Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = ohmic dissipation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4872 KiB  
Article
Influence of the Heterophasic Structure and Its Characteristics on the DC Electrical Properties of Impact Polypropylene Copolymer
by Xinhao Huang, Jiaming Yang, Xindong Zhao, Xu Yang, Kai Wang, Dianyu Wang and Zhe Fu
Polymers 2025, 17(7), 951; https://doi.org/10.3390/polym17070951 - 31 Mar 2025
Viewed by 265
Abstract
Space charge injection in polypropylene (PP) significantly weakens the stability of HVDC cables. Impact polypropylene copolymer (IPC) is often used as insulation material for AC cables, but in the DC field, IPC has the problem of space charge accumulation. This is because there [...] Read more.
Space charge injection in polypropylene (PP) significantly weakens the stability of HVDC cables. Impact polypropylene copolymer (IPC) is often used as insulation material for AC cables, but in the DC field, IPC has the problem of space charge accumulation. This is because there is a multi-phase structure inside the IPC to which ethylene monomer was added in the production process, and the difference in physicochemical properties of each phase is an important reason for the accumulation of space charge inside the material. In this work, the vinyl phases and propenyl phases of two types of IPC were separated. The film samples were prepared and tested at 30 °C and 50 °C for DC electrical conductivity, and at 30 °C, 50 °C, and 80 °C for space charge. The experimental results show that the DC conductivity of vinyl phases is significantly higher than that of propenyl phases in both types of IPC. The degrees of mismatch between the DC conductivity of vinyl phase and that of propenyl phase are different in the two types of IPC, and the mismatch degree of DC conductivity is from several times to hundreds of times. The conductivity of the two vinyl samples is ohmic. The conductivity of the two propenyl phases shows nonlinearity under different electric field intensity, and the mismatch degree of the two phases increases with temperature. Compared to untreated IPC, at all test temperatures, the maximum space charge density of the propenyl samples is much lower, which can be reduced by about 1/3 at 50 °C and by about 50% at 80 °C. The density of heteropolar charge produced by impurity ionization in the samples and the depth of electrode injection both decreased. At each temperature, the distortion rate of the electric field in propenyl samples is lower than that in IPC, the distortion rate can be reduced by more than 15%, and the distortion rate can be reduced by nearly half at 80 °C. The charge dissipation characteristic of propenyl samples during depolarization is also optimized compared with IPC samples, the time required for charge dissipation to reach stability is shortened, and the residual charge density in the sample is reduced at the end of depolarization. In addition, the relevance between the variation of DC conductivity of phases and space charge characteristics was discussed according to SCLC (space charge limited current) theory. This work provides a feasible reference for the manufacture of high-reliability polypropylene-based cable material with excellent insulation performance. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

31 pages, 1659 KiB  
Review
Electrical Fields in the Processing of Protein-Based Foods
by Ricardo N. Pereira, Rui Rodrigues, Zita Avelar, Ana Catarina Leite, Rita Leal, Ricardo S. Pereira and António Vicente
Foods 2024, 13(4), 577; https://doi.org/10.3390/foods13040577 - 14 Feb 2024
Cited by 8 | Viewed by 3858
Abstract
Electric field-based technologies offer interesting perspectives which include controlled heat dissipation (via the ohmic heating effect) and the influence of electrical variables (e.g., electroporation). These factors collectively provide an opportunity to modify the functional and technological properties of numerous food proteins, including ones [...] Read more.
Electric field-based technologies offer interesting perspectives which include controlled heat dissipation (via the ohmic heating effect) and the influence of electrical variables (e.g., electroporation). These factors collectively provide an opportunity to modify the functional and technological properties of numerous food proteins, including ones from emergent plant- and microbial-based sources. Currently, numerous scientific studies are underway, contributing to the emerging body of knowledge about the effects on protein properties. In this review, “Electric Field Processing” acknowledges the broader range of technologies that fall under the umbrella of using the direct passage of electrical current in food material, giving particular focus to the ones that are industrially implemented. The structural and biological effects of electric field processing (thermal and non-thermal) on protein fractions from various sources will be addressed. For a more comprehensive contextualization of the significance of these effects, both conventional and alternative protein sources, along with their respective ingredients, will be introduced initially. Full article
Show Figures

Figure 1

16 pages, 4798 KiB  
Article
Numerical Investigation for Nonlinear Thermal Radiation in MHD Cu–Water Nanofluid Flow in a Channel with Convective Boundary Conditions
by Tunde Abdulkadir Yusuf, Adeshina Taofeeq Adeosun, Victor Olajide Akinsola, Ramoshweu Solomon Lebelo and Oluwadamilare Joseph Akinremi
Mathematics 2023, 11(15), 3409; https://doi.org/10.3390/math11153409 - 4 Aug 2023
Cited by 2 | Viewed by 1185
Abstract
The implications of nonlinear thermal radiation on a Cu–water nanofluid flow with varying viscosity characteristics and convective boundary conditions are investigated numerically in this article. The nonlinear model takes the combined effects of Joule dissipation and Ohmic heating into consideration. The Spectral Local [...] Read more.
The implications of nonlinear thermal radiation on a Cu–water nanofluid flow with varying viscosity characteristics and convective boundary conditions are investigated numerically in this article. The nonlinear model takes the combined effects of Joule dissipation and Ohmic heating into consideration. The Spectral Local Linearization Method (SLLM) is used to address the nonlinear governing model. The numerical investigation’s findings were conducted and compared with the existing study. In Cu–water nanofluid flows with variable viscosity and convective boundary conditions, nonlinear thermal radiation plays an important role, as this work insightfully demonstrates. Pertinent results for velocity, temperature, skin friction, and heat transfer rate are displayed graphically and discussed quantitatively with respect to various parameters embedded in the model. The results revealed that the Cu–water thermal distribution lessens as the nanoparticle volume fraction upsurges. The outcomes of this study have potential applications in industrial systems such as power plants, cooling systems, and climate control systems. Full article
Show Figures

Figure 1

17 pages, 7358 KiB  
Article
Mathematical Analysis of Mixed Convective Peristaltic Flow for Chemically Reactive Casson Nanofluid
by Humaira Yasmin and Zahid Nisar
Mathematics 2023, 11(12), 2673; https://doi.org/10.3390/math11122673 - 12 Jun 2023
Cited by 26 | Viewed by 1836
Abstract
Nanofluids are extremely beneficial to scientists because of their excellent heat transfer rates, which have numerous medical and industrial applications. The current study deals with the peristaltic flow of nanofluid (i.e., Casson nanofluid) in a symmetric elastic/compliant channel. Buongiorno’s framework of nanofluids was [...] Read more.
Nanofluids are extremely beneficial to scientists because of their excellent heat transfer rates, which have numerous medical and industrial applications. The current study deals with the peristaltic flow of nanofluid (i.e., Casson nanofluid) in a symmetric elastic/compliant channel. Buongiorno’s framework of nanofluids was utilized to create the equations for flow and thermal/mass transfer along with the features of Brownian motion and thermophoresis. Slip conditions were applied to the compliant channel walls. The thermal field incorporated the attributes of viscous dissipation, ohmic heating, and thermal radiation. First-order chemical-reaction impacts were inserted in the mass transport. The influences of the Hall current and mixed convection were also presented within the momentum equations. Lubricant approximations were exploited to make the system of equations more simplified for the proposed framework. The solution of a nonlinear system of ODEs was accomplished via a numerical method. The influence of pertinent variables was examined by constructing graphs of fluid velocity, temperature profile, and rate of heat transfer. The concentration field was scrutinized via table. The velocity of the fluid declined with the increment of the Hartman number. The effects of thermal radiation and thermal Grashof number on temperature showed opposite behavior. Heat transfer rate was improved by raising the Casson fluid parameter and the Brownian motion parameter. Full article
(This article belongs to the Special Issue Theoretical Research and Computational Applications in Fluid Dynamics)
Show Figures

Figure 1

23 pages, 9090 KiB  
Article
Analysis of Motile Gyrotactic Micro-Organisms for the Bioconvection Peristaltic Flow of Carreau–Yasuda Bionanomaterials
by Zahid Nisar and Humaira Yasmin
Coatings 2023, 13(2), 314; https://doi.org/10.3390/coatings13020314 - 31 Jan 2023
Cited by 35 | Viewed by 2462
Abstract
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the [...] Read more.
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the examination of the thermodynamic and mass transfer of a Carreau–Yasuda magnetic bionanomaterial with gyrotactic micro-organisms, which is facilitated by radiative peristaltic transport. A compliant/elastic symmetric channel subject to partial slip constraints was chosen. The features of viscous dissipation and ohmic heating were incorporated into thermal transport. We use the Brownian and thermophoretic movement characteristics of the Buongiorno nanofluid model in this study. A set of nonlinear ordinary differential equations are created from the partial differential equations that control fluid flow. The governing system of differential equations is solved numerically via the shooting technique. The results of pertinent parameters are examined through velocity, temperature, motile micro-organisms, concentration, and heat transfer rate. Full article
Show Figures

Figure 1

23 pages, 6199 KiB  
Article
Entropy Generation and Thermal Radiation Analysis of EMHD Jeffrey Nanofluid Flow: Applications in Solar Energy
by Bhupendra Kumar Sharma, Anup Kumar, Rishu Gandhi, Muhammad Mubashir Bhatti and Nidhish Kumar Mishra
Nanomaterials 2023, 13(3), 544; https://doi.org/10.3390/nano13030544 - 29 Jan 2023
Cited by 84 | Viewed by 3918
Abstract
This article examines the effects of entropy generation, heat transmission, and mass transfer on the flow of Jeffrey fluid under the influence of solar radiation in the presence of copper nanoparticles and gyrotactic microorganisms, with polyvinyl alcohol–water serving as the base fluid. The [...] Read more.
This article examines the effects of entropy generation, heat transmission, and mass transfer on the flow of Jeffrey fluid under the influence of solar radiation in the presence of copper nanoparticles and gyrotactic microorganisms, with polyvinyl alcohol–water serving as the base fluid. The impact of source terms such as Joule heating, viscous dissipation, and the exponential heat source is analyzed via a nonlinear elongating surface of nonuniform thickness. The development of an efficient numerical model describing the flow and thermal characteristics of a parabolic trough solar collector (PTSC) installed on a solar plate is underway as the use of solar plates in various devices continues to increase. Governing PDEs are first converted into ODEs using a suitable similarity transformation. The resulting higher-order coupled ODEs are converted into a system of first-order ODEs and then solved using the RK 4th-order method with shooting technique. The remarkable impacts of pertinent parameters such as Deborah number, magnetic field parameter, electric field parameter, Grashof number, solutal Grashof number, Prandtl number, Eckert number, exponential heat source parameter, Lewis number, chemical reaction parameter, bioconvection Lewis number, and Peclet number associated with the flow properties are discussed graphically. The increase in the radiation parameter and volume fraction of the nanoparticles enhances the temperature profile. The Bejan number and entropy generation rate increase with the rise in diffusion parameter and bioconvection diffusion parameter. The novelty of the present work is analyzing the entropy generation and solar radiation effects in the presence of motile gyrotactic microorganisms and copper nanoparticles with polyvinyl alcohol–water as the base fluid under the influence of the source terms, such as viscous dissipation, Ohmic heating, exponential heat source, and chemical reaction of the electromagnetohydrodynamic (EMHD) Jeffrey fluid flow. The non-Newtonian nanofluids have proven their great potential for heat transfer processes, which have various applications in cooling microchips, solar energy systems, and thermal energy technologies. Full article
(This article belongs to the Special Issue The Role of Nanofluids in Renewable Energy Engineering)
Show Figures

Figure 1

13 pages, 693 KiB  
Article
Entropy Analysis for Hydromagnetic Darcy–Forchheimer Flow Subject to Soret and Dufour Effects
by Sohail A. Khan and Tasawar Hayat
Math. Comput. Appl. 2022, 27(5), 80; https://doi.org/10.3390/mca27050080 - 19 Sep 2022
Cited by 1 | Viewed by 2076
Abstract
Here, our main aim is to examine the impacts of Dufour and Soret in a radiative Darcy–Forchheimer flow. Ohmic heating and the dissipative features are outlined. The characteristics of the thermo-diffusion and diffusion-thermo effects are addressed. A binary chemical reaction is deliberated. To [...] Read more.
Here, our main aim is to examine the impacts of Dufour and Soret in a radiative Darcy–Forchheimer flow. Ohmic heating and the dissipative features are outlined. The characteristics of the thermo-diffusion and diffusion-thermo effects are addressed. A binary chemical reaction is deliberated. To examine the thermodynamical system performance, we discuss entropy generation. A non-linear differential system is computed by the finite difference technique. Variations in the velocity, concentration, thermal field and entropy rate for the emerging parameters are scrutinized. A decay in velocity is observed for the Forchheimer number. Higher estimation of the magnetic number has the opposite influence for the velocity and temperature. The velocity, concentration and thermal field have a similar effect on the suction variable. The temperature against the Dufour number is augmented. A decay in the concentration is found against the Soret number. A similar trend holds for the entropy rate through the radiation and diffusion variables. An augmentation in the entropy rate is observed for the diffusion variable. Full article
(This article belongs to the Collection Feature Papers in Mathematical and Computational Applications)
Show Figures

Figure 1

17 pages, 983 KiB  
Article
A Numerical Analysis on the Unsteady Flow of a Thermomagnetic Reactive Maxwell Nanofluid over a Stretching/Shrinking Sheet with Ohmic Dissipation and Brownian Motion
by Stanford Shateyi and Hillary Muzara
Fluids 2022, 7(8), 252; https://doi.org/10.3390/fluids7080252 - 22 Jul 2022
Cited by 6 | Viewed by 2187
Abstract
The major objective of this current investigation is to examine the unsteady flow of a thermomagnetic reactive Maxwell nanofluid flow over a stretching/shrinking sheet with Ohmic dissipation and Brownian motion. Suitable similarity transformations were used to reduce the governing non-linear partial differential equations [...] Read more.
The major objective of this current investigation is to examine the unsteady flow of a thermomagnetic reactive Maxwell nanofluid flow over a stretching/shrinking sheet with Ohmic dissipation and Brownian motion. Suitable similarity transformations were used to reduce the governing non-linear partial differential equations of momentum, energy and species conservation into a set of coupled ordinary differential equations. The reduced similarity ordinary differential equations were solved numerically using the Spectral Quasi-Linearization Method. The influence of some pertinent physical parameters on the velocity, temperature and concentration distributions was studied and analysed graphically. Further investigations were made on the impact of the Eckert number, Prandtl number, Schmidt number, thermal radiation parameter, Brownian motion parameter, thermophoresis parameter and chemical reaction parameter on the skin friction coefficient, surface heat and mass transfer rates. The results were displayed in a tabular form. Obtained results reveal that the Maxwell parameter and the unsteadiness parameter reduce the Maxwell nanofluid velocity and the fluid temperature is increased with an increase in the Eckert number and thermal radiation parameter. Full article
(This article belongs to the Special Issue Instabilities in Viscoelastic Fluid Flows)
Show Figures

Figure 1

22 pages, 5569 KiB  
Article
Studying Massive Suction Impact on Magneto-Flow of a Hybridized Casson Nanofluid on a Porous Continuous Moving or Fixed Surface
by Essam R. EL-Zahar, Ahmed M. Rashad and Haifa S. Al-Juaydi
Symmetry 2022, 14(3), 627; https://doi.org/10.3390/sym14030627 - 21 Mar 2022
Cited by 23 | Viewed by 2243
Abstract
Non-Newtonian nanofluids flow due to the augmented thermal performances of nanoparticles, and their importance in various sectors plays a vital role in medicine, cosmetics, manufacturing, and engineering processes. In this regard, the present theoretical investigation explores the magneto-flow of Casson hybrid nanofluid through [...] Read more.
Non-Newtonian nanofluids flow due to the augmented thermal performances of nanoparticles, and their importance in various sectors plays a vital role in medicine, cosmetics, manufacturing, and engineering processes. In this regard, the present theoretical investigation explores the magneto-flow of Casson hybrid nanofluid through a continuous moving/fixed surface with significant suction. The nature of spherical copper and alumina dispersed in water was assessed as the conventional heat transfer in Casson fluid with impacts of viscous dissipation and Ohmic heating. Two states are addressed regarding symmetry, one corresponding to a surface moving in parallel with a free stream and the other a surface moving in the opposite direction to the free stream. In the momentum equation, the Casson model with magnetic field effect is exploited. The governing equations are transformed into the necessary equations using transformations invoking symmetric property of the independent variables. The numerical outputs of the nonlinear governing equations are collected using an efficient improved shooting method with fast convergence and low computational cost. Graphical demonstrations of the influence of relevant parameters on symmetrical behavior for velocity, skin friction, Nusselt number, and temperature are shown. Full article
Show Figures

Figure 1

17 pages, 5868 KiB  
Article
Magnetic Field Evolution in Neutron Star Crusts: Beyond the Hall Effect
by Konstantinos N. Gourgouliatos, Davide De Grandis and Andrei Igoshev
Symmetry 2022, 14(1), 130; https://doi.org/10.3390/sym14010130 - 11 Jan 2022
Cited by 15 | Viewed by 2723
Abstract
Neutron stars host the strongest magnetic fields that we know of in the Universe. Their magnetic fields are the main means of generating their radiation, either magnetospheric or through the crust. Moreover, the evolution of the magnetic field has been intimately related to [...] Read more.
Neutron stars host the strongest magnetic fields that we know of in the Universe. Their magnetic fields are the main means of generating their radiation, either magnetospheric or through the crust. Moreover, the evolution of the magnetic field has been intimately related to explosive events of magnetars, which host strong magnetic fields, and their persistent thermal emission. The evolution of the magnetic field in the crusts of neutron stars has been described within the framework of the Hall effect and Ohmic dissipation. Yet, this description is limited by the fact that the Maxwell stresses exerted on the crusts of strongly magnetised neutron stars may lead to failure and temperature variations. In the former case, a failed crust does not completely fulfil the necessary conditions for the Hall effect. In the latter, the variations of temperature are strongly related to the magnetic field evolution. Finally, sharp gradients of the star’s temperature may activate battery terms and alter the magnetic field structure, especially in weakly magnetised neutron stars. In this review, we discuss the recent progress made on these effects. We argue that these phenomena are likely to provide novel insight into our understanding of neutron stars and their observable properties. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

14 pages, 8644 KiB  
Article
Numerical Study of (Au-Cu)/Water and (Au-Cu)/Ethylene Glycol Hybrid Nanofluids Flow and Heat Transfer over a Stretching Porous Plate
by Umair Rashid, Azhar Iqbal and Abdullah Alsharif
Energies 2021, 14(24), 8341; https://doi.org/10.3390/en14248341 - 10 Dec 2021
Cited by 4 | Viewed by 2137
Abstract
The purpose of the study is to investigate the (Au-Cu)/Water and (Au-Cu)/Ethylene glycol hybrid nanofluids flow and heat transfer through a linear stretching porous plate with the effects of thermal radiation, ohmic heating, and viscous dissipation. Similarity transformations technique is used to transform [...] Read more.
The purpose of the study is to investigate the (Au-Cu)/Water and (Au-Cu)/Ethylene glycol hybrid nanofluids flow and heat transfer through a linear stretching porous plate with the effects of thermal radiation, ohmic heating, and viscous dissipation. Similarity transformations technique is used to transform a governing system of partial differential equations into ordinary differential equations. The NDSolve Mathematica program is used to solve the nonlinear ordinary differential equations. Furthermore, the results are compared with the results of homotopy analysis method. The impacts of relevant physical parameters on velocity, temperature, and the Nusselt number are represented in graphical form. The key points indicate that the temperature of (Au-Cu)/water and (Au-Cu)/Ethylene glycol hybrid nanofluids is increased with the effects of Eckert number and magnetic field. The (Au-Cu)/Ethylene glycol hybrid nanofluid also has a greater rate of heat transfer than (Au-Cu)/Water hybrid nanofluid. Full article
(This article belongs to the Special Issue Advances in Nanofluids and Turbulators for Heat Transfer Enhancement)
Show Figures

Figure 1

16 pages, 28432 KiB  
Article
Peristaltic Flow with Heat Transfer for Nano-Coupled Stress Fluid through Non-Darcy Porous Medium in the Presence of Magnetic Field
by Wael Abbas, Nabil T. M. Eldabe, Rasha A. Abdelkhalek, Nehad A. Zidan and Samir Y. Marzouk
Coatings 2021, 11(8), 910; https://doi.org/10.3390/coatings11080910 - 29 Jul 2021
Cited by 8 | Viewed by 2518
Abstract
In this paper, the peristaltic motion of nano-coupled stress fluid through non-Darcy porous medium is investigated, and the heat transfer is taken into account. The system is stressed by an external magnetic field. The Ohmic and viscous couple stress dissipations, heat generation and [...] Read more.
In this paper, the peristaltic motion of nano-coupled stress fluid through non-Darcy porous medium is investigated, and the heat transfer is taken into account. The system is stressed by an external magnetic field. The Ohmic and viscous couple stress dissipations, heat generation and chemical reaction are considered. This motion is modulated mathematically by a system of non-linear partial differential equations, which describe the fluid velocity, temperature and nanoparticles’ concentration. These equations are transformed to non-dimensional form with the associated appropriate boundary conditions. The homotopy perturbation method is used to find the solutions of these equations as a function of the physical parameters of the problem. The effects of the parameters on the obtained solutions are discussed numerically and illustrated graphically. It is found that these parameters play an important role to control the solutions. Significant outcomes from graphical elucidation envisage that the inclusion of more magnetic field strength increases the resistance of the fluid motion. Intensification of the couple stress parameter attenuates the temperature values, while it increases with increasing thermophoresis parameter. Full article
Show Figures

Figure 1

21 pages, 1768 KiB  
Article
Shifted Legendre Collocation Method for the Solution of Unsteady Viscous-Ohmic Dissipative Hybrid Ferrofluid Flow over a Cylinder
by Shekar Saranya, Qasem M. Al-Mdallal and Shumaila Javed
Nanomaterials 2021, 11(6), 1512; https://doi.org/10.3390/nano11061512 - 8 Jun 2021
Cited by 33 | Viewed by 2572
Abstract
A numerical treatment for the unsteady viscous-Ohmic dissipative flow of hybrid ferrofluid over a contracting cylinder is provided in this study. The hybrid ferrofluid was prepared by mixing a 50% water (H2O) + 50% ethylene glycol (EG) base [...] Read more.
A numerical treatment for the unsteady viscous-Ohmic dissipative flow of hybrid ferrofluid over a contracting cylinder is provided in this study. The hybrid ferrofluid was prepared by mixing a 50% water (H2O) + 50% ethylene glycol (EG) base fluid with a hybrid combination of magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) ferroparticles. Suitable parameters were considered for the conversion of partial differential equations (PDEs) into ordinary differential equations (ODEs). The numerical solutions were established by expanding the unknowns and employing the truncated series of shifted Legendre polynomials. We begin by collocating the transformed ODEs by setting the collocation points. These collocated equations yield a system of algebraic equations containing shifted Legendre coefficients, which can be obtained by solving this system of equations. The effect of the various influencing parameters on the velocity and temperature flow profiles were plotted graphically and discussed in detail. The effects of the parameters on the skin friction coefficient and heat transfer rates were further presented. From the discussion, we come to the understanding that Eckert number considerably decreases both the skin friction coefficient and the heat transfer rate. Full article
(This article belongs to the Special Issue New Trends of Nanofluidics and Nanofluids)
Show Figures

Figure 1

21 pages, 1809 KiB  
Review
A Review on Temperature Control of Proton Exchange Membrane Fuel Cells
by Qinghe Li, Zhiqiang Liu, Yi Sun, Sheng Yang and Chengwei Deng
Processes 2021, 9(2), 235; https://doi.org/10.3390/pr9020235 - 27 Jan 2021
Cited by 77 | Viewed by 8970
Abstract
This paper provides a comprehensive review of the temperature control in proton exchange membrane fuel cells. Proton exchange membrane (PEM) fuel cells inevitably emit a certain amount of heat while generating electricity, and the fuel cell can only exert its best performance in [...] Read more.
This paper provides a comprehensive review of the temperature control in proton exchange membrane fuel cells. Proton exchange membrane (PEM) fuel cells inevitably emit a certain amount of heat while generating electricity, and the fuel cell can only exert its best performance in the appropriate temperature range. At the same time, the heat generated cannot spontaneously keep its temperature uniform and stable, and temperature control is required. This part of thermal energy can be classified into two groups. On the one hand, the reaction heat is affected by the reaction process; on the other hand, due to the impedance of the battery itself to the current, the ohmic polarization loss is caused to the battery. The thermal effect of current generates Joule heat, which is manifested by an increase in temperature and a decrease in battery performance. Therefore, it is necessary to design and optimize the battery material structure to improve battery performance and adopt a suitable cooling system for heat dissipation. To make the PEM fuel cell (PEMFC) universal, some extreme situations need to be considered, and a cold start of the battery is included in the analysis. In this paper, the previous studies related to three important aspects of temperature control in proton exchange membrane fuel cells have been reviewed and analyzed to better guide thermal management of the proton exchange membrane fuel cell (PEMFC). Full article
(This article belongs to the Special Issue Energy Conservation and Emission Reduction in Process Industry)
Show Figures

Figure 1

22 pages, 550 KiB  
Article
Estimation of Electrical Conductivity and Magnetization Parameter of Neutron Star Crusts and Applied to the High-Braking-Index Pulsar PSR J1640-4631
by Hui Wang, Zhi-Fu Gao, Huan-Yu Jia, Na Wang and Xiang-Dong Li
Universe 2020, 6(5), 63; https://doi.org/10.3390/universe6050063 - 1 May 2020
Cited by 28 | Viewed by 3756
Abstract
Young pulsars are thought to be highly magnetized neutron stars (NSs). The crustal magnetic field of a NS usually decays at different timescales in the forms of Hall drift and Ohmic dissipation. The magnetization parameter ω B τ is defined as the ratio [...] Read more.
Young pulsars are thought to be highly magnetized neutron stars (NSs). The crustal magnetic field of a NS usually decays at different timescales in the forms of Hall drift and Ohmic dissipation. The magnetization parameter ω B τ is defined as the ratio of the Ohmic timescale τ O h m to the Hall drift timescale τ H a l l . During the first several million years, the inner temperature of the newly born neutron star cools from T = 10 9 K to T = 1.0 × 10 8 K, and the crustal conductivity increases by three orders of magnitude. In this work, we adopt a unified equations of state for cold non-accreting neutron stars with the Hartree–Fock–Bogoliubov method, developed by Pearson et al. (2018), and choose two fiducial dipole magnetic fields of B = 1.0 × 10 13 G and B = 1.0 × 10 14 G, four different temperatures, T, and two different impurity concentration parameters, Q, and then calculate the conductivity of the inner crust of NSs and give a general expression of magnetization parameter for young pulsars: ω B τ ( 1 50 ) B 0 / ( 10 13 G) by using numerical simulations. It was found when B 10 15 G, due to the quantum effects, the conductivity increases slightly with the increase in the magnetic field, the enhanced magnetic field has a small effect on the matter in the low-density regions of the crust, and almost has no influence the matter in the high-density regions. Then, we apply the general expression of the magnetization parameter to the high braking-index pulsar PSR J1640-4631. By combining the observed arrival time parameters of PSR J1640-4631 with the magnetic induction equation, we estimated the initial rotation period P 0 , the initial dipole magnetic field B 0 , the Ohm dissipation timescale τ O h m and Hall drift timescale τ H a l l . We model the magnetic field evolution and the braking-index evolution of the pulsar and compare the results with its observations. It is expected that the results of this paper can be applied to more young pulsars. Full article
(This article belongs to the Special Issue Neutron Star Astrophysics)
Show Figures

Figure 1

Back to TopTop