Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,302)

Search Parameters:
Keywords = number splitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 23033 KB  
Review
MXene-Based Electrocatalysts for Water Splitting: Material Design, Surface Modulation, and Catalytic Performance
by Mohammad R. Thalji, Farzaneh Mahmoudi, Leonidas G. Bachas and Chinho Park
Int. J. Mol. Sci. 2025, 26(16), 8019; https://doi.org/10.3390/ijms26168019 - 19 Aug 2025
Viewed by 410
Abstract
Developing efficient and sustainable hydrogen production technologies is critical for advancing the global clean energy transition. This review highlights recent progress in the design, synthesis, and electrocatalytic applications of MXene-based materials for electrochemical water splitting. It discusses the fundamental mechanisms of the hydrogen [...] Read more.
Developing efficient and sustainable hydrogen production technologies is critical for advancing the global clean energy transition. This review highlights recent progress in the design, synthesis, and electrocatalytic applications of MXene-based materials for electrochemical water splitting. It discusses the fundamental mechanisms of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and the structure–function relationships that govern electrocatalytic behavior. Emphasis is placed on the intrinsic structural and surface properties of MXenes, such as their layered architecture and tunable surface chemistry, which render them promising candidates for electrocatalysis. Despite these advantages, several practical limitations hinder their full potential, including oxidation susceptibility, restacking, and a limited number of active sites. Several studies have addressed these challenges using diverse engineering strategies, such as heteroatom doping; surface functionalization; and constructing MXene-based composites with metal chalcogenides, oxides, phosphides, and conductive polymers. These modifications have significantly improved catalytic activity, charge transfer kinetics, and long-term operational stability under various electrochemical conditions. Finally, this review outlines key knowledge gaps and emerging research directions, including defect engineering, single-atom integration, and system-level design, to accelerate the development of MXene-based electrocatalysts for sustainable hydrogen production. Full article
Show Figures

Graphical abstract

29 pages, 7847 KB  
Article
Depthwise-Separable U-Net for Wearable Sensor-Based Human Activity Recognition
by Yoo-Kyung Lee, Chang-Sik Son and Won-Seok Kang
Appl. Sci. 2025, 15(16), 9134; https://doi.org/10.3390/app15169134 - 19 Aug 2025
Viewed by 238
Abstract
In wearable sensor-based human activity recognition (HAR), the traditional sliding window method encounters the challenge of multiclass windows in which multiple actions are combined within a single window. To address this problem, an approach that predicts activities at each point in time within [...] Read more.
In wearable sensor-based human activity recognition (HAR), the traditional sliding window method encounters the challenge of multiclass windows in which multiple actions are combined within a single window. To address this problem, an approach that predicts activities at each point in time within a sequence has been proposed, and U-Net-based models have proven to be effective owing to their excellent space-time feature restoration capabilities. However, these models have limitations in that they are prone to overfitting owing to their large number of parameters and are not suitable for deployment. In this study, a lightweight U-Net was designed by replacing all standard U-Net convolutions with depthwise separable convolutions to implement dense prediction. Compared with existing U-Net-based models, the proposed model reduces the number of parameters by 57–89%. When evaluated on three benchmark datasets (MHEALTH, PAMAP2, and WISDM) using subject-independent splits, the performance of the proposed model was equal to or superior to that of all comparison models. Notably, on the MHEALTH dataset, which was collected in an uncontrolled environment, the proposed model improved accuracy by 7.89%, demonstrating its applicability to real-world wearable HAR systems. Full article
Show Figures

Figure 1

15 pages, 1475 KB  
Article
Using Neural Networks to Predict the Frequency of Traffic Accidents by Province in Poland
by Piotr Gorzelańczyk, Jacek Zabel and Edgar Sokolovskij
Appl. Sci. 2025, 15(16), 9108; https://doi.org/10.3390/app15169108 - 19 Aug 2025
Viewed by 288
Abstract
Road traffic fatalities remain a significant global issue, despite a gradual decline in recent years. Although the number of accidents has decreased—partly due to reduced mobility during the pandemic—the figures remain alarmingly high. To further reduce these numbers, it is crucial to identify [...] Read more.
Road traffic fatalities remain a significant global issue, despite a gradual decline in recent years. Although the number of accidents has decreased—partly due to reduced mobility during the pandemic—the figures remain alarmingly high. To further reduce these numbers, it is crucial to identify regions with the highest accident rates and predict future trends. This study aims to forecast traffic accident occurrences across Poland’s provinces. Using official police data on annual accident statistics, we analyzed historical trends and applied predictive modeling in Statistica to estimate accident rates from 2022 to 2040. Several neural network models were employed to generate these projections. The findings indicate that a significant reduction in road accidents is unlikely in the near future, with rates expected to stabilize rather than decline. The accuracy of predictions was influenced by the random sampling distribution used in model training. Specifically, a 70-15-15 split (70% training, 15% testing, and 15% validation) yielded an average error of 1.75%, and an 80-10-10 split reduced the error to 0.63%, demonstrating the impact of sample allocation on predictive performance. These results highlight the importance of dataset partitioning in accident forecasting models. Full article
(This article belongs to the Special Issue Simulations and Experiments in Design of Transport Vehicles)
Show Figures

Figure 1

28 pages, 1813 KB  
Article
Optimizing Caraway Growth, Yield and Phytochemical Quality Under Drip Irrigation: Synergistic Effects of Organic Manure and Foliar Application with Vitamins B1 and E and Active Yeast
by Ahmed A. Hassan, Amir F.A. Abdel-Rahim, Ghadah H. Al Hawas, Wadha Kh. Alshammari, Reda M.Y. Zewail, Ali A. Badawy and Heba S. El-Desouky
Horticulturae 2025, 11(8), 977; https://doi.org/10.3390/horticulturae11080977 - 18 Aug 2025
Viewed by 307
Abstract
Despite its value as a culinary, medicinal, and essential oil crop, caraway struggles to grow and develop its biochemical quality in drought-prone sandy soils. To tackle this challenge, we conducted two field trials under drip irrigation, testing four rates of organic manure (0, [...] Read more.
Despite its value as a culinary, medicinal, and essential oil crop, caraway struggles to grow and develop its biochemical quality in drought-prone sandy soils. To tackle this challenge, we conducted two field trials under drip irrigation, testing four rates of organic manure (0, 5, 10, and 15 ton/hectare (ha) and three foliar biostimulants: vitamin B1 (50 and 100 mg L−1), vitamin E (50 and 100 mg L−1), and active yeast (100 and 150 mL L−1). We used a randomized split-plot design with three replicates, assigning manure rates to main plots and biostimulants to subplots. We measured plant height, stem diameter, branch number, dry biomass, umbels per plant, 1000-seed weight, seed yield (per plant and per ha), essential oil content, chlorophyll a and b, carotenoids, and leaf N, P, and K. All treatments outperformed the unfertilized control. Applying 15 ton/ha of manure alone increased mean plant height by 185.3 cm, stem diameter by 2.93 mm, branch number by 14.5, and herbal weight by 91.97 g across both seasons—a gain of about 11–15%. Foliar application of vitamin B1 at 100 mg L−1 (without manure) achieved even larger gains: mean plant height improved by 176.5 cm, stem diameter by 2.6 mm, branches number by 15.1, and herbal biomass by 103.95 g (20–36% growth increases). It also boosted essential oil yield by 1.89 mL per plant (16–50%) and enhanced nutrient uptake. The most pronounced synergy emerged when combining 15 ton/ha of manure with 100 mg L−1 vitamin B1, raising seed yield to 1698.8 kg/ha (35%), plant height to 184.7 cm (52%), number of branches to 17.4 per plant (56%), umbels to 38.1 per plant (42%), 1000-seed weight to 16.9 g (48%), and essential oil yield to 2.3 mL per plant (115%), compared to the control. Chlorophyll a increased by 50%, chlorophyll b by 33%, carotenoids by 35%, and leaf N, P, and K by 43%, 90%, and 76%, respectively. Manure combined with vitamin E or yeast delivered moderate improvements. These findings demonstrate that integrating organic manure with targeted foliar biostimulants—especially vitamin B1—under drip irrigation, is a sustainable strategy to maximize caraway yield, oil content, and nutritional quality on marginal sandy soils. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Figure 1

19 pages, 1846 KB  
Article
Numerical–ANN Framework for Thermal Analysis of MHD Water-Based Prandtl Nanofluid Flow over a Stretching Sheet Using Bvp4c
by Syed Asif Ali Shah, Fehaid Salem Alshammari, Muhammad Fawad Malik and Saira Batool
Symmetry 2025, 17(8), 1347; https://doi.org/10.3390/sym17081347 - 18 Aug 2025
Viewed by 342
Abstract
The main goal of this study is to create a computational solver that analyzes the effects of magnetohydrodynamics (MHD) on heat radiation in Cu–water-based Prandtl nanofluid flow using artificial neural networks. Copper nanoparticles are utilized to boost the water-based fluid’s thermal effect. [...] Read more.
The main goal of this study is to create a computational solver that analyzes the effects of magnetohydrodynamics (MHD) on heat radiation in Cu–water-based Prandtl nanofluid flow using artificial neural networks. Copper nanoparticles are utilized to boost the water-based fluid’s thermal effect. This study primarily focuses on heat transfer over a horizontal sheet, exploring different scenarios by varying key factors such as the magnetic field and thermal radiation properties. The mathematical model is formulated using partial differential equations (PDEs), which are then transformed into a corresponding set of ordinary differential equations (ODEs) through appropriate similarity transformations. The bvp4c solver is then used to simulate the numerical behavior. The effects of relevant parameters on the temperature, velocity, skin friction, and local Nusselt number profiles are examined. It is discovered that the parameters of the Prandtl fluid have a considerable impact. The local skin friction and the local Nusselt number are improved by increasing these parameters. The dataset is split into 70% training, 15% validation, and 15% testing. The ANN model successfully predicts skin friction and Nusselt number profiles, showing good agreement with numerical simulations. This hybrid framework offers a robust predictive approach for heat management systems in industrial applications. This study provides important insights for researchers and engineers aiming to comprehend flow characteristics and their behavior and to develop accurate predictive models. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Thermal Management)
Show Figures

Figure 1

7 pages, 1290 KB  
Communication
Direct Nanoparticle Sensing in Liquids with Free-Space Excited Optical Whispering-Gallery-Mode Microresonators
by Davide D’Ambrosio, Saverio Avino and Gianluca Gagliardi
Sensors 2025, 25(16), 5111; https://doi.org/10.3390/s25165111 - 18 Aug 2025
Viewed by 325
Abstract
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality [...] Read more.
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality factor and ultra-small volume of WGMs. Actually, regardless of the sensitivity enhancement, their practical sensing operation may be hampered by the complexity of coupling devices as well as the signalprocessing required to extract the WGM response. Here, we use a silica microsphere immersed in an aqueous environment and efficiently excite optical WGMs with a free-space visible laser, thus collecting the relevant information from the transmitted and back-scattered light without any optical coupler, fiber, or waveguide. We show that a 640-nm diode laser, actively frequency-locked on resonance, provides real-time, fast sensing of dielectric nanoparticles approaching the surface with direct analog readout. Thanks to our illumination scheme, the sensor can be kept in water and operate for days without degradation or loss of sensitivity. Diverse noise contributions are carefully considered and quantified in our system, showing a minimum detectable particle size below 1 nm essentially limited by the residual laser microcavity jitter. Further analysis reveals that the inherent laserfrequency instability in the short, -mid-term operation regime sets an ultimate bound of 0.3 nm. Based on this work, we envisage the possibility to extend our method in view of developing new viable approaches for detection of nanoplastics in natural water without resorting to complex chemical laboratory methods. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

13 pages, 5037 KB  
Article
First-Principles Study of Sn-Doped RuO2 as Efficient Electrocatalysts for Enhanced Oxygen Evolution
by Caiyan Zheng, Qian Gao and Zhenpeng Hu
Catalysts 2025, 15(8), 770; https://doi.org/10.3390/catal15080770 - 13 Aug 2025
Viewed by 386
Abstract
Improving the catalytic performance of the oxygen evolution reaction (OER) for water splitting in acidic media is crucial for the production of clean and renewable hydrogen energy. Herein, we study the OER electrocatalytic properties of various active sites on four exposed (110) and [...] Read more.
Improving the catalytic performance of the oxygen evolution reaction (OER) for water splitting in acidic media is crucial for the production of clean and renewable hydrogen energy. Herein, we study the OER electrocatalytic properties of various active sites on four exposed (110) and (1¯10) surfaces of Sn-doped RuO2 (Sn/RuO2) with antiferromagnetic arrangements in acidic environments. The Sn/RuO2 bulk structure with the Cm space group exhibits favorable thermodynamic stability. The coordinatively unsaturated metal (Mcus) sites distributed on the right branch of the volcano plot are generally more active than the bridge-bonded lattice oxygen (Obr) sites located on the left. Different from the conventional knowledge that the most active site is located in the nearest neighbor of the doped atom, it has a lower OER overpotential when the active site is 3.6 Å away from the doped Sn atom. Among the sites studied, the 46-Rucus site exhibits the optimal OER catalytic performance. The inherent factors affecting the OER activity of each site on the Sn/RuO2 surface are further analyzed, including the center of the d/p band at the active sites, the average electrostatic potential of the ions, and the number of transferred electrons. This work provides a reminder for the selection of active sites used to evaluate catalytic performance, which will benefit the development of efficient OER electrocatalysts. Full article
Show Figures

Graphical abstract

16 pages, 700 KB  
Article
Mechanical Properties of Basalt Fiber-Reinforced Coal Gangue Coarse Aggregate-Fly Ash Geopolymer Concrete
by Zheng Yang and Xianzhang Ling
Buildings 2025, 15(16), 2860; https://doi.org/10.3390/buildings15162860 - 13 Aug 2025
Viewed by 273
Abstract
Excellent mechanical properties are a prerequisite for the widespread application of different types of concrete in practical engineering. However, when coal gangue (CG) is used as coarse aggregate (CA) and geopolymer cement is used as auxiliary cementitious material, while reducing the demand for [...] Read more.
Excellent mechanical properties are a prerequisite for the widespread application of different types of concrete in practical engineering. However, when coal gangue (CG) is used as coarse aggregate (CA) and geopolymer cement is used as auxiliary cementitious material, while reducing the demand for ordinary cement and industrial waste emissions, it has a negative impact on mechanical performance. Therefore, in response to the data gap in the study of mechanical properties of coal gangue coarse aggregate-fly ash geopolymer concrete (CG-FA-GPC), inspired by a large number of research results on fiber-reinforced concrete, this study uses basalt fiber (BF) as a reinforcing material to investigate the enhancing effect of BF on the mechanical properties of CG-FA-GPC. We selected compressive strength, flexural strength, splitting tensile strength, and stress–strain curve as evaluation indicators to compare and analyze the mechanical properties of ordinary concrete, CG-FA-GPC, and basalt fiber-reinforced coal gangue coarse aggregate-fly ash geopolymer concrete (BF-CG-FA-GPC), and to explore the reinforcement effect of BF. The results showed that with the increase in CG substitution rate, the compressive strength, flexural strength, and splitting tensile strength of CG-FA-GPC significantly decreased. A 100% CG substitution reduced the compressive strength, flexural strength, and splitting tensile strength of CG-FA-GPC by 34.5%, 43.4%, and 31.8%, respectively. The stress–strain curve reveals the dual effects of BF on the strength enhancement and deformation modification of CG-FA-GPC. With the increase in BF content, the three mechanical strengths of CG-FA-GPC show a pattern of first increasing and then decreasing, and the optimal BF content is 0.4% (volume fraction). This experiment lays the foundation for promoting research on the mechanical properties and durability of different fiber-reinforced CG-FA-GPC, advancing the feasibility of its large-scale engineering applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1711 KB  
Article
Tensile Behavior of a Fiber-Reinforced Stabilized Soil—Cyclic Loading Frequency Study
by António A. S. Correia, Daniel S. Goulart and Paulo J. Venda Oliveira
Appl. Sci. 2025, 15(16), 8825; https://doi.org/10.3390/app15168825 - 10 Aug 2025
Viewed by 641
Abstract
The present work aims to study the effect of cyclic loading on the tensile behavior of a chemically stabilized sandy soil, whether or not reinforced with polypropylene or sisal fibers. To this end, a series of splitting tensile strength tests were carried out [...] Read more.
The present work aims to study the effect of cyclic loading on the tensile behavior of a chemically stabilized sandy soil, whether or not reinforced with polypropylene or sisal fibers. To this end, a series of splitting tensile strength tests were carried out by varying the frequency of the cyclic loading. During cyclic loading a substantial decrease in accumulated plastic axial displacement was observed with rising frequency when fibers were incorporated. On average, the reduction was 28% for polypropylene fibers and 14% for sisal fibers. For the polypropylene fibers, this effect is more pronounced because of a greater number of randomly distributed fibers, creating a strong and dense interlocking network. Regarding the load-displacement characteristics, fiber inclusion leads to a more ductile tensile response, which is identified by a secondary peak strength and residual strength. The cyclic loading frequency does not show a distinct trend concerning the post-cyclic tensile strength behavior; this behavior is dependent on the mechanical properties of materials (cemented matrix and fibers). Nevertheless, the cyclic stage resulted in an increased post-cyclic tensile strength for sisal fibers (ranging from 23% to 51%), although no clear trend was observed with respect to frequency variation. In contrast, for polypropylene fibers, the cyclic stage resulted in a more ductile tensile mechanical response, with post-cyclic tensile strength increasing from 1% to 16% as the frequency decreased. Full article
Show Figures

Figure 1

17 pages, 5245 KB  
Article
Discrete Element Analysis of Grouting Reinforcement and Slurry Diffusion in Overburden Strata
by Pengfei Guo, Weiquan Zhao, Yahui Ma and Huiling Gen
Appl. Sci. 2025, 15(15), 8464; https://doi.org/10.3390/app15158464 - 30 Jul 2025
Viewed by 258
Abstract
Research on the grouting reinforcement mechanism of overburden is constrained by the concealed and heterogeneous nature of geotechnical media, posing dual challenges in theoretical analysis and process visualization. Based on discrete element numerical simulations and laboratory tests, an analytical model for grouting reinforcement [...] Read more.
Research on the grouting reinforcement mechanism of overburden is constrained by the concealed and heterogeneous nature of geotechnical media, posing dual challenges in theoretical analysis and process visualization. Based on discrete element numerical simulations and laboratory tests, an analytical model for grouting reinforcement in overburden layers is developed, revealing the influence of grouting pressure on slurry diffusion shape and distance. The results indicate the following: (1) Contact parameters of overburden and cement particles were obtained through laboratory tests. A grouting model for the overburden layer was established using the discrete element method. After optimizing particle coarsening and the contact model, the simulation more accurately represented slurry diffusion characteristics such as compaction, splitting, and permeability. (2) By monitoring porosity and coordination number distributions near grouting holes before and after injection using circular measurement, the discrete element simulation clearly visualizes the slurry reinforcement range. The reinforcement mechanism is attributed to the combined effects of pore structure compaction (reduced porosity) and cementation within the overburden (increased coordination number). (3) Based on slurry diffusion results, a functional relationship between slurry diffusion radius and grouting pressure is established. Error analysis shows that the modified formula improves the goodness of fit by 34–39% compared to the classical formula (Maag, cylindrical diffusion). The discrete element analysis method proposed in this study elucidates the mechanical mechanisms of overburden grouting reinforcement at the particle scale and provides theoretical support for visual evaluation of concealed structures and optimization of grouting design. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

12 pages, 317 KB  
Article
Further Results on Bijective Product k-Cordial Labeling
by Sabah A. Bashammakh, Wai Chee Shiu, Robinson Santrin Sabibha, Pon Jeyanthi and Mohamed Elsayed Abdel-Aal
Mathematics 2025, 13(15), 2451; https://doi.org/10.3390/math13152451 - 30 Jul 2025
Viewed by 226
Abstract
A bijective product k-cordial labeling f of a graph G with vertex set V and edge set E is a bijection from V to {1,2,,|V|} such that the induced edge labeling [...] Read more.
A bijective product k-cordial labeling f of a graph G with vertex set V and edge set E is a bijection from V to {1,2,,|V|} such that the induced edge labeling f×:E(G)Zk={i|0ik1} defined as f×(uv)f(u)f(v)(modk) for every edge uvE satisfies the condition |ef×(i)ef×(j)|1, where i,jZk and ef×(i) is the number of edges labeled with i under f×. A graph which admits a bijective product k-cordial labeling is called a bijective product k-cordial graph. In this paper, we study bijective product π-cordiality for paths and cycles, where π is an odd prime. We determine bijective product π-cordiality for paths and cycles for 3π13. Also, we establish the bijective product k-cordial labeling of stars. Further, we find the bijective product 4-cordial labeling of bistars and the splitting graphs of stars and bistars. Full article
Show Figures

Figure 1

26 pages, 5379 KB  
Review
A Review of Strategies to Improve the Electrocatalytic Performance of Tungsten Oxide Nanostructures for the Hydrogen Evolution Reaction
by Meng Ding, Yuan Qin, Weixiao Ji, Yafang Zhang and Gang Zhao
Nanomaterials 2025, 15(15), 1163; https://doi.org/10.3390/nano15151163 - 28 Jul 2025
Viewed by 470
Abstract
Hydrogen, as a renewable and clean energy with a high energy density, is of great significance to the realization of carbon neutrality. In recent years, extensive research has been conducted on the electrocatalytic hydrogen evolution reaction (HER) by splitting water, with a focus [...] Read more.
Hydrogen, as a renewable and clean energy with a high energy density, is of great significance to the realization of carbon neutrality. In recent years, extensive research has been conducted on the electrocatalytic hydrogen evolution reaction (HER) by splitting water, with a focus on developing efficient electrocatalysts that can perform the HER at an overpotential with minimal power consumption. Tungsten oxide (WO3), a non-noble-metal-based material, has great potential in hydrogen evolution due to its excellent redox capability, low cost, and high stability. However, it cannot meet practical needs because of its poor electrical conductivity and the limited number of active sites; thus, it is necessary to further improve HER performance. In this review, recent advances related to WO3-based electrocatalysts for the HER are introduced. Most importantly, several tactics for optimizing the electrocatalytic HER activity of WO3 are summarized, such as controlling its morphology, phase transition, defect engineering (anion vacancies, cation doping, and interstitial atoms), constructing a heterostructure, and the microenvironment effect. This review can provide insight into the development of novel catalysts with high activity for the HER and other renewable energy applications. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Figure 1

18 pages, 2565 KB  
Article
Agronomic and Physicochemical Quality of Broccoli Cultivated Under Different Fertilizers and Phosphorus Rates
by Dinamar Márcia da Silva Vieira, Reginaldo de Camargo, Miguel Henrique Rosa Franco, Valdeci Orioli Júnior, Cintia Cristina de Oliveira, Arcângelo Loss, Fausto Antônio Domingos Júnior, Maytê Maria Abreu Pires de Melo Silva and José Luiz Rodrigues Torres
Horticulturae 2025, 11(8), 873; https://doi.org/10.3390/horticulturae11080873 - 25 Jul 2025
Viewed by 475
Abstract
The aim of this study was to evaluate the agronomic performance and physicochemical characteristics of broccoli grown under different doses and sources of special phosphorus (P) fertilizers and their residual effect on the soil, in Cerrado mineiro. A randomized block design arranged in [...] Read more.
The aim of this study was to evaluate the agronomic performance and physicochemical characteristics of broccoli grown under different doses and sources of special phosphorus (P) fertilizers and their residual effect on the soil, in Cerrado mineiro. A randomized block design arranged in a split-plot scheme was employed, where three P sources—T1 = Conventional monoammonium phosphate (CMP); T2 = Polymerized monoammonium phosphate (PCMP); T3 = Granulated organomineral fertilizer (GOF)—along with four P2O5 rates—1–0 (No P); 2–50% (200 kg ha−1 P2O5); 3–75% (300 kg ha−1 P2O5); and 4–100% (400 kg ha−1 P2O5)—were assessed. Evaluations included the number of leaves (NL), head fresh (HFM) and dry mass (HDM), yield (YLD), soil fertility at harvest, plant nutritional status, and the physicochemical quality of the harvested broccoli. It was observed that GOF provided the best agronomic performance (HFM, HDM and YLD) of the broccoli and the greatest residual effect in the soil compared to PCMP and CMP. The moisture, ash, protein, lipid, total titratable acid and ascorbic acid contents were not significantly (p < 0.05) affected by the fertilizers used, on the other hand, total soluble solids and hydrogen potential showed the highest and lowest values, respectively, with CMP. The best agronomic performance, the highest phosphorus content in the soil and plant and the best physical–chemical quality of the broccoli occurred at a dose of 100% (400 kg ha−1 of P2O5) of the recommendation for the crop in all three fertilizers evaluated. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

20 pages, 2263 KB  
Article
Optimizing the Sampling Strategy for Future Libera Radiance to Irradiance Conversions
by Mathew van den Heever, Jake J. Gristey and Peter Pilewskie
Remote Sens. 2025, 17(15), 2540; https://doi.org/10.3390/rs17152540 - 22 Jul 2025
Viewed by 301
Abstract
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term [...] Read more.
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term climate data record established by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission. In addition to ensuring data continuity, Libera will introduce a novel split-shortwave spectral channel to quantify the partitioning of the outgoing reflected solar component into visible and near-infrared sub-components. However, converting these split-shortwave radiances into the ERB-relevant irradiances requires the development of split-shortwave Angular Distribution Models (ADMs), which demand extensive angular sampling. Here, we show how Rotating Azimuthal Plane Scan (RAPS) parameters—specifically operational cadence and azimuthal scan rate—affect the observational coverage of a defined scene and angular space. Our results show that for a fixed number of azimuthal rotations, a relatively slow azimuthal scan rate of 0.5° per second, combined with more time spent in the RAPS observational mode, provides a more comprehensive sampling of the desired scene and angular space. We also show that operating the Libera instrument in RAPS mode at a cadence between every fifth day and every other day for the first year of space-based operations will provide sufficient scene and angular sampling for the observations to achieve radiance convergence for the scenes that comprise more than half of the expected Libera observations. Obtaining radiance convergence is necessary for accurate ADMs. Full article
Show Figures

Graphical abstract

12 pages, 2786 KB  
Article
Congruent-Arc Latarjet Using Subscapularis Split Approach in the Treatment of Anterior Shoulder Instability with Significant Bone Loss: A Case Series
by Ahmed Farid Mekky, Chiara Fossati, Alessandra Menon, Paolo Fici, Pietro Simone Randelli and Tarek Aly
Healthcare 2025, 13(14), 1768; https://doi.org/10.3390/healthcare13141768 - 21 Jul 2025
Viewed by 448
Abstract
Background: Recurrent anterior shoulder instability is a common problem and may be associated with glenoid bone defects. Surgical procedures, including Latarjet, are the usual treatment for anterior shoulder instability, associated with significant glenoid bone defects. The aim of this study was to evaluate [...] Read more.
Background: Recurrent anterior shoulder instability is a common problem and may be associated with glenoid bone defects. Surgical procedures, including Latarjet, are the usual treatment for anterior shoulder instability, associated with significant glenoid bone defects. The aim of this study was to evaluate the clinical outcome and glenohumeral arthritis progression in patients with recurrent anterior shoulder instability and significant bone loss treated by a modified Latarjet procedure. Methods: From July 2018 to November 2021, a prospective observational case series was carried out on 21 patients with recurrent anterior shoulder instability associated with significant bone defects treated by a modified Latarjet procedure in which the coracoid process was rotated 90° on its longitudinal axis and the subscapularis muscle was horizontally split. Patients with a glenoid defect of more than 21% were included. Post-operatively, the patients were clinically assessed using modified Rowe scoring. Glenohumeral arthritis, graft position, union, and resorption were radiologically evaluated. Results: The mean age at the time of surgery was 28.52 ± 8.0 (range: 19–45) years. The mean number of dislocations was 18.33 ± 8.67 (range: 6–35) times. The mean glenoid defect size was 26.19 ± 4.85 (range: 21–37) % and Hill–Sachs lesions were off-track in 19 cases. The mean follow-up period was 30.67 ± 7.53 (range: 16–40) months. Eighteen patients (85.7%) showed good to excellent results. The mean modified Rowe score was 85.00 ± 18.77 (range: 30–100) points. The mean external rotation loss was 8.09 ± 5.11° (range: 0–20°). No cases of recurrent instability were observed, and there was no progression of glenohumeral arthritis. Conclusions: The modified Latarjet is an effective and reliable surgical option to treat traumatic anterior shoulder instability with significant bone loss. Most of the reported complications associated with this procedure did not affect the functional outcome. Full article
(This article belongs to the Special Issue Sports Trauma: From Prevention to Surgery and Return to Sport)
Show Figures

Figure 1

Back to TopTop