Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,556)

Search Parameters:
Keywords = numerical system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 16090 KB  
Article
Iterative Investigation of the Nonlinear Fractional Cahn–Allen and Fractional Clannish Random Walker’s Parabolic Equations by Using the Hybrid Decomposition Method
by Sarfaraz Ahmed, Ibtisam Aldawish, Syed T. R. Rizvi and Aly R. Seadawy
Fractal Fract. 2025, 9(10), 656; https://doi.org/10.3390/fractalfract9100656 (registering DOI) - 11 Oct 2025
Abstract
In this work, we numerically investigate the fractional clannish random walker’s parabolic equations (FCRWPEs) and the nonlinear fractional Cahn–Allen (NFCA) equation using the Hybrid Decomposition Method (HDM). The analysis uses the Atangana–Baleanu fractional derivative (ABFD) in the Caputo sense, which has a nonsingular [...] Read more.
In this work, we numerically investigate the fractional clannish random walker’s parabolic equations (FCRWPEs) and the nonlinear fractional Cahn–Allen (NFCA) equation using the Hybrid Decomposition Method (HDM). The analysis uses the Atangana–Baleanu fractional derivative (ABFD) in the Caputo sense, which has a nonsingular and nonlocal Mittag–Leffler kernel (MLk) and provides a more accurate depiction of memory and heredity effects, to examine the dynamic behavior of the models. Using nonlinear analysis, the uniqueness of the suggested models is investigated, and distinct wave profiles are created for various fractional orders. The accuracy and effectiveness of the suggested approach are validated by a number of example cases, which also support the approximate solutions of the nonlinear FCRWPEs. This work provides significant insights into the modeling of anomalous diffusion and complex dynamic processes in fields such as phase transitions, biological transport, and population dynamics. The inclusion of the ABFD enhances the model’s ability to capture nonlocal effects and long-range temporal correlations, making it a powerful tool for simulating real-world systems where classical derivatives may be inadequate. Full article
(This article belongs to the Special Issue Applications of Fractional Calculus in Modern Mathematical Modeling)
18 pages, 613 KB  
Article
Harnessing Quantum Entanglement and Fidelity in Hydrogen Atoms: Unveiling Dynamics Under Dephasing Noise
by Kamal Berrada and Smail Bougouffa
Appl. Sci. 2025, 15(20), 10938; https://doi.org/10.3390/app152010938 (registering DOI) - 11 Oct 2025
Abstract
We investigate the quantum dynamics of entanglement and fidelity in the hyperfine structure of hydrogen atoms under dephasing noise, modeled via the Lindblad master equation. The effective Hamiltonian captures the spin–spin interaction between the electron and proton, with dephasing incorporated through local Lindblad [...] Read more.
We investigate the quantum dynamics of entanglement and fidelity in the hyperfine structure of hydrogen atoms under dephasing noise, modeled via the Lindblad master equation. The effective Hamiltonian captures the spin–spin interaction between the electron and proton, with dephasing incorporated through local Lindblad operators. Analytical solutions for the time-dependent density matrix are derived for various initial states, including separable, partially entangled, and maximally entangled configurations. Entanglement is quantified using the concurrence, while fidelity measures the similarity between the evolving state and the initial state. Numerical results demonstrate that entanglement exhibits oscillatory decay modulated by the dephasing rate, with anti-parallel spin states displaying greater robustness compared to parallel configurations, often leading to entanglement sudden death. Fidelity dynamics reveal similar damped oscillations, underscoring the interplay between coherent hyperfine evolution and environmental dephasing. These insights elucidate strategies for preserving quantum correlations in atomic systems, with implications for quantum information processing and metrology. Full article
(This article belongs to the Special Issue Quantum Communication and Quantum Information)
Show Figures

Figure 1

18 pages, 972 KB  
Article
Survival Outcomes and Prognostic Factors in Metastatic Unresectable Appendiceal Adenocarcinoma Treated with Palliative Systemic Chemotherapy: A 10-Year Retrospective Analysis from Australia
by Jirapat Wonglhow, Hui-Li Wong, Michael Michael, Alexander Heriot, Glen Guerra, Catherine Mitchell and Jeanne Tie
Cancers 2025, 17(20), 3297; https://doi.org/10.3390/cancers17203297 (registering DOI) - 11 Oct 2025
Abstract
Background: Appendiceal adenocarcinoma is a rare malignancy, and data guiding its systemic treatment in metastatic settings are limited. This study aimed to determine the clinical outcomes, treatment efficacy, biomarkers, and prognostic factors in patients with metastatic or unresectable appendiceal adenocarcinoma receiving palliative chemotherapy. [...] Read more.
Background: Appendiceal adenocarcinoma is a rare malignancy, and data guiding its systemic treatment in metastatic settings are limited. This study aimed to determine the clinical outcomes, treatment efficacy, biomarkers, and prognostic factors in patients with metastatic or unresectable appendiceal adenocarcinoma receiving palliative chemotherapy. Methods: We retrospectively reviewed patients with metastatic appendiceal adenocarcinoma who received first-line palliative systemic chemotherapy at the Peter MacCallum Cancer Centre between January 2015 and December 2024. Results: Of the 40 patients included, fluoropyrimidine-based doublet regimens were most commonly used (82.5%) in first-line setting, achieving an objective response rate of 39.4%. Median overall survival (OS) was 21.6 months, and median first-line progression-free survival (PFS) was 8.9 months. 22 patients (55.0%) received second-line treatment. Median OS and PFS were 21.6 and 8.9 months, respectively, among patients treated with oxaliplatin-based doublet regimens, and 66.4 and 10.8 months, respectively, among those treated with irinotecan-based doublet regimens. Molecular biomarker testing was performed in 35 patients (87.5%). KRAS and NRAS mutations were identified in 68.6% and 2.9% of tested patients, respectively. Factors associated with poorer OS included male sex, elevated carcinoembryonic antigen levels, and overweight status. Bevacizumab use was not clearly associated with survival. Conclusions: Palliative systemic chemotherapy, particularly fluoropyrimidine-based doublet regimens, appears to be a reasonable and effective treatment option for patients with advanced appendiceal adenocarcinoma. Although this study was underpowered for formal comparison, the numerically longer OS and PFS of irinotecan-based regimens are hypothesis-generating and support further prospective evaluation. Molecular profiling emphasizes the need for personalized targeted therapeutic strategies. The identified prognostic factors may help guide risk stratification and patient counseling for treatment planning. Full article
(This article belongs to the Special Issue Clinical Efficacy of Drug Therapy in Gastrointestinal Cancers)
47 pages, 1632 KB  
Review
Energy Dissipation and Efficiency Challenges of Cryogenic Sloshing in Aerospace Propellant Tanks: A Systematic Review
by Alih John Eko, Xuesen Zeng, Mazahar Peerzada, Tristan Shelley, Jayantha Epaarachchi and Cam Minh Tri Tien
Energies 2025, 18(20), 5362; https://doi.org/10.3390/en18205362 (registering DOI) - 11 Oct 2025
Abstract
Cryogenic propellant sloshing presents significant challenges in aerospace systems, inducing vehicle instability, structural fatigue, energy losses, and complex thermal management issues. This review synthesizes experimental, analytical, and numerical advances with an emphasis on energy dissipation and conversion efficiency in propellant storage and transfer. [...] Read more.
Cryogenic propellant sloshing presents significant challenges in aerospace systems, inducing vehicle instability, structural fatigue, energy losses, and complex thermal management issues. This review synthesizes experimental, analytical, and numerical advances with an emphasis on energy dissipation and conversion efficiency in propellant storage and transfer. Recent developments in computational fluid dynamics (CFD) and AI-driven digital-twin frameworks are critically examined alongside the influences of tank materials, baffle configurations, and operating conditions. Unlike conventional fluids, cryogenic propellants in microgravity and within composite overwrapped pressure vessels (COPVs) exhibit unique thermodynamic and dynamic couplings that remain only partially characterized. Prior reviews have typically treated these factors in isolation; here, they are unified through an integrated perspective linking cryogenic thermo-physics, reduced-gravity hydrodynamics, and fluid–structure interactions. Persistent research limitations are identified in the areas of data availability, model validation, and thermo-mechanical coupling fidelity, underscoring the need for scalable multi-physics approaches. This review’s contribution lies in consolidating these interdisciplinary domains while outlining a roadmap toward experimentally validated, AI-augmented digital-twin architectures for improved energy efficiency, reliability, and propellant stability in next-generation aerospace missions. Full article
27 pages, 3092 KB  
Article
Energy Audit of Road Lighting Installations as a Tool for Improving Efficiency and Visual Safety Conditions
by Marek Kurkowski, Tomasz Popławski, Henryk Wachta and Dominik Węclewski
Energies 2025, 18(20), 5357; https://doi.org/10.3390/en18205357 (registering DOI) - 11 Oct 2025
Abstract
This study presents an analysis of the condition of street lighting based on a selected typical installation in one of the 1459 rural communes in Poland. The analysis was carried out on the basis of publicly available statistical data, local government reports, and [...] Read more.
This study presents an analysis of the condition of street lighting based on a selected typical installation in one of the 1459 rural communes in Poland. The analysis was carried out on the basis of publicly available statistical data, local government reports, and information contained in national and European strategic documents. During the analysis, numerous irregularities and differences in the quality and energy efficiency of the lighting infrastructure were indicated. It was found that outdated sodium luminaires with high energy consumption, low durability, and limited luminous efficacy are used in many cases, which generates significant operating costs and negatively affects the environment. The authors emphasize that a lack of regular and professional lighting audits leads to the suboptimal use of energy resources, an insufficient level of road safety, and failure to adapt lighting to current technical standards and the needs of road users. A lighting audit is a key tool for diagnosing the technical condition, efficiency, and compliance of installations with relevant regulations and recommendations. It also allows for the identification of potential savings and determining the directions of modernization and implementation of energy-saving technologies, such as LED luminaires and intelligent control systems.The presented analysis demonstrates that energy audits are an effective tool for confirming efficiency improvements and enhancing visual safety conditions through better compliance with photometric standards (luminance, lighting uniformity). Direct accident statistics were not within the scope of this study. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 2423 KB  
Article
Exploring Ohm’s Law: The Randomness of Determinism
by Angel Cuadras, Marina Cuadras-Alba and Gaia Cuadras-Alba
Entropy 2025, 27(10), 1058; https://doi.org/10.3390/e27101058 (registering DOI) - 11 Oct 2025
Abstract
Ohm’s law has become ubiquitous in numerous scientific and technical disciplines. Generally, the subject is introduced to students in secondary school as fundamental technical knowledge. The present study proposes a visual model to facilitate the comprehension of Ohm’s law in electron transport in [...] Read more.
Ohm’s law has become ubiquitous in numerous scientific and technical disciplines. Generally, the subject is introduced to students in secondary school as fundamental technical knowledge. The present study proposes a visual model to facilitate the comprehension of Ohm’s law in electron transport in solids to pre-university and university students. The objective is to facilitate students’ comprehension of the correlation between electron movement in solids, as depicted by a current, and the energy of the system, which is introduced by the electric field and the material’s structure. The approach’s originality lies in its novel strategy for describing electron trajectory randomization. This enables the establishment of a relationship between the material’s structure and its resistivity. Moreover, the description of electron transport and scattering processes is presented regarding different types of entropy. It shows that electrons follow the maximum trajectory entropy and that thermal entropy has a quadratic relationship with configurational entropy. The determinism of Ohm’s law is inferred from statistical entropy. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

28 pages, 754 KB  
Article
Ulam-Hyers Stability of Caputo–Katugampola Generalized Hukuhara Type Partial Differential Symmetry Coupled Systems
by Lin-Cheng Jiang, Heng-You Lan and Yi-Xin Yang
Symmetry 2025, 17(10), 1707; https://doi.org/10.3390/sym17101707 (registering DOI) - 11 Oct 2025
Abstract
The purpose of this paper is to investigate a class of novel symmetric coupled fuzzy fractional partial differential equation system involving the Caputo–Katugampola (C-K) generalized Hukuhara (gH) derivative. Within the framework of C-K gH differentiability, two types of gH weak solutions are defined, [...] Read more.
The purpose of this paper is to investigate a class of novel symmetric coupled fuzzy fractional partial differential equation system involving the Caputo–Katugampola (C-K) generalized Hukuhara (gH) derivative. Within the framework of C-K gH differentiability, two types of gH weak solutions are defined, and their existence is rigorously established through explicit constructions via employing Schauder fixed point theorem, overcoming the limitations of traditional Lipschitz conditions and thereby extending applicability to non-smooth and nonlinear systems commonly encountered in practice. A typical numerical example with potential applications is proposed to verify the existence results of the solutions for the symmetric coupled system. Furthermore, we introduce Ulam–Hyers stability (U-HS) theory into the analysis of such symmetric coupled systems and establish explicit stability criteria. U-HS ensures the existence of approximate solutions close to the exact solution under small perturbations, and thereby guarantees the reliability and robustness of the systems, while it prevents significant deviations in system dynamics caused by minor disturbances. We not only enrich the theoretical framework of fuzzy fractional calculus by extending the class of solvable systems and supplementing stability analysis, but also provide a practical mathematical tool for investigating complex interconnected systems characterized by uncertainty, memory effects, and spatial dynamics. Full article
(This article belongs to the Section Mathematics)
19 pages, 6415 KB  
Article
Combustion and Heat-Transfer Characteristics of a Micro Swirl Combustor-Powered Thermoelectric Generator: A Numerical Study
by Kenan Huang, Jiahao Zhang, Guoneng Li, Yiyuan Zhu, Chao Ye and Ke Li
Aerospace 2025, 12(10), 916; https://doi.org/10.3390/aerospace12100916 (registering DOI) - 11 Oct 2025
Abstract
Micro-combustion-powered thermoelectric generators (μ-CPTEGs) combine the high energy density of hydrocarbons with solid-state conversion, offering compact and refuelable power for long-endurance electronics. Such characteristics make μ-CPTEGs particularly promising for aerospace systems, where conventional batteries face serious limitations. Their achievable performance [...] Read more.
Micro-combustion-powered thermoelectric generators (μ-CPTEGs) combine the high energy density of hydrocarbons with solid-state conversion, offering compact and refuelable power for long-endurance electronics. Such characteristics make μ-CPTEGs particularly promising for aerospace systems, where conventional batteries face serious limitations. Their achievable performance hinges on how a swirl-stabilized flame transfers heat into the hot ends of thermoelectric modules. This study uses a conjugate CFD framework coupled with a lumped parameter model to examine how input power and equivalence ratio shape the flame/flow structure, temperature fields, and hot-end heating in a swirl combustor-powered TEG. Three-dimensional numerical simulations were performed for the swirl combustor-powered TEG, varying the input power from 1269 to 1854 W and the equivalence ratio from φ = 0.6 to 1.1. Results indicate that the combustor exit forms a robust “annular jet with central recirculation” structure that organizes a V-shaped region of high modeled heat release responsible for flame stabilization and preheating. At φ = 1.0, increasing Qin from 1269 to 1854 W strengthens the V-shaped hot band and warms the wall-attached recirculation. Heating penetrates deeper into the finned cavity, and the central-plane peak temperature rises from 2281 to 2339 K (≈2.5%). Consistent with these field changes, the lower TEM pair near the outlet heats more strongly than the upper module (517 K to 629 K vs. 451 K to 543 K); the inter-row gap widens from 66 K to 86 K, and the incremental temperature gains taper at the highest power, while the axial organization of the field remains essentially unchanged. At fixed Qin = 1854 W, raising φ from 0.6 to 1.0 compacts and retracts the reaction band toward the exit and weakens axial penetration; the main-zone temperature increases up to φ = 0.9 and then declines for richer mixtures (peak 2482 K at φ = 0.9 to 2289 K at φ = 1.1), cooling the fin section due to reduced transport, thereby identifying φ = 0.9 as the operating point that best balances axial penetration against dilution/convective-cooling losses and maximizes the TEM hot-end temperature at the fixed power. Full article
(This article belongs to the Special Issue Advances in Thermal Fluid, Dynamics and Control)
Show Figures

Figure 1

17 pages, 16586 KB  
Article
Heat Extraction Performance Evaluation of Horizontal Wells in Hydrothermal Reservoirs and Multivariate Sensitivity Analysis Based on the XGBoost-SHAP Algorithm
by Shuaishuai Nie, Ke Liu, Bo Yang, Xiuping Zhong, Hua Guo, Jiangfei Li and Kangtai Xu
Processes 2025, 13(10), 3237; https://doi.org/10.3390/pr13103237 (registering DOI) - 11 Oct 2025
Abstract
The present study investigated the heat extraction behavior of the horizontal well closed-loop geothermal systems under multi-factor influences. Particularly, the numerical model was established based on the geological condition of the geothermal field in Xiong’an New Area, and the XGBoost-SHAP (eXtreme Gradient Boosting [...] Read more.
The present study investigated the heat extraction behavior of the horizontal well closed-loop geothermal systems under multi-factor influences. Particularly, the numerical model was established based on the geological condition of the geothermal field in Xiong’an New Area, and the XGBoost-SHAP (eXtreme Gradient Boosting and SHapley Additive exPlanations) algorithm was employed for multivariable analysis. The results indicated that the produced water temperature and thermal power of a 3000 m-long horizontal well were 2.61 and 4.23 times higher than those of the vertical well, respectively, demonstrating tantalizing heat extraction potential. The horizontal section length (SHAP values of 8.13 and 165.18) was the primary factor influencing production temperature and thermal power, followed by the injection rate (SHAP values of 1.96 and 64.35), while injection temperature (SHAP values of 1.27 and 21.42), geothermal gradient (SHAP values of 0.95 and 19.97), and rock heat conductivity (SHAP values of 0.334 and 17.054) had relatively limited effects. The optimal horizontal section length was 2375 m. Under this condition, the produced water temperature can be maintained higher than 40 °C, thereby meeting the heating demand. These findings provide important insights and guidance for the application of horizontal wells in hydrothermal reservoirs. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

31 pages, 2935 KB  
Article
A Novel Earth-to-Air Heat Exchanger-Assisted Ventilated Double-Skin Facade for Low-Grade Renewable Energy Utilization in Transparent Building Envelopes
by Zhanzhi Yu, Fei Liu, Wenke Sui, Rui Wang, Chong Zhang, Xiaoxiao Dong and Xinhua Xu
Buildings 2025, 15(20), 3655; https://doi.org/10.3390/buildings15203655 (registering DOI) - 11 Oct 2025
Abstract
Transparent building envelopes significantly increase energy demands due to low thermal resistance and solar heat gain, while conventional double-skin facades may lead to overheating and high cooling loads in the summer. This study proposes a novel earth-to-air heat exchanger (EAHE)-assisted ventilated double-skin facade [...] Read more.
Transparent building envelopes significantly increase energy demands due to low thermal resistance and solar heat gain, while conventional double-skin facades may lead to overheating and high cooling loads in the summer. This study proposes a novel earth-to-air heat exchanger (EAHE)-assisted ventilated double-skin facade (VDSF) system utilizing low-grade shallow geothermal energy for year-round thermal regulation of transparent building envelopes. A numerical model of this coupled system was developed and validated to estimate the thermal performance of the EAHE-assisted VDSF system in a hot-summer-and-cold-winter climate. Parametric study was conducted to investigate the impact of some key design parameters on thermal performance of the EAHE-assisted VDSF system and further reveal recommended design parameters of this coupled system. The results indicate that the EAHE-VDSF system reduces annual accumulated cooling loads by 20.3% to 76.5% and heating loads by 19.6% to 47.1% in comparison to a conventional triple-glazed, non-ventilated facade. The cavity temperature of the VDSF decreases by 15 °C on average in the summer, effectively addressing the overheating issue in DSFs. The proposed coupled EAHE-VDSF system shows promising energy-saving potential and ensures stability and consistency in the thermal regulation of transparent building envelopes. Full article
Show Figures

Figure 1

19 pages, 4401 KB  
Article
Experimental Shear Behavior of Macro-Synthetic Fiber-Reinforced Concrete Panels
by John P. Gaston, Benedikt F. Farag, Travis Thonstad and Paolo M. Calvi
Fibers 2025, 13(10), 136; https://doi.org/10.3390/fib13100136 - 10 Oct 2025
Abstract
The combined use of macro-synthetic fibers and traditional steel reinforcement in structural concrete shows promise for enhancing shear behavior, particularly with respect to crack control, ductility, and potentially strength. However, experimental data on such systems remain scarce, especially for elements subjected to pure [...] Read more.
The combined use of macro-synthetic fibers and traditional steel reinforcement in structural concrete shows promise for enhancing shear behavior, particularly with respect to crack control, ductility, and potentially strength. However, experimental data on such systems remain scarce, especially for elements subjected to pure in-plane shear, where the interaction between fibers and conventional reinforcement is not well understood. This study contributes essential experimental evidence toward addressing this gap. Nine reinforced concrete panels were tested under monotonic in-plane shear, with transverse reinforcement ratios ranging from ρv = 0% to 0.91%, and macro-synthetic fiber contents from Vf = 0% to 0.52% by volume. Results showed that fibers were highly effective in reducing crack widths at low reinforcement levels. For specimens with ρv = 0.34%, increasing Vf from 0% to 0.52% halved the maximum crack width (from 0.6 mm to 0.3 mm) and reduced the average crack width by 22% (from 0.32 mm to 0.25 mm). Potential ductility improvements were also detected at low reinforcement ratios, with increased shear strain capacities observed as fiber content increased. In contrast, the influence of fibers on shear strength was minimal across all reinforcement levels. These findings highlight the potential of macro-synthetic fibers to enhance the performance of shear-critical elements, particularly in lightly reinforced systems, while also illustrating the need for further experimental and numerical work. The results presented here provide a fundamental dataset that can support future efforts to develop reliable assessment and design approaches accounting for the simultaneous presence of steel reinforcement and synthetic fibers in concrete elements subjected to shear. Full article
Show Figures

Figure 1

34 pages, 12185 KB  
Article
Artificial Neural Network-Based Heat Transfer Analysis of Sutterby Magnetohydrodynamic Nanofluid with Microorganism Effects
by Fateh Ali, Mujahid Islam, Farooq Ahmad, Muhammad Usman and Sana Ullah Asif
Magnetochemistry 2025, 11(10), 88; https://doi.org/10.3390/magnetochemistry11100088 (registering DOI) - 10 Oct 2025
Abstract
Background: The study of non-Newtonian fluids in thin channels is crucial for advancing technologies in microfluidic systems and targeted industrial coating processes. Nanofluids, which exhibit enhanced thermal properties, are of particular interest. This paper investigates the complex flow and heat transfer characteristics of [...] Read more.
Background: The study of non-Newtonian fluids in thin channels is crucial for advancing technologies in microfluidic systems and targeted industrial coating processes. Nanofluids, which exhibit enhanced thermal properties, are of particular interest. This paper investigates the complex flow and heat transfer characteristics of a Sutterby nanofluid (SNF) within a thin channel, considering the combined effects of magnetohydrodynamics (MHD), Brownian motion, and bioconvection of microorganisms. Analyzing such systems is essential for optimizing design and performance in relevant engineering applications. Method: The governing non-linear partial differential equations (PDEs) for the flow, heat, concentration, and bioconvection are derived. Using lubrication theory and appropriate dimensionless variables, this system of PDEs is simplified into a more simplified system of ordinary differential equations (ODEs). The resulting nonlinear ODEs are solved numerically using the boundary value problem (BVP) Midrich method in Maple software to ensure accuracy. Furthermore, data for the Nusselt number, extracted from the numerical solutions, are used to train an artificial neural network (ANN) model based on the Levenberg–Marquardt algorithm. The performance and predictive capability of this ANN model are rigorously evaluated to confirm its robustness for capturing the system’s non-linear behavior. Results: The numerical solutions are analyzed to understand the variations in velocity, temperature, concentration, and microorganism profiles under the influence of various physical parameters. The results demonstrate that the non-Newtonian rheology of the Sutterby nanofluid is significantly influenced by Brownian motion, thermophoresis, bioconvection parameters, and magnetic field effects. The developed ANN model demonstrates strong predictive capability for the Nusselt number, validating its use for this complex system. These findings provide valuable insights for the design and optimization of microfluidic devices and specialized coating applications in industrial engineering. Full article
Show Figures

Figure 1

31 pages, 19561 KB  
Article
Empirical Analysis of the Impact of Two Key Parameters of the Harmony Search Algorithm on Performance
by Geonhee Lee and Zong Woo Geem
Mathematics 2025, 13(20), 3248; https://doi.org/10.3390/math13203248 - 10 Oct 2025
Abstract
Metaheuristic algorithms are widely utilized as effective tools for solving complex optimization problems. Among them, the Harmony Search (HS) algorithm has garnered significant attention for its simple structure and excellent performance. The efficacy of the HS algorithm is heavily dependent on the configuration [...] Read more.
Metaheuristic algorithms are widely utilized as effective tools for solving complex optimization problems. Among them, the Harmony Search (HS) algorithm has garnered significant attention for its simple structure and excellent performance. The efficacy of the HS algorithm is heavily dependent on the configuration of its internal parameters, with the Harmony Memory Considering Rate (HMCR) and Pitch Adjusting Rate (PAR) playing pivotal roles. These parameters determine the probabilities of using the Random Generation (RG), Harmony Memory Consideration (HMC), and Pitch Adjustment (PA) operators, thereby controlling the balance between exploration and exploitation. However, a systematic empirical analysis of the interaction between these parameters and the characteristics of the problem at hand remains insufficient. Thus, this study conducts a comprehensive empirical analysis of the performance sensitivity of the HS algorithm to variations in HMCR and PAR values. The analysis is performed on a suite of 23 benchmark functions, encompassing diverse characteristics such as unimodality/multimodality and separability/non-separability, along with 5 real-world optimization problems. Through extensive experimentation, the performance for each parameter combination was evaluated on a rank-based system and visualized using heatmaps. The results experimentally demonstrate that the algorithm’s performance is most sensitive to the HMCR value across all function types, establishing that setting a high HMCR value (≥0.9) is a prerequisite for securing stable performance. Conversely, the optimal PAR value showed a direct correlation with the topographical features of the problem landscape. For unimodal problems, a low PAR value between 0.1 and 0.3 was more effective, whereas for complex multimodal problems with numerous local optima, a relatively higher PAR value between 0.3 and 0.5 proved more efficient in searching for the global optimum. This research provides a guideline into the parameter settings of the HS algorithm and contributes to enhancing its practical applicability by proposing a systematic parameter tuning strategy based on problem characteristics. Full article
Show Figures

Figure 1

20 pages, 4869 KB  
Article
PSO-LQR Control of ISD Suspension for Vehicle Coupled with Bridge Considering General Boundary Conditions
by Buyun Zhang, Shipeng Dai, Yunshun Zhang and Chin An Tan
Machines 2025, 13(10), 935; https://doi.org/10.3390/machines13100935 - 10 Oct 2025
Abstract
With the rapid development of transportation infrastructure, bridges increasingly face prominent issues of dynamic response and fatigue damage induced by vehicle–bridge interaction (VBI). To effectively suppress the coupled vibrations and enhance both vehicle ride comfort and bridge service life, this paper proposes an [...] Read more.
With the rapid development of transportation infrastructure, bridges increasingly face prominent issues of dynamic response and fatigue damage induced by vehicle–bridge interaction (VBI). To effectively suppress the coupled vibrations and enhance both vehicle ride comfort and bridge service life, this paper proposes an active inerter-spring-damper (ISD) suspension system based on Particle Swarm Optimization (PSO) algorithm and Linear Quadratic Regulator (LQR) control. By establishing a VBI model considering general boundary conditions and employing the modal superposition method to solve the system response, an LQR controller is designed for multi-objective optimization targeting the vehicle body acceleration, suspension dynamic travel, and tire dynamic load. To further improve control performance, the PSO algorithm is utilized to globally optimize the LQR weighting matrices. Numerical simulation results demonstrate that, compared to passive suspension and unoptimized LQR active suspension, the PSO-LQR control strategy significantly reduces vertical body acceleration and tire dynamic load, while also improving the convergence and stability of the suspension dynamic travel. This research provides a new insight into the control method for VBI systems, possessing both theoretical and practical engineering application value. Full article
(This article belongs to the Special Issue Advances in Vehicle Suspension System Optimization and Control)
Show Figures

Figure 1

22 pages, 3119 KB  
Article
Modelling Dynamic Parameter Effects in Designing Robust Stability Control Systems for Self-Balancing Electric Segway on Irregular Stochastic Terrains
by Desejo Filipeson Sozinando, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Physics 2025, 7(4), 46; https://doi.org/10.3390/physics7040046 - 10 Oct 2025
Abstract
In this study, a nonlinear dynamic model is developed to examine the stability and vibration behavior of a self-balancing electric Segway operating over irregular stochastic terrains. The Segway is treated as a three-degrees-of-freedom cart–inverted pendulum system, incorporating elastic and damping effects at the [...] Read more.
In this study, a nonlinear dynamic model is developed to examine the stability and vibration behavior of a self-balancing electric Segway operating over irregular stochastic terrains. The Segway is treated as a three-degrees-of-freedom cart–inverted pendulum system, incorporating elastic and damping effects at the wheel–ground interface. Road irregularities are generated in accordance with international standard using high-order filtered noise, allowing for representation of surface classes from smooth to highly degraded. The governing equations, formulated via Lagrange’s method, are transformed into a Lorenz-like state-space form for nonlinear analysis. Numerical simulations employ the fourth-order Runge–Kutta scheme to compute translational and angular responses under varying speeds and terrain conditions. Frequency-domain analysis using Fast Fourier Transform (FFT) identifies resonant excitation bands linked to road spectral content, while Kernel Density Estimation (KDE) maps the probability distribution of displacement states to distinguish stable from variable regimes. The Lyapunov stability assessment and bifurcation analysis reveal critical velocity thresholds and parameter regions marking transitions from stable operation to chaotic motion. The study quantifies the influence of the gravity–damping ratio, mass–damping coupling, control torque ratio, and vertical excitation on dynamic stability. The results provide a methodology for designing stability control systems that ensure safe and comfortable Segway operation across diverse terrains. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

Back to TopTop