Article
Effect of Drying Method on Selected Physical and Functional Properties of Powdered Black Soldier Fly Larvae
by Radosław Bogusz, Małgorzata Nowacka, Ewa Gondek, Murat Delman and Karolina Szulc
Appl. Sci. 2025, 15(8), 4097; https://doi.org/10.3390/app15084097 - 8 Apr 2025
Viewed by 784
Abstract
This research aimed to assay the impact of convective drying (CD) or infrared–convective (IR–CD) drying methods on the physical and techno-functional properties, FTIR spectra, and mathematical modeling of adsorption kinetics of black soldier fly larvae powders. By using convective drying, insect powder exhibited [...] Read more.
This research aimed to assay the impact of convective drying (CD) or infrared–convective (IR–CD) drying methods on the physical and techno-functional properties, FTIR spectra, and mathematical modeling of adsorption kinetics of black soldier fly larvae powders. By using convective drying, insect powder exhibited higher water content and water activity but lower hygroscopicity than powder dried with the infrared–convective method. After drying with the convective method, the powder exhibited a significantly lower loose and tapped bulk density and oil holding capacity (OHC). Furthermore, this powder was lighter and more yellow. The FTIR spectrum of the CD-dried powder showed lower absorption at key wavenumbers for the protein (1625 and 1350–1200 cm−1), indicating lower denaturation and less ability to bind water and water vapor. The mathematical modeling of the water vapor adsorption kinetics of insect powders via the second Fick’s law for transient diffusion showed that this equation is suitable for adjusting the experimental data based on the high coefficient of determination (0.997–0.999) and the low root mean square (2.50–3.34%). This study revealed that the drying method influences insect powder properties, and the IR–CD method seems better in terms of obtaining better techno-functional properties. Full article
Show Figures

Figure 1

16 pages, 11348 KiB  
Article
Thermal Degradation Study of Hydrogel Nanocomposites Based on Polyacrylamide and Nanosilica Used for Conformance Control and Water Shutoff
by Aleksey Telin, Farit Safarov, Ravil Yakubov, Ekaterina Gusarova, Artem Pavlik, Lyubov Lenchenkova and Vladimir Dokichev
Gels 2024, 10(12), 846; https://doi.org/10.3390/gels10120846 - 22 Dec 2024
Cited by 3 | Viewed by 1204
Abstract
The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10–15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels [...] Read more.
The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10–15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control. In all these processes, hydrogels crosslinked with different crosslinkers are used, with the addition of different amounts of nanoparticles. The highest nanoparticle content, from 5 to 9 wt%, was observed in hydrogels for well killing. This is explained by the fact that the volumes of injection of block packs are counted only in tens of cubic meters, and for the sake of trouble-free workover, it is very important to preserve the structural and mechanical properties of block packs during the entire repair of the well. For water shutoff, the volumes of nanocomposite injection, depending on the well design, are from 50 to 150 m3. For conformance control, it is required to inject from one to several thousand cubic meters of hydrogel with nanoparticles. Naturally, for such operations, service companies try to select compositions with the minimum required nanoparticle content, which would ensure injection efficiency but at the same time would not lose economic attractiveness. The aim of the present work is to develop formulations of nanocomposites with increased structural and mechanical characteristics based on hydrogels made of partially hydrolyzed polyacrylamide crosslinked with resorcinol and paraform, with the addition of commercially available nanosilica, as well as to study their thermal degradation, which is necessary to predict the lifetime of gel shields in reservoir conditions. Hydrogels with additives of pyrogenic (HCSIL200, HCSIL300, RX380) and hydrated (white carbon black grades: ‘BS-50’, ‘BS-120 NU’, ‘BS-120 U’) nanosilica have been studied. The best samples in terms of their structural and mechanical properties have been established: nanocomposites with HCSIL200, HCSIL300, and BS-120 NU. The addition of hydrophilic nanosilica HCSIL200 in the amount of 0.4 wt% to a hydrogel consisting of partially hydrolyzed polyacrylamide (1%), resorcinol (0.04%), and paraform (0.09%) increased its elastic modulus by almost two times and its USS by almost three times. The thermal degradation of hydrogels was studied at 140 °C, and the experimental time was converted to the exposure time at 80 °C using Van’t Hoff’s rule. It was found that the nanocomposite with HCSIL200 retains its properties at a satisfactory level for 19 months. Filtration studies on water-saturated fractured reservoir models showed that the residual resistance factor and selectivity of the effect of nanocomposites with HCSIL200 on fractures are very high (226.4 and 91.6 for fracture with an opening of 0.05 cm and 11.0 for porous medium with a permeability of 332.3 mD). The selectivity of the isolating action on fractured intervals of the porous formation was noted. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

22 pages, 10538 KiB  
Article
Changes in Functional Properties and In Vitro Digestibility of Black Tartary Buckwheat Starch by Autoclaving Combination with Pullulanase Treatment
by Faying Zheng, Fuxin Nie, Ye Qiu, Yage Xing, Qinglian Xu, Jianxiong Chen, Ping Zhang and Hong Liu
Foods 2024, 13(24), 4114; https://doi.org/10.3390/foods13244114 - 19 Dec 2024
Cited by 3 | Viewed by 1210
Abstract
The processing properties of resistant starch (RS) and its digestion remain unclear, despite the widespread use of autoclaving combined with debranching in its preparation. In this study, the physicochemical, rheological and digestibility properties of autoclaving modified starch (ACB), autoclaving–pullulanase modified starch (ACPB) and [...] Read more.
The processing properties of resistant starch (RS) and its digestion remain unclear, despite the widespread use of autoclaving combined with debranching in its preparation. In this study, the physicochemical, rheological and digestibility properties of autoclaving modified starch (ACB), autoclaving–pullulanase modified starch (ACPB) and native black Tartary buckwheat starch (NB) were compared and investigated. The molecular weight and polydispersity index of modified starch was in the range of 0.15 × 104~1.90 × 104 KDa and 1.88~2.82, respectively. In addition, the SEM results showed that both modifications influenced the morphological characteristics of the NB particles, and their particles tended to be larger in size. Autoclaving and its combination with pullulanase significantly increased the short-range ordered degree, resistant starch yield and water- and oil-absorption capacities, and decreased the syneresis properties with repeated freezing/thawing cycles. Moreover, rheological analysis showed that both ACB and ACPB exhibited shear-thinning behavior and lower gel elasticity as revealed by the power law model and steady-state scan. The degradation of starch chains weakened the interaction of starch molecular chains and thus changed the gel network structure. The in vitro digestion experiments demonstrated that ACB and ACPB exhibited greater resistance to enzymatic digestion compared to the control, NB. Notably, the addition of pullulanase inhibited the hydrolysis of the ACB samples, and ACPB showed greater resistance against enzymatic hydrolysis. This study reveals the effects of autoclaving combined with debranching on the processing properties and functional characteristics of black Tartary buckwheat starch. Full article
Show Figures

Graphical abstract

25 pages, 8872 KiB  
Article
New Insight of Nanosheet Enhanced Oil Recovery Modeling: Structural Disjoining Pressure and Profile Control Technique Simulation
by Xiangfei Geng, Bin Ding, Baoshan Guan, Haitong Sun, Jingge Zan, Ming Qu, Tuo Liang, Honghao Li and Shuo Hu
Energies 2024, 17(23), 5897; https://doi.org/10.3390/en17235897 - 24 Nov 2024
Cited by 1 | Viewed by 1258
Abstract
This study presents a novel Enhanced Oil Recovery (EOR) method using Smart Black Nanocards (SLNs) to mitigate the environmental impact of conventional thermal recovery, especially under global warming. Unlike prior studies focusing on wettability alteration via adsorption, this research innovatively models ‘oil film [...] Read more.
This study presents a novel Enhanced Oil Recovery (EOR) method using Smart Black Nanocards (SLNs) to mitigate the environmental impact of conventional thermal recovery, especially under global warming. Unlike prior studies focusing on wettability alteration via adsorption, this research innovatively models ‘oil film detachment’ in a reservoir simulator to achieve wettability alteration. Using the CMG-STARS (2020) simulator, this study highlights SLNs’ superior performance over traditional chemical EOR and spherical nanoparticles by reducing residual oil saturation and shifting wettability toward water-wet conditions. The structural disjoining pressure (SDP) of SLNs reaches 20.99 × 103 Pa, 16.5 times higher than spherical particles with an 18.5 nm diameter. Supported by the Percus–Yevick (PY) theory, the numerical model achieves high accuracy in production history matching, with oil recovery and water cut fitting within precision error ranges of 0.02 and 0.05, respectively. This research advances chemical EOR technologies and offers an environmentally sustainable, efficient recovery strategy for low-permeability and heavy oil reservoirs, serving as a promising alternative to thermal methods. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

17 pages, 3903 KiB  
Article
Extraction of Soluble Dietary Fiber from Sunflower Receptacles (Helianthus annuus L.) and Its Alleviating Effect on Constipation in Mice
by Shengying Zhu, Min Yan, Yanjing Feng, Jiayi Yin, Siyu Jiang, Yulong Guan and Bo Gao
Nutrients 2024, 16(21), 3650; https://doi.org/10.3390/nu16213650 - 26 Oct 2024
Viewed by 2005
Abstract
Background/Objectives: Sunflower receptacles are the main by-product of the processing of Helianthus annuus L. Methods: In this study, several extraction methods of soluble dietary fiber (SDF) from sunflower receptacles were evaluated, and then, the physicochemical structure and functional properties of these SDFs were [...] Read more.
Background/Objectives: Sunflower receptacles are the main by-product of the processing of Helianthus annuus L. Methods: In this study, several extraction methods of soluble dietary fiber (SDF) from sunflower receptacles were evaluated, and then, the physicochemical structure and functional properties of these SDFs were examined. Finally, a mouse constipation model was established to explore its therapeutic potential for constipation. Results: The results showed that the SDF yield of citric acid extraction and enzyme extraction was better than that of hot-water extraction. Structural characterization showed that the three SDF functional groups were similar and amorphous, while the surface distribution of the SDF obtained by the citric acid extraction method (ASDF) had more fine pores. Physicochemical analysis showed that ASDF had the best water-holding capacity, oil-holding capacity, and expansion force. Animal experiments showed that the first black stool defecation time of the model group changed significantly (p < 0.001), indicating that the model was successful. Compared with the model group, the middle- and high-dose groups reduced the first black stool defecation time (p < 0.05 or p < 0.01) and increased the fecal water content (p < 0.05). The high-dose group significantly promoted the intestinal peristalsis of mice (p < 0.05). From hematoxylin–eosin (H&E) staining, it can be seen that the three dose groups of ASDF can improve the damage of mouse colon tissue induced by loperamide hydrochloride to a certain extent. Conclusions: Our results show that ASDF has good physical and chemical properties and laxative properties and has broad development space in the field of health food. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

27 pages, 9710 KiB  
Article
A Multi-Scale Numerical Simulation Method Considering Anisotropic Relative Permeability
by Li Wu, Junqiang Wang, Deli Jia, Ruichao Zhang, Jiqun Zhang, Yiqun Yan and Shuoliang Wang
Processes 2024, 12(9), 2058; https://doi.org/10.3390/pr12092058 - 23 Sep 2024
Cited by 2 | Viewed by 1410
Abstract
Most of the oil reservoirs in China are fluvial deposits with firm reservoir heterogeneity, where differences in fluid flow capacity in individual directions should not be ignored; however, the available commercial reservoir simulation software cannot consider the anisotropy of the relative permeability. To [...] Read more.
Most of the oil reservoirs in China are fluvial deposits with firm reservoir heterogeneity, where differences in fluid flow capacity in individual directions should not be ignored; however, the available commercial reservoir simulation software cannot consider the anisotropy of the relative permeability. To handle this challenge, this paper takes full advantage of the parallelism of the multi-scale finite volume (MsFV) method and establishes a multi-scale numerical simulation approach that incorporates the effects of reservoir anisotropy. The methodology is initiated by constructing an oil–water black-oil model considering the anisotropic relative permeability. Subsequently, the base model undergoes decoupling through a sequential solution, formulating the pressure and transport equations. Following this, a multi-scale grid system is configured, within which the pressure and transport equations are progressively developed in the fine-scale grid domain. Ultimately, the improved multi-scale finite volume (IMsFV) method is applied to mitigate low-frequency error in the coarse-scale grid, thereby enhancing computational efficiency. This paper introduces two primary innovations. The first is the development of a multi-scale solution method for the pressure equation incorporating anisotropic relative permeability. Validated using the Egg model, a comparative analysis with traditional numerical simulations demonstrates a significant improvement in computational speed without sacrificing accuracy. The second innovation involves applying the multi-scale framework to investigate the impact of anisotropy relative permeability on waterflooding performance, uncovering distinct mechanisms by which absolute and relative permeability anisotropy influence waterflooding outcomes. Therefore, the IMsFV method can be used as an effective tool for high-resolution simulation and precise residual oil prediction in anisotropic reservoirs. Full article
(This article belongs to the Special Issue New Insight in Enhanced Oil Recovery Process Analysis and Application)
Show Figures

Figure 1

29 pages, 12131 KiB  
Article
Integrated Approach to Reservoir Simulations for Evaluating Pilot CO2 Injection in a Depleted Naturally Fractured Oil Field On-Shore Europe
by Milan Pagáč, Vladimír Opletal, Anton Shchipanov, Anders Nermoen, Roman Berenblyum, Ingebret Fjelde and Jiří Rez
Energies 2024, 17(11), 2659; https://doi.org/10.3390/en17112659 - 30 May 2024
Cited by 3 | Viewed by 1377
Abstract
Carbon dioxide capture and storage (CCS) is a necessary requirement for high-emitting CO2 industries to significantly reduce volumes of greenhouse gases released into the atmosphere and mitigate climate change. Geological CO2 storage into depleted oil and gas fields is the fastest [...] Read more.
Carbon dioxide capture and storage (CCS) is a necessary requirement for high-emitting CO2 industries to significantly reduce volumes of greenhouse gases released into the atmosphere and mitigate climate change. Geological CO2 storage into depleted oil and gas fields is the fastest and most accessible option for CCS deployment allowing for re-purposing existing infrastructures and utilizing significant knowledge about the subsurface acquired during field production operations. The location of such depleted fields in the neighborhoods of high-emitting CO2 industries is an additional advantage of matured on-shore European fields. Considering these advantages, oil and gas operators are now evaluating different possibilities for CO2 sequestration projects for the fields approaching end of production. This article describes an integrated approach to reservoir simulations focused on evaluating a CO2 injection pilot at one of these matured fields operated by MND and located in the Czech Republic. The CO2 injection site in focus is a naturally fractured carbonate reservoir. This oil-bearing formation has a gas cap and connection to a limited aquifer and was produced mainly by pressure depletion with limited pressure support from water injection. The article summarizes the results of the efforts made by the multi-disciplinary team. An integrated approach was developed starting from geological modeling of a naturally fractured reservoir, integrating the results of laboratory studies and their interpretations (geomechanics and geochemistry), dynamic field data analysis (pressure transient analysis, including time-lapse) and history matching reservoir model enabling simulation of the pilot CO2 injection. The laboratory studies and field data analysis provided descriptions of stress-sensitive fracture properties and safe injection envelope preventing induced fracturing. The impact of potential salt precipitation in the near wellbore area was also included. These effects are considered in the context of a pilot CO2 injection and addressed in the reservoir simulations of injection scenarios. Single-porosity and permeability reservoir simulations with a dominating fracture flow and black-oil formulation with CO2 simulated as a solvent were performed in this study. The arguments for the choice of the simulation approach for the site in focus are shortly discussed. The reservoir simulations indicated a larger site injection capacity than that required for the pilot injection, and gravity-driven CO2 migration pathway towards the gas cap in the reservoir. The application of the approach to the site in focus also revealed large uncertainties, related to fracture description and geomechanical evaluations, resulting in an uncertain safe injection envelope. These uncertainties should be addressed in further studies in preparation for the pilot. The article concludes with an overview of the outcomes of the integrated approach and its application to the field in focus, including a discussion of the issues and uncertainties revealed. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

22 pages, 2707 KiB  
Review
Metal-Based Heterogeneous Catalysts for the Synthesis of Valuable Chemical Blends via Hydrodeoxygenation of Lignin-Derived Fractions
by Marvin Chávez-Sifontes and María Ventura
Catalysts 2024, 14(2), 146; https://doi.org/10.3390/catal14020146 - 16 Feb 2024
Cited by 2 | Viewed by 3107
Abstract
Currently, many research projects are focused on the conversion of renewable raw materials into chemicals and fuels. Lignocellulosic biomass is a raw material used for the production of bio-oils and black liquors. These biomass-derived fractions offer promising paths for the production of valuable [...] Read more.
Currently, many research projects are focused on the conversion of renewable raw materials into chemicals and fuels. Lignocellulosic biomass is a raw material used for the production of bio-oils and black liquors. These biomass-derived fractions offer promising paths for the production of valuable chemical products. Various catalytic methods have been investigated for upgrading the biomass-derived fractions. Researchers are interested in the hydrodeoxygenation process (HDO); in this process, the oxygen groups are eliminated by breaking the C-O bonds and water as a product. Incorporating heterogeneous catalysts (i.e., noble metals, transition metals, and metal sulfides) improves this process. Most HDO review articles describe catalytic results for model phenolic compounds. However, there is also a need to investigate the catalytic activity of real biomass-derived fractions. This paper explains research results regarding the upgrading of lignin-derived fractions (i.e., black liquors) by HDO. The paper has been organized according to the type of heterogeneous catalyst and shows compelling results based on different experimental conditions. The final sections present an analysis of the documented results and outline perspectives about integrating lignin into the biorefinery framework. Full article
(This article belongs to the Special Issue New Advances in Metal Oxide Catalysts)
Show Figures

Graphical abstract

16 pages, 8070 KiB  
Article
Effect of Displacement Pressure Gradient on Oil–Water Relative Permeability: Experiment, Correction Method, and Numerical Simulation
by Jintao Wu, Lei Zhang, Yingxian Liu, Kuiqian Ma and Xianbo Luo
Processes 2024, 12(2), 330; https://doi.org/10.3390/pr12020330 - 3 Feb 2024
Cited by 2 | Viewed by 1705
Abstract
Relative permeability is a fundamental parameter affecting reservoir development performance analysis. During the development of oil and gas fields, the displacement pressure gradient changes with time and space. This paper studies the effect of displacement pressure gradient on relative permeability. The oil–water relative [...] Read more.
Relative permeability is a fundamental parameter affecting reservoir development performance analysis. During the development of oil and gas fields, the displacement pressure gradient changes with time and space. This paper studies the effect of displacement pressure gradient on relative permeability. The oil–water relative permeability curves of a Bohai Oilfield under different displacement pressure gradients are obtained through experimental analysis. Based on the experimental data, a correction model of the permeability curve is established by regression of the Willhite model parameters. The correction model is introduced into the black oil numerical simulation, and the production performance and remaining oil are compared and analyzed. The results show that the displacement pressure gradient can have an obvious impact on the relative permeability curve. As the displacement pressure gradient increases, the two-phase span of the relative permeability curve increases, the oil displacement efficiency increases, and the water relative permeability increases. The relative permeability curves under different displacement pressure gradients can be accurately characterized by the Willhite model. The consideration of the displacement pressure gradient has an obvious impact on numerical simulation results. The conventional method of using a fixed relative permeability curve cannot truly reflect the production performance and the remaining oil distribution. This paper proposes a set of realization methods including obtaining laws from experiments, utilizing the empirical model to correct, and simulating to characterize reservoir changes. Full article
(This article belongs to the Special Issue New Insight in Enhanced Oil Recovery Process Analysis and Application)
Show Figures

Figure 1

30 pages, 7109 KiB  
Review
Overview of Some Recent Results of Energy Market Modeling and Clean Energy Vision in Canada
by Anatoliy Swishchuk
Risks 2023, 11(8), 150; https://doi.org/10.3390/risks11080150 - 14 Aug 2023
Viewed by 5627
Abstract
This paper overviews our recent results of energy market modeling, including The option pricing formula for a mean-reversion asset, variance and volatility swaps on energy markets, applications of weather derivatives on energy markets, pricing crude oil options using the Lévy processes, energy contracts [...] Read more.
This paper overviews our recent results of energy market modeling, including The option pricing formula for a mean-reversion asset, variance and volatility swaps on energy markets, applications of weather derivatives on energy markets, pricing crude oil options using the Lévy processes, energy contracts modeling with delayed and jumped volatilities, applications of mean-reverting processes on Alberta energy markets, and alternatives to the Black-76 model for options valuation of futures contracts. We will also consider the clean renewable energy prospective in Canada, and, in particular, in Alberta and Calgary. Full article
Show Figures

Figure 1

16 pages, 3962 KiB  
Article
Repeated 28-Day Oral Toxicological Study and Gastroprotective Effects of Nigella sativa L. Oil (Shuhada) against Ethanol-Induced Gastric Mucosal Injury in Rats
by Sineenart Sanpinit, Palika Wetchakul, Piriya Chonsut, Ngamrayu Ngamdokmai, Aktsar Roskiana Ahmad and Sakan Warinhomhoun
Nutrients 2023, 15(6), 1532; https://doi.org/10.3390/nu15061532 - 22 Mar 2023
Cited by 7 | Viewed by 4126
Abstract
Nigella sativa L. and black seeds are traditionally used for cooking and medicinal purposes in Arab and other countries. Although N. sativa seed extract has many known biological effects, the biological effects of cold-pressed N. sativa oil are poorly understood. Therefore, the objective [...] Read more.
Nigella sativa L. and black seeds are traditionally used for cooking and medicinal purposes in Arab and other countries. Although N. sativa seed extract has many known biological effects, the biological effects of cold-pressed N. sativa oil are poorly understood. Therefore, the objective of this study was to investigate the gastroprotective effects and subacute oral toxicity of black seed oil (BSO) in an animal model. The gastroprotective effects of oral BSO (50% and 100%; 1 mg/kg) were tested using acute experimental models of ethanol-induced gastric ulcers. Gross and histological gastric lesions, ulcerated gastric areas, ulcer index score, percentage of inhibition rate, gastric juice pH, and gastric wall mucus were all evaluated. The subacute toxicity of BSO and its thymoquinone (TQ) content were also examined. The results indicated that the administration of BSO exerted gastroprotective effects by increasing the gastric wall mucus and decreasing gastric juice acidity. In the subacute toxicity test, the animals behaved normally, and their weight and water and food intake did not show significant variations. High-performance liquid chromatography detected 7.3 mg/mL TQ in BSO. These findings suggest that BSO may be a safe therapeutic drug for preventing gastric ulcers. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

19 pages, 8506 KiB  
Article
Numerical Simulation of the Oil Production Performance of Different Well Patterns with Water Injection
by Elia Wilinasi Sikanyika, Zhengbin Wu, Mbarouk Shaame Mbarouk, Adamu Musa Mafimba, Husham Ali Elbaloula and Shu Jiang
Energies 2023, 16(1), 91; https://doi.org/10.3390/en16010091 - 21 Dec 2022
Cited by 6 | Viewed by 3536
Abstract
Numerical reservoir simulation, which includes the construction and operation of a model that performs similarly to a real-world reservoir, is an effective method for exploring complex reservoir issues. Due to the complexity of constructing reservoir environments for experiments, numerical simulation is a vital [...] Read more.
Numerical reservoir simulation, which includes the construction and operation of a model that performs similarly to a real-world reservoir, is an effective method for exploring complex reservoir issues. Due to the complexity of constructing reservoir environments for experiments, numerical simulation is a vital method for studying flow behavior under reservoir conditions. In this study, a black-oil modeling simulator was used to construct, simulate, and evaluate a conceptual hydrocarbon reservoir model. The model evolved by drilling two production wells and one injection well in two cases. The first case consisted of two horizontal production wells and one injection well, while the second consisted of two vertical production wells and an injection well. In total, 25 simulation runs were performed, and the results showed that horizontal wells perform better than vertical wells in terms of productivity, with a field oil production total of 1,930,000 m3. This is significantly higher than vertical wells, which have a field oil production total of 1,890,000 m3 after 1840 days. The field recovery factor for horizontal wells was 41% and for vertical wells it was 39%, both of which were less than 50%. This indicates that the reservoir’s sweeping efficiency was minimal. To enhance sweeping efficiency, the water injection rate and number of injection wells should be increased, as well as well patterns and locations remodeled. It was also shown that as reservoir thickness increased, horizontal and vertical well productivity increased. In order to boost horizontal well productivity and increase field oil recovery above 50%, the horizontal well length should be increased to take up a wider area of the reservoir portion. On the other hand, well length may have no impact on vertical well production efficiency. Full article
(This article belongs to the Special Issue Oil and Gas Reservoir Stimulation Theory and Technology)
Show Figures

Figure 1

20 pages, 10639 KiB  
Article
Understanding the Sources of Ambient Fine Particulate Matter (PM2.5) in Jeddah, Saudi Arabia
by Shedrack R. Nayebare, Omar S. Aburizaiza, Azhar Siddique, Mirza M. Hussain, Jahan Zeb, Fida Khatib, David O. Carpenter, Donald R. Blake and Haider A. Khwaja
Atmosphere 2022, 13(5), 711; https://doi.org/10.3390/atmos13050711 - 29 Apr 2022
Cited by 9 | Viewed by 4704
Abstract
Urban air pollution is rapidly becoming a major environmental problem of public concern in several developing countries of the world. Jeddah, the second-largest city in Saudi Arabia, is subject to high air pollution that has severe implications for the health of the exposed [...] Read more.
Urban air pollution is rapidly becoming a major environmental problem of public concern in several developing countries of the world. Jeddah, the second-largest city in Saudi Arabia, is subject to high air pollution that has severe implications for the health of the exposed population. Fine particulate matter (PM2.5) samples were collected for 24 h daily, during a 1-year campaign from 2013 to 2014. This study presents a detailed investigation of PM2.5 mass, chemical composition, and sources covering all four seasons of the year. Samples were analyzed for black carbon (BC), trace elements (TEs), and water-soluble ionic species (IS). The chemical compositions were statistically examined, and the temporal and seasonal patterns were characterized using descriptive analysis, correlation matrices, and elemental enrichment factor (EF). Source apportionment and source locations were performed on PM2.5 samples using the positive matrix factorization (PMF) model, elemental enrichment factor, and air-mass back trajectory analysis. The 24-h mean PM2.5 and BC concentrations ranged from 33.9 ± 9.1–58.8 ± 25 µg/m3 and 1.8 ± 0.4–2.4 ± 0.6 µg/m3, respectively. Atmospheric PM2.5 concentrations were well above the 24-h WHO guideline of 15 µg/m3, with overall results showing significant temporal and seasonal variability. EF defined two broad categories of TEs: anthropogenic (Ni, V, Cu, Zn, Cl, Pb, S, Lu, and Br), and earth-crust derived (Al, Si, Mg, K, Ca, Ti, Cr, Mn, Fe, and Sr). The five identified factors resulting from PMF were (1) fossil-fuels/oil combustion (45.3%), (2) vehicular emissions (19.1%), (3) soil/dust resuspension (15.6%), (4) industrial mixed dust (13.5%), and (5) sea-spray (6.5%). This study highlights the importance of focusing control strategies, not only on reducing PM concentration but also on the reduction of components of the PM as well, to effectively protect human health and the environment. Full article
(This article belongs to the Special Issue Outdoor Air Pollution and Human Health (2nd Edition))
Show Figures

Figure 1

Back to TopTop