Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = o-aminophenol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 294
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

25 pages, 899 KiB  
Review
A Scoping Review of Vitamins Detection Using Electrochemically Polymerised, Molecularly Imprinted Polymers
by Mohd Azerulazree Jamilan, Balqis Kamarudin, Zainiharyati Mohd Zain, Kavirajaa Pandian Sambasevam, Faizatul Shimal Mehamod and Mohd Fairulnizal Md Noh
Polymers 2025, 17(10), 1415; https://doi.org/10.3390/polym17101415 - 21 May 2025
Viewed by 687
Abstract
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a [...] Read more.
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a straightforward polymerisation technique on screen-printed electrodes (SPEs). Here, we report a review based on three databases (PubMed, Scopus, and Web of Science) from 2014 to 2024 using medical subject heading (MeSH) terms “electrochemical polymerisation” OR “electropolymerisation” crossed with the terms “molecularly imprinted polymer” AND “vitamin A” OR “vitamin D” OR “vitamin E” OR “vitamin K” OR “fat soluble vitamin” OR “vitamin B” OR “vitamin C” OR “water soluble vitamin”. The resulting 12 articles covered the detection of vitamins in ascorbic acid, riboflavin, cholecalciferol, calcifediol, and menadione using monomers of catechol (CAT), 3,4-ethylenedioxythiophene (EDOT), o-aminophenol (oAP), o-phenylenediamine (oPD), pyrrole, p-aminophenol (pAP), p-phenylenediamine (pPD), or resorcinol (RES), using common bare electrodes including graphite rod electrode (GRE), glassy carbon electrode (GCE), gold electrode (GE), and screen-printed carbon electrode (SPCE). The most common electrochemical detections were differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV). The imprinting factor (IF) of the eMIP-modified electrodes were from 1.6 to 21.0, whereas the cross-reactivity was from 0.0% to 29.9%. Several types of food and biological samples were tested, such as supplement tablets, poultry and pharmaceutical drugs, soft drinks, beverages, milk, infant formula, human and calf serum, and human plasma. However, more discoveries and development of detection methods needs to be performed, especially for the vitamins that have not been studied yet. This will allow the improvement in the application of eMIPs on portable-based detection and POCT devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Graphical abstract

12 pages, 4996 KiB  
Article
Fabrication of Poly(s-triazine-co-o-aminophenol) Conducting Polymer via Electropolymerization and Its Application in Aqueous Charge Storage
by Xueting Bai, Bo Lan, Xinyang Li, Xinlan Yi, Shaotong Pei and Chao Wang
Polymers 2025, 17(9), 1160; https://doi.org/10.3390/polym17091160 - 24 Apr 2025
Viewed by 397
Abstract
Designing conducting polymers with novel structures is essential for electrochemical energy storage devices. Here, copolymers of s-triazine and o-aminophenol are electropolymerized from an aqueous solution onto a carbon cloth substrate using the galvanostatic method. The poly(s-triazine-co-o-aminophenol) (PT-co-oAP) [...] Read more.
Designing conducting polymers with novel structures is essential for electrochemical energy storage devices. Here, copolymers of s-triazine and o-aminophenol are electropolymerized from an aqueous solution onto a carbon cloth substrate using the galvanostatic method. The poly(s-triazine-co-o-aminophenol) (PT-co-oAP) is characterized, and its charge storage properties are investigated in 1 M H2SO4 and in 1 M ZnSO4. At 1 A g−1, the specific capacities of PT-co-oAP reach 101.3 mAh g−1 and 84.4 mAh g−1 in 1 M H2SO4 and in 1 M ZnSO4, respectively. The specific capacity of PT-co-oAP maintains 90.3% of its initial value after cycling at 10 A g−1 for 2000 cycles in 1 M H2SO4. The high specific capacity achieved originates from abundant surface active sites, facile ion diffusion, with optimized active site structure achieved by forming copolymer. The charge storage mechanism involves the redox processes of amino/imino groups and hydroxyl/carbonyl groups in the copolymer, together with the insertion of cations. Two electrode devices using two PT-co-oAP and aqueous 1 M H2SO4 are assembled, and the maximum energy density reaches 63 Wh kg−1 at 0.5 A g−1 with a power density of 540 W kg−1. The capacity retention of the device after 3000 cycles at 10 A g−1 reaches 81.2%. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

12 pages, 1502 KiB  
Article
General Synthesis of 2-Substituted Benzoxazoles Based on Tf2O-Promoted Electrophilic Activation of Tertiary Amides
by Hongchen Li, Xingyong Wang, Fujun Zhao, Lu Wang and Songbao Fu
Molecules 2025, 30(7), 1510; https://doi.org/10.3390/molecules30071510 - 28 Mar 2025
Viewed by 1123
Abstract
We report a method for the synthesis of 2-substituted benzoxazoles from tertiary amides and 2-aminophenols in the presence of triflic anhydride (Tf2O) and 2-Fluoropyridine (2-F-Pyr). The cascade reaction involves the activation of the amide carbonyl group by Tf2O, nucleophilic [...] Read more.
We report a method for the synthesis of 2-substituted benzoxazoles from tertiary amides and 2-aminophenols in the presence of triflic anhydride (Tf2O) and 2-Fluoropyridine (2-F-Pyr). The cascade reaction involves the activation of the amide carbonyl group by Tf2O, nucleophilic addition, intramolecular cyclization, and elimination. Furthermore, we explore the scope of this method by varying both the amide and 2-aminophenol substrates, highlighting its versatility in the synthesis of a wide range of functionalized benzoxazole derivatives. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Figure 1

13 pages, 1893 KiB  
Article
Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water
by Jan W. Farag, Ragaa Khalil, Edwin Avila and Young-Seok Shon
Nanomaterials 2025, 15(5), 405; https://doi.org/10.3390/nano15050405 - 6 Mar 2025
Viewed by 734
Abstract
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, [...] Read more.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

19 pages, 5042 KiB  
Article
Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method
by Patompong Siri-apai, Sila Yaemphutchong, Natapol Suetrong, Arunthip Suesuwan, Nicha Choophun, Suttipong Wannapaiboon, Aphichart Rodchanarowan, Kantapat Chansaenpak, Nidcha Aroonrote, Yuranan Hanlumyuang and Worawat Wattanathana
Molecules 2025, 30(4), 777; https://doi.org/10.3390/molecules30040777 - 7 Feb 2025
Viewed by 1573
Abstract
The reduction of unfriendly 4-nitrophenol to make it unimpactful with the environment (4-aminophenol) was carried out using the metastable form of copper ferrite (CuFe5O8) synthesized by the co-precipitation of metal nitrate salts, an efficient method with inexpensive and abundant [...] Read more.
The reduction of unfriendly 4-nitrophenol to make it unimpactful with the environment (4-aminophenol) was carried out using the metastable form of copper ferrite (CuFe5O8) synthesized by the co-precipitation of metal nitrate salts, an efficient method with inexpensive and abundant starting materials. The samples were obtained by calcination at various temperatures ranging from 600 °C to 900 °C. The material characterizations, including X-ray diffraction, N2 adsorption/desorption, scanning electron microscope, X-ray absorption spectroscopy, and ultraviolet–visible spectrometry, were employed to identify the detailed structures and describe their correlations with catalytic activities. The X-ray diffraction and X-ray absorption spectroscopy analyses revealed the presence of mixed CuFe5O8 and copper oxide phases, where the formers are rich in Cu2+, Fe2+, and Fe3+ ions. The electron transfer between Cu2+, Fe2+, and Fe3+ led to the high efficiency of the catalytic reaction of the synthesized copper ferrites. Especially for the sample calcined at 600 °C, the apparent kinetic constant (k) for a reduction of 4-nitrophenol was equal to 0.25 min−1, illustrating nearly 100% conversion of 4-nitrophenol to 4-aminophenol within less than 9 min. Regarding the N2 adsorption/desorption isotherms, the samples calcined at 600 °C have the highest specific Brunauer–Emmett–Teller (BET) surface area (15.93 m2 g−1) among the others in the series, which may imply the most effective catalytic performance investigated herein. The post-catalytic X-ray diffraction investigation indicated the stability of the prepared catalysts. Furthermore, the chemical stability of the prepared catalysts was confirmed by its reusability in five consecutive cycles. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 4675 KiB  
Article
Piezoelectric-Driven Fenton System Based on Bismuth Ferrite Nanosheets for Removal of N-Acetyl-para-aminophenol in Aqueous Environments
by Chi Zhou, Shenglong Jing, Teng Miao, Nianlai Zhou, Hang Zhang, Yi Zhang, Lin Ge, Wencheng Liu and Zixin Yang
Catalysts 2025, 15(2), 126; https://doi.org/10.3390/catal15020126 - 27 Jan 2025
Viewed by 1061
Abstract
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O [...] Read more.
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O9 nanosheets for the efficient degradation of organic pollutants. BFO nanosheets with varying thicknesses were synthesized, and their piezoelectric properties were confirmed through piezoresponse force microscopy and heavy metal ion reduction experiments. The piezoelectric electrons generated within the BFO nanosheets facilitate the in situ production of hydrogen peroxide, which in turn drives the Fenton-like reaction. Furthermore, the piezoelectric electrons enhance the redox cycling of iron in the Fenton process, boosting the overall catalytic efficiency. The energy band structure of BFO nanosheets is well-suited for this process, enabling efficient hydrogen peroxide generation and promoting Fe3+ reduction. The findings demonstrate that thinner BFO nanosheets exhibit superior piezoelectric activity, leading to enhanced catalytic performance. Additionally, the incorporation of gold nanodots onto BFO nanosheets further boosts their piezocatalytic efficiency, particularly in the reduction of Cr (VI). The system exhibited robust oxidative capacity, stability, and recyclability, with reactive oxygen species (ROS) verified via electron paramagnetic resonance spectroscopy. Overall, BFO nanosheets, with their optimal energy band structure, self-supplied hydrogen peroxide, and enhanced Fe3+ reduction, represent a promising, sustainable solution for advanced oxidation processes in wastewater treatment and other applications. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

17 pages, 2501 KiB  
Article
Evaluation of Quinazolin-2,4-Dione Derivatives as Promising Antibacterial Agents: Synthesis, In Vitro, In Silico ADMET and Molecular Docking Approaches
by Aboubakr H. Abdelmonsef, Mohamed El-Naggar, Amal O. A. Ibrahim, Asmaa S. Abdelgeliel, Ihsan A. Shehadi, Ahmed M. Mosallam and Ahmed Khodairy
Molecules 2024, 29(23), 5529; https://doi.org/10.3390/molecules29235529 - 22 Nov 2024
Viewed by 1296
Abstract
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and [...] Read more.
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of 1 with strong electrophiles, namely, o-aminophenol, o-amino thiophenol, and/or o-phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles 2ad. Compounds 3ad and 4ad were synthesized in good-to-excellent yield through a one-pot multi-component reaction (MCR) of 1 with carbon disulfide and/or phenyl isocyanate under mild alkaline conditions, followed by ethyl chloroacetate, ethyl iodide, methyl iodide, and/or concentrated HCl, respectively. The obtained products were physicochemically characterized by melting points, elemental analysis, and spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, and MS. The antibacterial efficacy of the obtained eleven molecules was examined in vitro against two Gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus haemolyticus). Furthermore, Computer-Aided Drug Design (CADD) was performed on the synthesized derivatives, standard drug (Methotrexate), and reported antibacterial drug with the target enzymes of bacterial strains (S. aureus and S. haemolyticus) to explain their binding mode of actions. Notably, our findings highlight compounds 2b and 2c as showing both the best antibacterial activity and docking scores against the targets. Finally, according to ADMET predictions, compounds 2b and 2c possessed acceptable pharmacokinetics properties and drug-likeness properties. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

13 pages, 2332 KiB  
Article
Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol
by Alicja Kuś, Anna Leśniewicz, Anna Dzimitrowicz, Pawel Pohl and Piotr Cyganowski
Int. J. Mol. Sci. 2024, 25(20), 11319; https://doi.org/10.3390/ijms252011319 - 21 Oct 2024
Cited by 2 | Viewed by 1707
Abstract
Yearly, thousands of tons of wasted coffee grounds are produced according to high coffee consumption. Still, after the coffee brewing, wasted coffee grounds contain some amounts of caffeine (CAF). CAF, in turn, contains multiple O and N chelating atoms in its structure. These [...] Read more.
Yearly, thousands of tons of wasted coffee grounds are produced according to high coffee consumption. Still, after the coffee brewing, wasted coffee grounds contain some amounts of caffeine (CAF). CAF, in turn, contains multiple O and N chelating atoms in its structure. These have a potential to be reductors for complexes of metals. In this context, within the present study, a set of CAF extracts derived from coffee beans and coffee grounds were obtained and then used for the one-step reduction of ReO4 ions with no additional toxic chemicals. Within this approach, CAF was applied as a secondary, green resource for the synthesis of unique rhenium nanoparticles (ReNPs) containing Re species at 0 and +6 oxidation states. The obtained ReNPs were identified and characterized with the use of X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Further, the capping and stabilization of ReNPs by CAF were verified with the aid of Fourier transformation infrared spectroscopy (FT-IR). The so-obtained “green” ReNPs were then used as a homogenous catalyst in the catalytic hydrogenation of 4-nitrophenol (4-NP). This new nanomaterial revealed a superior catalytic activity, leading to the complete reduction of 4-NP to 4-aminophenol within 40–60 min with a first-order rate constant of 0.255 min−1. Full article
(This article belongs to the Special Issue Metal Nanoparticles: From Fundamental Studies to New Applications)
Show Figures

Figure 1

14 pages, 28964 KiB  
Article
The Contradicting Influences of Silica and Titania Supports on the Properties of Au0 Nanoparticles as Catalysts for Reductions by Borohydride
by Gifty Sara Rolly, Alina Sermiagin, Krishnamoorthy Sathiyan, Dan Meyerstein and Tomer Zidki
Catalysts 2024, 14(9), 606; https://doi.org/10.3390/catal14090606 - 9 Sep 2024
Cited by 1 | Viewed by 1026
Abstract
This study investigates the significant impact of metal–support interactions on catalytic reaction mechanisms at the interface of oxide-supported metal nanoparticles. The distinct and contrasting effects of SiO2 and TiO2 supports on reaction dynamics using NaBD4 were studied and focused on [...] Read more.
This study investigates the significant impact of metal–support interactions on catalytic reaction mechanisms at the interface of oxide-supported metal nanoparticles. The distinct and contrasting effects of SiO2 and TiO2 supports on reaction dynamics using NaBD4 were studied and focused on the relative yields of [HD]/[H2] and [D2]/[H2]. The findings show a consistent increase in HD yields with rising [BD4] concentrations. Notably, the sequence of HD yield enhancement follows the order of TiO2-Au0-NPs < Au0-NPs < SiO2-Au0-NPs. Conversely, the rate of H2 evolution during BH4- hydrolysis exhibits an inverse trend, with TiO2-Au0-NPs outperforming the others, followed by Au0-NPs and SiO2-Au0-NPs, demonstrating the opposing effects exerted by the TiO2 and SiO2 supports on the catalytic processes. Further, the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) confirms the catalytic mechanism, with TiO2-Au0-NPs demonstrating superior activity. The catalytic activity observed aligns with the order of TiO2-Au0-NPs > Au0-NPs > SiO2-Au0-NPs, suggesting that SiO2 donates electrons to Au0-NPs, while TiO2 withdraws them. It is of interest to note that two very different processes, that clearly proceed via different mechanisms, are affected similarly by the supports. This study reveals that the choice of support material influences catalytic activity, impacting overall yield and efficiency. These findings underscore the importance of selecting appropriate support materials for tailored catalytic outcomes. Full article
(This article belongs to the Special Issue Novel Nanocatalysts for Sustainable and Green Chemistry)
Show Figures

Graphical abstract

22 pages, 12391 KiB  
Article
Laser-Assisted Preparation of TiO2/Carbon/Ag Nanocomposite for Degradation of Organic Pollutants
by Shahin Almasi Nezhad, Babak Jaleh, Elham Darabi and Davoud Dorranian
Materials 2024, 17(16), 4118; https://doi.org/10.3390/ma17164118 - 20 Aug 2024
Cited by 3 | Viewed by 1633
Abstract
The ever-increasing expansion of chemical industries produces a variety of common pollutants, including colors, which become a global and environmental problem. Using a nanocatalyst is one of the effective ways to reduce these organic contaminants. With this in mind, a straightforward and effective [...] Read more.
The ever-increasing expansion of chemical industries produces a variety of common pollutants, including colors, which become a global and environmental problem. Using a nanocatalyst is one of the effective ways to reduce these organic contaminants. With this in mind, a straightforward and effective method for the production of a novel nanocatalyst based on lignin-derived carbon, titanium dioxide nanoparticles, and Ag particles (TiO2/C/Ag) is described. The preparation of carbon and Ag particles (in sub-micro and nano size) was carried out by laser ablation in air. The nanocomposite was synthesized using a facile magnetic stirrer of TiO2, C, and Ag. According to characterization methods, a carbon nanostructure was successfully synthesized through the laser irradiation of lignin. According to scanning electron microscope images, spherical Ag particles were agglomerated over the nanocomposite. The catalytic activities of the TiO2/C/Ag nanocomposite were tested for the decolorization of methylene blue (MB) and Congo red (CR), employing NaBH4 in a water-based solution at 25 °C. After adding fresh NaBH4 to the mixture of nanocomposite and dyes, both UV absorption peaks of MB and CR completely disappeared after 10 s and 4 min, respectively. The catalytic activity of the TiO2/C/Ag nanocomposite was also examined for the reduction of 4-nitrophenol (4-NP) using a NaBH4 reducing agent, suggesting the complete reduction of 4-NP to 4-aminophenol (4-AP) after 2.30 min. This shows excellent catalytic behavior of the prepared nanocomposite in the reduction of organic pollutants. Full article
Show Figures

Figure 1

14 pages, 7264 KiB  
Article
Organic-Acid-Sensitive Visual Sensor Array Based on Fenton Reagent–Phenol/Aniline for the Rapid Species and Adulteration Assessment of Baijiu
by Lei Zhang, Yaqi Liu, Zhenli Cai, Meixia Wu and Yao Fan
Foods 2024, 13(13), 2139; https://doi.org/10.3390/foods13132139 - 5 Jul 2024
Cited by 1 | Viewed by 1523
Abstract
Baijiu is an ancient, distilled spirit with a complicated brewing process, unique taste, and rich trace components. These trace components play a decisive role in the aroma, taste, and especially the quality of baijiu. In this paper, the redox reaction between the Fenton [...] Read more.
Baijiu is an ancient, distilled spirit with a complicated brewing process, unique taste, and rich trace components. These trace components play a decisive role in the aroma, taste, and especially the quality of baijiu. In this paper, the redox reaction between the Fenton reagent and four reducing agents, including o-phenylenediamine (OPD), p-phenylenediamine (PPD), 4-aminophenol (PAP), and 2-aminophenol (OAP), was adopted to construct a four-channel visual sensor array for the rapid detection of nine kinds of common organic acids in baijiu and the identification of baijiu and its adulteration. By exploiting the color-changing fingerprint response brought by organic acids, each organic acid could be analyzed accurately when combined with an optimized variable-weighted least-squares support vector machine based on a particle swarm optimization (PSO-VWLS-SVM) model. What is more, this novel sensor also could achieve accurate semi-quantitative analysis of the mixed organic acid samples via partial least squares discriminant analysis (PLSDA). Most importantly, the sensor array could be further used for the identification of baijiu with different species through the PLSDA model and the adulteration assessment with the one-class partial least squares (OCPLS) model simultaneously. Full article
Show Figures

Graphical abstract

9 pages, 3376 KiB  
Article
Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation
by Dawit Tesfaye, Jonas Braun, Mamo Gebrezgiabher, Juraj Kuchár, Juraj Černák, Taju Sani, Abbasher Gismelseed, Tim Hochdörffer, Volker Schünemann, Christopher E. Anson, Annie K. Powell and Madhu Thomas
Inorganics 2024, 12(6), 159; https://doi.org/10.3390/inorganics12060159 - 3 Jun 2024
Cited by 1 | Viewed by 1998
Abstract
A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol has been synthesised and characterised by single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic ligands L2− coordinate in [...] Read more.
A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol has been synthesised and characterised by single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic ligands L2− coordinate in a tridentate fashion with the Fe(III) through their deprotonated phenolic oxygens and azomethine nitrogen atoms, resulting in a trans-FeO4N2 chromophore. Variable-temperature magnetic measurements were performed between 300 and 5 K under an applied field of 0.1 T and show that 1 is in the high spin state (S = 5/2) over the whole measured temperature range. This is confirmed by Mössbauer spectroscopy at 77 and 300 K. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

11 pages, 917 KiB  
Article
Rational Design of a Portable Chemometric-Assisted Voltammetric Sensor Based on Ion-Imprinted Polymeric Film for Co(II) Determination in Water
by Sabrina Di Masi, Nelson Arturo Manrique Rodriguez, Marco Costa, Giuseppe Egidio De Benedetto and Cosimino Malitesta
Nanomaterials 2024, 14(6), 536; https://doi.org/10.3390/nano14060536 - 18 Mar 2024
Cited by 4 | Viewed by 1601
Abstract
Herein, chemometric-assisted synthesis of electrochemical sensors based on electropolymerised ion-imprinted polymeric (e-IIP) films was explored. Co(II)-IIPs sensors were prepared by performing electropolymerisation procedures of polymerisation mixtures comprising varying concentrations of an electroactive o-aminophenol (o-AP) monomer and Co(II) ions, respectively, according to the Taguchi [...] Read more.
Herein, chemometric-assisted synthesis of electrochemical sensors based on electropolymerised ion-imprinted polymeric (e-IIP) films was explored. Co(II)-IIPs sensors were prepared by performing electropolymerisation procedures of polymerisation mixtures comprising varying concentrations of an electroactive o-aminophenol (o-AP) monomer and Co(II) ions, respectively, according to the Taguchi L9 experimental design, exploiting the simultaneous evaluation of other controlled parameters during electrosynthesis. Each e-IIP developed from Taguchi runs was compared with the respective non-imprinted polymer (NIP) films and fitted according to Langmuir–Freudlich isotherms. Distinctive patterns of low and high-affinity films were screened based on the qualities and properties of the developed IIPs in terms of binding kinetics (KD), imprinting factor, and the heterogeneity index of produced cavities. These results can provide a generic protocol for chemometric-assisted synthesis of e-IIPs based on poly-o-AP, providing highly stable, reproducible, and high-affinity imprinted polymeric films for monitoring purposes. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

14 pages, 2234 KiB  
Article
CaH2-Assisted Molten Salt Synthesis of Zinc-Rich Intermetallic Compounds of RhZn13 and Pt3Zn10 for Catalytic Selective Hydrogenation Application
by Yasukazu Kobayashi, Koharu Yamamoto and Ryo Shoji
Crystals 2024, 14(3), 278; https://doi.org/10.3390/cryst14030278 - 15 Mar 2024
Viewed by 1778
Abstract
Zinc-included intermetallic compound catalysts of RhZn, PtZn, and PdZn with a molar ration of Zn/metal = 1/1, which are generally prepared using a hydrogen reduction approach, are known to show excellent catalytic performance in some selective hydrogenations of organic compounds. In this study, [...] Read more.
Zinc-included intermetallic compound catalysts of RhZn, PtZn, and PdZn with a molar ration of Zn/metal = 1/1, which are generally prepared using a hydrogen reduction approach, are known to show excellent catalytic performance in some selective hydrogenations of organic compounds. In this study, in order to reduce the incorporated mounts of the expensive noble metals, we attempted to prepare zinc-rich intermetallic compounds via a CaH2-assisted molten salt synthesis method with a stronger reduction capacity than the common hydrogen reduction method. X-ray diffraction results indicated the formation of RhZn13 and Pt3Zn10 in the samples prepared by the reduction of ZnO-supported metal precursors. In a hydrogenation reaction of p-nitrophenol to p-aminophenol, the ZnO-supported RhZn13 and Pt3Zn10 catalysts showed a higher selectivity than the RhZn/ZnO and PtZn/ZnO catalysts with the almost similar conversions. Thus, it was demonstrated that the zinc-rich intermetallic compounds of RhZn13 and Pt3Zn10 could be superior selective hydrogenation catalysts compared to the conventional intermetallic compound catalysts of RhZn and PtZn. Full article
Show Figures

Figure 1

Back to TopTop