Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = off-axis system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8264 KB  
Article
Accuracy Analysis of Measuring Cylindrical Surfaces with Complex Parameters Using Two-Dimensional Pseudo Lateral Shearing Interferometry
by Le Zhao, Zhongming Zang, Siqi Zhang, Yang Chen, Yueqing Zheng, Zhitian Niu, Jing Yu, Weizhou Luo, Zhu Li, Ming Kong, Shiling Wang and Kuo Hai
Photonics 2025, 12(11), 1059; https://doi.org/10.3390/photonics12111059 - 27 Oct 2025
Viewed by 208
Abstract
Cylindrical surfaces with complex parameters (CSCP), including off-axis, aspheric, and other properties, constitute fundamental components within complex optical systems. Two-dimensional pseudo lateral shearing interferometry (2DPLSI) is a non-null and generalized method for CSCP. It can eliminate wavefront error of components within systematic and [...] Read more.
Cylindrical surfaces with complex parameters (CSCP), including off-axis, aspheric, and other properties, constitute fundamental components within complex optical systems. Two-dimensional pseudo lateral shearing interferometry (2DPLSI) is a non-null and generalized method for CSCP. It can eliminate wavefront error of components within systematic and retrace error, thereby achieving high-precision measurement. However, the accuracy of measurement is influenced by factors such as the parameters of the measurement system, rendering the analysis of measurement precision of 2DPLSI to be important. The sources of error in 2DPLSI are discussed in this paper; their effects are simulated using the Monte Carlo (MC) method. Furthermore, a wavefront construction method based on power spectral density (PSD) is proposed, which simulates actual wavefronts more effectively. In addition, experiments are conducted to validate the optimized measurement system parameters derived from the simulation results. Experimental results show that the optimized measurement system parameters effectively improve measurement accuracy, retain low-mid spatial frequency information of wavefront, and eliminate the influence of gridding artifacts. Full article
Show Figures

Figure 1

16 pages, 2488 KB  
Article
Research on Distributed Temperature and Bending Sensing Measurement Based on DPP-BOTDA
by Zijuan Liu, Yongqian Li and Lixin Zhang
Photonics 2025, 12(11), 1056; https://doi.org/10.3390/photonics12111056 - 24 Oct 2025
Viewed by 196
Abstract
Traditional single-mode Brillouin optical time-domain analysis systems are inherently limited in terms of sensing capacity, susceptibility to bending loss, and spatial resolution. Multi-core fibers present a promising approach to overcoming these limitations. In this study, a seven-core fiber was utilized, with the central [...] Read more.
Traditional single-mode Brillouin optical time-domain analysis systems are inherently limited in terms of sensing capacity, susceptibility to bending loss, and spatial resolution. Multi-core fibers present a promising approach to overcoming these limitations. In this study, a seven-core fiber was utilized, with the central core and three asymmetrically positioned off-axis cores selected for sensing. The temperature coefficients of the four selected cores were experimentally calibrated as 1.103, 0.962, 1.277, and 0.937 MHz/°C, respectively. By employing differential pulse techniques within the Brillouin distributed sensing system, temperature-compensated bending measurements were achieved with a spatial resolution of 20 cm. The fiber was wound around cylindrical mandrels with diameters of 7 cm, 10 cm, and 15 cm. Experimental results demonstrate effective decoupling of temperature and bending strain, enabling accurate curvature reconstruction. Error analysis reveals a minimum deviation of 0.04% for smaller diameters and 0.68% for larger diameters. Cross-comparison of measurements conducted at varying temperatures confirms the robustness and effectiveness of the proposed temperature compensation method. Full article
Show Figures

Figure 1

15 pages, 3042 KB  
Article
Mathematical Analysis and Freeform Surface Modeling for LED Illumination Systems Incorporating Diffuse Reflection and Total Internal Reflection
by Xin Xu, Jianghua Rao, Xiaowen Liang, Zhenmin Zhu and Yuanyuan Peng
Photonics 2025, 12(10), 1025; https://doi.org/10.3390/photonics12101025 - 16 Oct 2025
Viewed by 220
Abstract
Indirect lighting systems employing light-emitting diodes (LEDs) and diffuse reflective surfaces are prevalent in applications demanding stringent illumination uniformity. However, conventional diffuse reflection approaches exhibit inherent limitations (inevitable light loss from multiple diffuse reflections and trade-off between uniformity and efficiency). To overcome these [...] Read more.
Indirect lighting systems employing light-emitting diodes (LEDs) and diffuse reflective surfaces are prevalent in applications demanding stringent illumination uniformity. However, conventional diffuse reflection approaches exhibit inherent limitations (inevitable light loss from multiple diffuse reflections and trade-off between uniformity and efficiency). To overcome these constraints, we introduce a novel composite freeform surface illumination system that synergistically integrates total internal reflection (TIR) with diffuse reflection. This design leverages the inherent Lambertian radiation characteristics of LEDs and the properties of ideal diffuse reflectors. A rigorous mathematical model is derived based on the luminous intensity distribution of the LED chip, the prescribed illumination requirements on the target plane, the principle of energy conservation, and Snell’s law. The resulting system of nonlinear equations is solved to generate a series of two-dimensional profile curves, which are subsequently synthesized into an off-axis freeform surface. Simulated results demonstrate that the proposed system achieves higher optical efficiency and superior illumination uniformity compared to traditional diffuse reflector configurations. This universal and feasible methodology broadens the application potential of high-performance diffuse indirect lighting. Full article
(This article belongs to the Special Issue New Perspectives in Micro-Nano Optical Design and Manufacturing)
Show Figures

Figure 1

17 pages, 7451 KB  
Article
An Off-Axis Catadioptric Division of Aperture Optical System for Multi-Channel Infrared Imaging
by Jie Chen, Tong Yang, Hongbo Xie and Lei Yang
Photonics 2025, 12(10), 1008; https://doi.org/10.3390/photonics12101008 - 13 Oct 2025
Viewed by 244
Abstract
Multi-channel optical systems can provide more feature information compared to single-channel systems, making them valuable for optical remote sensing, target identification, and other applications. The division of aperture polarization imaging modality allows for the simultaneous imaging of targets in the same field of [...] Read more.
Multi-channel optical systems can provide more feature information compared to single-channel systems, making them valuable for optical remote sensing, target identification, and other applications. The division of aperture polarization imaging modality allows for the simultaneous imaging of targets in the same field of view with a single detector. To overcome the limitations of conventional refractive aperture-divided systems for miniaturization, this work proposes an off-axis catadioptric aperture-divided technique for polarization imaging. First, the design method of the off-axis reflective telescope structure is discussed. The relationship between optical parameters such as magnification, surface coefficient, and primary aberration is studied. Second, by establishing the division of the aperture optical model, the method of maximizing the field of view and aperture is determined. Finally, an off-axis catadioptric cooled aperture-divided infrared optical system with a single aperture focal length of 60 mm is shown as a specific design example. Each channel can achieve 100% cold shield efficiency, and the overall length of the telescope module can be decreased significantly. The image quality of each imaging channel is close to the diffraction limit, verifying the effectiveness and feasibility of the method. The proposed off-axis catadioptric aperture-divided design method holds potential applications in simultaneous infrared polarization imaging. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

12 pages, 5326 KB  
Article
Optimal D-Shaped Toolpath Design for Minimizing X-Axis Servo Following Error in Turning the Off-Axis Optical Surfaces
by Baohua Chen, Quanying Wu, Yunhai Tang, Fei Wang, Junliu Fan, Xiaoyi Chen, Haomo Yu and Yi Sun
Materials 2025, 18(18), 4343; https://doi.org/10.3390/ma18184343 - 17 Sep 2025
Viewed by 361
Abstract
In the slow tool servo (STS) turning technology for optical lenses, the D-shaped toolpath can improve the quality of the optical surfaces of off-axis aspheric and cylindrical microlens arrays. However, the traditional D-shaped toolpath has the problem of excessive servo following error in [...] Read more.
In the slow tool servo (STS) turning technology for optical lenses, the D-shaped toolpath can improve the quality of the optical surfaces of off-axis aspheric and cylindrical microlens arrays. However, the traditional D-shaped toolpath has the problem of excessive servo following error in the X-axis. To address this issue, the projection of the D-shaped toolpath in the XZ plane is divided into a cutting zone and a transition zone. In the transition zone, an equation system based on continuity constraints (surface height, feed-rate, acceleration) is established. By solving this system of equations, a toolpath can be obtained along which the feed-rate of the X-axis varies smoothly. An example shows that the acceleration of the X-axis of the lathe is reduced by 84% compared to the traditional D-shaped toolpath. In the XZC interpolation mode, the spindle velocity of the C-axis changes smoothly. An off-axis spherical surface and an integral mirror have been machined using the optimized D-shaped toolpath. The X-axis servo following error of the lathe during processing is within 7 nm, and the surface shape accuracy reaches 0.361λ at 632.8 nm. This method enables high-precision processing of off-axis curved surfaces and cylindrical arrays. Full article
Show Figures

Figure 1

18 pages, 5248 KB  
Project Report
Laboratory Testing to Assess the Feasibility of Polyurethane Flat Belts for Marine Energy Applications
by Justin Panzarella, Scott Jenne and Andrew Simms
J. Mar. Sci. Eng. 2025, 13(9), 1652; https://doi.org/10.3390/jmse13091652 - 28 Aug 2025
Viewed by 626
Abstract
Polyurethane flat belts have received limited scientific attention as load-bearing elements in marine energy systems, particularly in applications involving dynamic tensile and bending loads. This study evaluates their potential as a replacement for traditional wire ropes in marine energy applications, with a focus [...] Read more.
Polyurethane flat belts have received limited scientific attention as load-bearing elements in marine energy systems, particularly in applications involving dynamic tensile and bending loads. This study evaluates their potential as a replacement for traditional wire ropes in marine energy applications, with a focus on their ability to be integrated into winch-driven wave energy converters where bending and tensile stresses can make long-term operation difficult. Polyurethane belts are hypothesized to offer enhanced fatigue resistance due to their reduced thickness in the bending plane and therefore lower bending stresses. This research involves a series of tests utilizing the National Renewable Energy Laboratory’s (NREL) Large-Amplitude Motion Platform to replicate the dynamic conditions experienced by mooring lines of winch-based point-absorber-type marine energy converters. The conditions tested include unequal coiling and uncoiling tensions and load cases resulting from the device’s unconstrained movement relative to its anchor, such as twisting and off-axis loading. Results from this study show that polyurethane flat belts can achieve more than 198 percent of the fatigue life of a conventional wire rope under similar load profiles. The stress concentrations resulting from off-axis loading and cumulative twist beyond the system’s allowable limits have been identified as potential failure modes for flat belt mooring lines used in winch-driven wave energy converters deployed in ocean environments. To mitigate these risks, the use of anti-spin systems and fairleads designed to accommodate off-axis loading while limiting twist accumulation is recommended. Full article
Show Figures

Figure 1

13 pages, 9516 KB  
Article
Rapid Full-Field Surface Topography Measurement of Large-Scale Wafers Using Interferometric Imaging
by Ruifang Ye, Jiarui Zeng, Heyan Zhang, Yujie Su and Huihui Li
Photonics 2025, 12(9), 835; https://doi.org/10.3390/photonics12090835 - 22 Aug 2025
Viewed by 845
Abstract
Rapid full-field surface topography measurement for large-scale wafers remains challenging due to limitations in speed, system complexity, and scalability. This work presents a interferometric system based on thin-film interference for high-precision wafer profiling. An optical flat serves as the reference surface, forming a [...] Read more.
Rapid full-field surface topography measurement for large-scale wafers remains challenging due to limitations in speed, system complexity, and scalability. This work presents a interferometric system based on thin-film interference for high-precision wafer profiling. An optical flat serves as the reference surface, forming a parallel air-gap structure with the wafer under test. A large-aperture collimated beam is introduced via an off-axis parabolic mirror to generate high-contrast interference fringes across the entire field of view. Once the wafer is fully illuminated, topographic information is directly extracted from the fringe pattern. Comparative measurements with a commercial interferometer show relative deviations below 3% in bow and warp, confirming the system’s accuracy and stability. With its simple optical layout, low cost, and robust performance, the proposed method shows strong potential for industrial applications in wafer inspection and online surface monitoring. Full article
(This article belongs to the Special Issue Advances in Interferometric Optics and Applications)
Show Figures

Figure 1

24 pages, 2618 KB  
Article
Effects of Postcure and Degradation in Wet Layup Carbon/Epoxy Composites Using Shear-Based Metrics
by Rabina Acharya and Vistasp M. Karbhari
J. Compos. Sci. 2025, 9(8), 411; https://doi.org/10.3390/jcs9080411 - 3 Aug 2025
Viewed by 782
Abstract
Non-autoclave-cured wet layup composites are used extensively in applications ranging from civil and marine infrastructure to offshore components and in transmission power systems. In many of these applications the composites can be exposed to elevated temperatures for extended periods of time. While residual [...] Read more.
Non-autoclave-cured wet layup composites are used extensively in applications ranging from civil and marine infrastructure to offshore components and in transmission power systems. In many of these applications the composites can be exposed to elevated temperatures for extended periods of time. While residual tensile characteristics have been used traditionally to assess the integrity of the composite after a thermal event/exposure, it is emphasized that fiber-dominated characteristics such as longitudinal tensile strength are not affected as much as those associated with shear. This paper reports on the investigation of shear related characteristics through off-axis and short-beam shear testing after exposure to temperatures between 66 °C and 260 °C for periods of time up to 72 h. It is shown that the use of shear test results in conjunction with tensile tests enables better assessment of the competing effects of postcure, which results in an increase in performance, and thermal degradation, which causes drops in performance. Off-axis-to-tensile strength and short-beam shear strength-to-tensile strength ratios are used to determine zones of influence and mechanisms. It is shown that temperatures up to 149 °C can lead to advantageous postcure related increases in performance whereas temperatures above 232 °C can lead to significant deterioration at time periods as low as 4 h. The use of shear tests is shown to provide data critical to performance integrity showing trends otherwise obscured by just the use of longitudinal tensile tests. A phenomenological model developed based on effects of the competing mechanisms and grouping based on phenomenon dominance and temperature regimes is shown to model data well providing a useful context for deign thresholds and determination of remaining structural integrity. Full article
Show Figures

Graphical abstract

12 pages, 7213 KB  
Article
Planar Wide-Angle Imaging System with a Single-Layer SiC Metalens
by Yiyang Liu, Qiangbo Zhang, Changwei Zhang, Mengguang Wang and Zhenrong Zheng
Nanomaterials 2025, 15(13), 1046; https://doi.org/10.3390/nano15131046 - 5 Jul 2025
Viewed by 748
Abstract
Optical systems with wide field-of-view (FOV) imaging capabilities are crucial for applications ranging from biomedical diagnostics to remote sensing, yet conventional wide-angle optics face integration challenges in compact platforms. Here, we present the design and experimental demonstration of a single-layer silicon carbide (SiC) [...] Read more.
Optical systems with wide field-of-view (FOV) imaging capabilities are crucial for applications ranging from biomedical diagnostics to remote sensing, yet conventional wide-angle optics face integration challenges in compact platforms. Here, we present the design and experimental demonstration of a single-layer silicon carbide (SiC) metalens achieving a 90° total FOV, whose planar structure and small footprint address the challenges. This design is driven by a gradient-based numerical optimization strategy, Gradient-Optimized Phase Profile Shaping (GOPP), which optimizes the phase profile to accommodate the angle-dependent requirements. Combined with a front aperture, the GOPP-generated phase profile enables off-axis aberration control within a planar structure. Operating at 803 nm with a focal length of 1 mm (NA = 0.25), the fabricated metalens demonstrated focusing capabilities across the wide FOV, enabling effective wide-angle imaging. This work demonstrates the feasibility of using numerical optimization to realize single-layer metalens with challenging wide FOV capabilities, offering a promising route towards highly compact imagers for applications such as endoscopy and dermoscopy. Full article
Show Figures

Figure 1

17 pages, 6509 KB  
Article
Operation of Vacuum Arc Thruster Arrays with Multiple Isolated Current Sources
by Benjamin Kanda and Minkwan Kim
Aerospace 2025, 12(6), 549; https://doi.org/10.3390/aerospace12060549 - 16 Jun 2025
Viewed by 994
Abstract
Vacuum arc thrusters (VATs) have recently gained significant interest as a micro-propulsion system due to their scalability, low cost, storability, and small form factor. While VATs offer an attractive propulsion solution for CubeSats, conventional propellant feed systems used in VATs require intricate mechanical [...] Read more.
Vacuum arc thrusters (VATs) have recently gained significant interest as a micro-propulsion system due to their scalability, low cost, storability, and small form factor. While VATs offer an attractive propulsion solution for CubeSats, conventional propellant feed systems used in VATs require intricate mechanical moving parts, increasing overall system complexity and mission risk. A promising alternative is the use of VAT arrays, where multiple thin-layer VATs are arranged in a regularly spaced grid, thus enhancing reliability, increasing total impulse without a mechanical propellant feed system, and enabling integrated attitude control via off-axis thruster placement. However, VAT arrays require a larger power processing unit (PPU) and additional control system, posing challenges within CubeSat volume constraints. To address this, this study proposes a novel PPU design that enables the simultaneous operation of multiple VATs while minimising system mass and volume. Experimental results demonstrate the successful operation of VAT pairs using the proposed PPU concept, validating its feasibility as an efficient propulsion solution for CubeSats. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (3rd Volume))
Show Figures

Figure 1

11 pages, 2066 KB  
Article
Numerical and Analytical Study of the Magnetic Field Distribution in a Three-Solenoid System
by Mostafa Behtouei, Alberto Bacci, Martina Carillo, Moreno Comelli, Luigi Faillace, Mauro Migliorati, Livio Verra and Bruno Spataro
Fractal Fract. 2025, 9(6), 383; https://doi.org/10.3390/fractalfract9060383 - 16 Jun 2025
Viewed by 728
Abstract
This study investigates the magnetic fields produced by a three-solenoid system configuration using both traditional numerical solvers and fractional integral methods. We focus on the role of mesh resolution in influencing simulation accuracy, examining coils with dimensions 80 mm × 160 mm and [...] Read more.
This study investigates the magnetic fields produced by a three-solenoid system configuration using both traditional numerical solvers and fractional integral methods. We focus on the role of mesh resolution in influencing simulation accuracy, examining coils with dimensions 80 mm × 160 mm and a radius of 15.5 mm, each carrying a current of 200 A. Magnetic field behavior is analyzed along a line parallel to the central axis at a distance equal to half the solenoid’s radius. The fractional integral formulation employed provides a refined understanding of field variations, especially in off-axis regions. Comparisons with the Poisson solver highlight consistency across methods and suggest pathways for further optimization. The results support the potential of fractional approaches in advancing electromagnetic field modeling, particularly in accelerator and beamline applications. Full article
(This article belongs to the Special Issue Applications of Fractals and Fractional Calculus in Nuclear Reactors)
Show Figures

Figure 1

24 pages, 7285 KB  
Article
From Several Puck-like Inter-Fiber Failure Criteria to Longitudinal Compressive Failure: An Extension and Application for UD Composites
by Jiongyao Shen, Zhongxu Liu and Junhua Guo
Polymers 2025, 17(12), 1613; https://doi.org/10.3390/polym17121613 - 10 Jun 2025
Cited by 1 | Viewed by 684
Abstract
The LaRC02 criterion is a classical criterion for determining fiber kinking failure of UD laminates under longitudinal compression (LC), but its basis for determining matrix cracking in a fiber kinking coordinate system is based on stress-invariant theory rather than on a physical mechanism. [...] Read more.
The LaRC02 criterion is a classical criterion for determining fiber kinking failure of UD laminates under longitudinal compression (LC), but its basis for determining matrix cracking in a fiber kinking coordinate system is based on stress-invariant theory rather than on a physical mechanism. Herein, three Puck-like physical-mechanism-based inter-fiber failure criteria are extended to LC failure of UD composites, and thus three failure criteria (denoted as LC-Guo, LC-Li, and LC-Puck failure criteria) are constructed for fiber kinking failure determination. The stresses in the global coordinate system are transformed to the fiber kinking coordinate system by a three-level coordinate system transformation, and then the failure determination is performed using the three Puck-like criteria. The results show that the overall accuracy of the three proposed criteria is higher than that of the LaRC02 criterion, especially the LC-Guo criterion. Additionally, an analysis of the influence of material properties shows that the failure envelope curves tend to be conservative, and the predicted off-axial compression strength decreases as the transverse compression strength and in-plane shear strength increase and the transverse tensile strength decreases. This work proposes a more reasonable assessment methodology for the determination of LC failure of UD composites, which has important theoretical significance and engineering value. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

11 pages, 3104 KB  
Communication
A Novel Spatter Detection Algorithm for Real-Time Quality Control in Laser-Directed Energy Deposition-Based Additive Manufacturing
by Farzaneh Kaji, Jinoop Arackal Narayanan, Mark Zimny and Ehsan Toyserkani
Sensors 2025, 25(12), 3610; https://doi.org/10.3390/s25123610 - 8 Jun 2025
Viewed by 1517
Abstract
Laser-Directed Energy Deposition (LDED) has recently been widely used for 3D-printing metal components and repairing high-value parts. One key performance indicator of the LDED process is represented by melt pool stability and spatter behavior. In this research study, an off-axis vision monitoring system [...] Read more.
Laser-Directed Energy Deposition (LDED) has recently been widely used for 3D-printing metal components and repairing high-value parts. One key performance indicator of the LDED process is represented by melt pool stability and spatter behavior. In this research study, an off-axis vision monitoring system is employed to characterize spatter formation based on different anomalies in the process. This study utilizes a 1 kW fiber laser-based LDED system equipped with a monochrome high-dynamic-range (HDR) vision camera and an SP700 Near-IR/UV Block visible bandpass filter positioned at various locations. To extract meaningful features from the original images, a novel image processing algorithm is developed to quantify spatter counts, orientation, area, and distance from the melt pool under harsh conditions. Additionally, this study analyzes the average number of spatters for different laser power settings, revealing a strong positive correlation. Validation experiments confirm over 93% detection accuracy, underscoring the robustness of the image processing pipeline. Furthermore, spatter detection is employed to assess the impact of spatter formation on deposition continuity. This research study provides a method for detecting spatters, correlating them with LDED process parameters, and predicting deposit quality. Full article
Show Figures

Figure 1

18 pages, 8877 KB  
Article
Noise Impact Analysis in Computer-Generated Holography Based on Dual Metrics Evaluation via Peak Signal-to-Noise Ratio and Structural Similarity Index Measure
by Yucheng Li, Yang Zhang, Deyu Jia, Song Gao and Muqun Zhang
Appl. Sci. 2025, 15(11), 6047; https://doi.org/10.3390/app15116047 - 28 May 2025
Cited by 1 | Viewed by 632
Abstract
This study investigates the noise impact on reconstructed images in computer-generated holography (CGH) through theoretical analysis and Matlab 2015b simulations. By quantitatively injecting noise to mimic practical interference environments, we systematically analyze the degradation mechanisms of four CGH types: detour-phase, modified off-axis beam [...] Read more.
This study investigates the noise impact on reconstructed images in computer-generated holography (CGH) through theoretical analysis and Matlab 2015b simulations. By quantitatively injecting noise to mimic practical interference environments, we systematically analyze the degradation mechanisms of four CGH types: detour-phase, modified off-axis beam reference, kinoform, and interference type. A dual-metric evaluation framework combining peak signal-to-noise ratio (PSNR) and the Structural Similarity Index Measure (SSIM) is proposed. Results demonstrate that increasing noise intensity induces progressive declines in reconstruction quality, manifested as PSNR reduction and SSIM-based structural fidelity loss. The findings provide theoretical guidance for noise suppression, parameter optimization, and algorithm selection in CGH systems, advancing its applications in optical encryption and high-precision imaging. Full article
Show Figures

Figure 1

9 pages, 4010 KB  
Communication
Broadband Achromatic Hybrid Metalens Module with 100° Field of View for Visible Imaging
by Peixuan Wu, Xingyi Li, Yuanyuan Xing, Jiaojiao Wang, Wujie Zheng, Zekun Wang and Yaoguang Ma
Sensors 2025, 25(10), 3202; https://doi.org/10.3390/s25103202 - 20 May 2025
Cited by 1 | Viewed by 1865
Abstract
Conventional metalenses struggle with chromatic aberration and narrow field of view (FOV), making it challenging to meet the dispersion requirements for large apertures and compensate off-axis aberrations for wide FOV. Here, we demonstrate a hybrid metalens module consisting of five refractive plastic lenses [...] Read more.
Conventional metalenses struggle with chromatic aberration and narrow field of view (FOV), making it challenging to meet the dispersion requirements for large apertures and compensate off-axis aberrations for wide FOV. Here, we demonstrate a hybrid metalens module consisting of five refractive plastic lenses and a polarization-insensitive metalens to achieve broadband achromatic imaging within 400–700 nm and a wide FOV up to 100°. The system exhibits negligible variation in focal length (~1.2%) across the visible range (460–656 nm) and consistently achieves modulation transfer function (MTF) values > 0.2 at 167 lp/mm across all wavelengths and incident angles. We also demonstrate integrated lens modules that capture high-quality images from distances ranging between 0.5 and 4 m without post-processing, showcasing its potential for compact, wide-angle optical systems. Full article
(This article belongs to the Special Issue Advanced Optics and Sensing Technologies for Telescopes)
Show Figures

Figure 1

Back to TopTop