Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = nuclear-cytoplasmic export

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1779 KB  
Article
Nup153 and TPR/Megator Interact with TREX-2 Subunits and Are Essential for TREX-2-Dependent Nuclear Export of hsp70 mRNA in Drosophila
by Yulia Vdovina, Julia Nikolenko, Anastasia Orlova, Anna Glukhova, Maria Kurshakova, Savva Fet, Anna Tvorogova, Pyotr Tyurin-Kuzmin, Anton Golovnin, Sofia Georgieva and Daria Kopytova
Int. J. Mol. Sci. 2025, 26(17), 8595; https://doi.org/10.3390/ijms26178595 - 4 Sep 2025
Viewed by 810
Abstract
The TREX-2 complex is conserved from yeast to humans and is responsible for mRNA export from the nucleus to the cytoplasm. In yeast and humans, the TPR and Nup153 nucleoporins of the nuclear pore complex are involved in TREX-2-dependent mRNA export, but data [...] Read more.
The TREX-2 complex is conserved from yeast to humans and is responsible for mRNA export from the nucleus to the cytoplasm. In yeast and humans, the TPR and Nup153 nucleoporins of the nuclear pore complex are involved in TREX-2-dependent mRNA export, but data on their involvement in this process is rather controversial. In the present work, we have studied the role of TPR and Nup153 in the TREX-2-dependent export of hsp70 mRNA in Drosophila. We have shown that Nup153 and TPR are required for the TREX-2-dependent export of hsp70 mRNA, and their knockdown leads to mRNA accumulation in the cell nucleus. We have also demonstrated that Nup153 knockdown leads to TPR relocation to the nucleoplasm. Both nucleoporins are required for TREX-2 subunits’ association with the nuclear pore. Nup153 depletion leads to the TREX-2 subunits’ relocation from the nuclear pore to the nucleoplasm. The depletion of TPR leads to PCID2 relocation to the nucleoplasm and Xmas-2 retention at the nuclear pore and does not affect ENY2 redistribution. The TREX-2 subunits form several contacts with Nup153 and TPR. Hence, both nucleoporins are involved in the interaction with TREX-2 and TREX-2-dependent export in Drosophila. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 19172 KB  
Communication
DEAD-Box Helicase 3 Modulates the Non-Coding RNA Pool in Ribonucleoprotein Condensates During Stress Granule Formation
by Elizaveta Korunova, B. Celia Cui, Hao Ji, Aliaksandra Sikirzhytskaya, Srestha Samaddar, Mengqian Chen, Vitali Sikirzhytski and Michael Shtutman
Non-Coding RNA 2025, 11(4), 59; https://doi.org/10.3390/ncrna11040059 - 1 Aug 2025
Cited by 1 | Viewed by 1460
Abstract
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of [...] Read more.
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of mammalian stress granules is the DEAD-box RNA helicase DDX3, which unwinds RNA in an ATP-dependent manner. DDX3 is involved in multiple steps of RNA metabolism, facilitating gene transcription, splicing, and nuclear export and regulating cytoplasmic translation. In this study, we investigate the role of the RNA helicase DDX3’s enzymatic activity in shaping the RNA content of ribonucleoprotein (RNP) condensates formed during arsenite-induced stress by inhibiting DDX3 activity with RK-33, a small molecule previously shown to be effective in cancer clinical studies. Using the human osteosarcoma U2OS cell line, we purified the RNP granule fraction and performed RNA sequencing to assess changes in the RNA pool. Our results reveal that RK-33 treatment alters the composition of non-coding RNAs within the RNP granule fraction. We observed a DDX3-dependent increase in circular RNA (circRNA) content and alterations in the granule-associated intronic RNAs, suggesting a novel role for DDX3 in regulating the cytoplasmic redistribution of non-coding RNAs. Full article
Show Figures

Figure 1

13 pages, 1259 KB  
Article
Exportin 1 (XPO1) Expression and Effectiveness of XPO1 Inhibitor Against Canine Lymphoma Cell Lines
by Hardany Primarizky, Satoshi Kambayashi, Kenji Baba, Kenji Tani and Masaru Okuda
Vet. Sci. 2025, 12(8), 700; https://doi.org/10.3390/vetsci12080700 - 26 Jul 2025
Viewed by 1204
Abstract
Lymphoma is the most common neoplasm of lymphoid tissues in dogs. Exportin 1 (XPO1) is an important major nuclear receptor for exporting proteins and RNA species. The XPO1 upregulation can eliminate some tumor suppressor proteins (TSPs) function upon their nuclear–cytoplasmic export. The XPO1 [...] Read more.
Lymphoma is the most common neoplasm of lymphoid tissues in dogs. Exportin 1 (XPO1) is an important major nuclear receptor for exporting proteins and RNA species. The XPO1 upregulation can eliminate some tumor suppressor proteins (TSPs) function upon their nuclear–cytoplasmic export. The XPO1 inhibitor, KPT-335, blocks the translocation of TSPs and restores their function to induce cell cycle arrest, apoptosis, and cell proliferation. This in vitro study aimed to evaluate the XPO1 mRNA and protein expression in canine lymphoma cell lines and confirm the relevance with KPT-335. XPO1 mRNA and protein levels were quantified, and the effect of KPT-335 was assessed by a cell proliferation assay. The results indicated that XPO1 mRNA and protein were highly expressed in 17-71, CLBL-1, CLC, CLGL-90, and UL-1, and were moderately expressed in GL-1, Ema, and Nody-1. All canine lymphoma cell lines showed dose-dependent growth inhibition and decreased cell viability in response to KPT-335, with IC50 concentrations ranged from 89.8–418 nM. The expression levels of XPO1 mRNA and protein were related; however, no correlation was found between those expression levels and the efficacy of KPT-335. These findings suggest that XPO1 may represent a promising target for therapeutic intervention in canine lymphoma. Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

17 pages, 4709 KB  
Article
Defining the Protein Phosphatase 2A (PP2A) Subcomplexes That Regulate FoxO Transcription Factor Localization
by Adeline M. Luperchio and Daniel J. Salamango
Cells 2025, 14(5), 342; https://doi.org/10.3390/cells14050342 - 27 Feb 2025
Cited by 1 | Viewed by 1381
Abstract
The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has [...] Read more.
The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has been well established that phosphorylation promotes FoxO cytoplasmic retention and inactivation, the mechanism underlying dephosphorylation and nuclear translocation is less clear. Here, we investigate the role of protein phosphatase 2A (PP2A) in regulating this process. We demonstrate that PP2A and AMP-activated protein kinase (AMPK) combine to regulate nuclear translocation of multiple FoxO family members following inhibition of metabolic signaling or induction of oxidative stress. Moreover, chemical inhibitor studies indicate that nuclear accumulation of FoxO proteins occurs through inhibition of nuclear export as opposed to promoting nuclear import as previously speculated. Functional, genetic, and biochemical studies combine to identify the PP2A complexes that regulate FoxO nuclear translocation, and the binding motif required. Mutating the FoxO-PP2A interface to enhance or diminish PP2A binding alters nuclear translocation kinetics accordingly. Together, these studies shed light on the molecular mechanisms regulating FoxO nuclear translocation and provide insights into how FoxO regulation is integrated with metabolic and stress-related stimuli. Full article
Show Figures

Figure 1

14 pages, 2343 KB  
Article
Nuclear Accumulation of Bm65 Aggregate Is Blocked by Mutations in the Nuclear Export Sequence of Bm65
by Guohui Li, Wenchao Liu, Yunyun Liu, Junting Xu, Huiqing Chen, Feifei Zhu, Zhaoyang Hu, Zhongjian Guo, Keping Chen and Qi Tang
Viruses 2025, 17(2), 248; https://doi.org/10.3390/v17020248 - 12 Feb 2025
Viewed by 787
Abstract
A nuclear export signal (NES) is a cluster of hydrophobic amino acids that can maintain the dynamic shuttling of target proteins between the nucleus and cytoplasm. Bioinformatics analysis showed that the hydrophobic region of 92PLLLHKFLLA in Bm65 is very likely to be [...] Read more.
A nuclear export signal (NES) is a cluster of hydrophobic amino acids that can maintain the dynamic shuttling of target proteins between the nucleus and cytoplasm. Bioinformatics analysis showed that the hydrophobic region of 92PLLLHKFLLA in Bm65 is very likely to be an NES and may be involved in the production of infectious virions. In this study, we generated several mutations in 92PLLLHKFLLA of Bm65, which were further used to generate recombinant viruses to study their roles in viral propagation. Subcellular analysis revealed that the 92PLLLHKFLLA sequence was an NES involved in the dynamic transport of Bm65. Mutations in the hydrophobic region could block the formation and accumulation of Bm65 aggregates, resulting in a uniform distribution of Bm65 in BmN cells. The ribosomal protein L13 (RPL13) of silkworms was previously reported to interact with Bm65. Here, intracellular co-localization analysis showed that the interaction between Bm65 and RPL13 was regulated by the 92PLLLHKFLLA of Bm65. In summary, the interaction between Bm65 and RPL13 is essential for the production and accumulation of Bm65 aggregates and may play an important role in the regulation of viral propagation. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

14 pages, 7330 KB  
Article
Bombyx mori RPL12 Participates in UV-Induced DNA Damage Repair and Interacts with BmNPV Bm65 Protein Only After Ultraviolet Radiation
by Qi Tang, Ceru Chen, Jiaying Huang, Guohui Li, Feifei Zhu, Qian Yu, Lindan Sun, Huiqing Chen, Liang Chen, Shangshang Ma, Xiaoyong Liu and Keping Chen
Insects 2025, 16(2), 187; https://doi.org/10.3390/insects16020187 - 9 Feb 2025
Cited by 2 | Viewed by 1321
Abstract
Solar ultraviolet radiation (UV) may cause DNA damage. We first report in this study that the large subunit ribosome protein RPL12, from Bomby mori (BmRPL12), participated in UV-induced DNA damage repair. BmRPL12 enhanced the resistance of Escherichia coli (E. coli) to [...] Read more.
Solar ultraviolet radiation (UV) may cause DNA damage. We first report in this study that the large subunit ribosome protein RPL12, from Bomby mori (BmRPL12), participated in UV-induced DNA damage repair. BmRPL12 enhanced the resistance of Escherichia coli (E. coli) to UV radiation and facilitated faster repair of UV-induced DNA damage in silkworm cells. BmRPL12 mainly existed in the cytoplasm in the dimer forms, and the N-terminal nuclear export signal was crucial for the localization of BmRPL12. After UV radiation, BmRPL12 was unable to localize at the UV-induced DNA damage sites to participate in damage repair directly and might indirectly regulate UV-induced DNA damage repair. Our previous research found that BmNPV Bm65 was an important UV damage-induced endonuclease. Here, it was further found that in BmNPV-infected silkworm cells, BmRPL12 in monomeric forms interacted with the virus Bm65 protein only after UV radiation, and BmRPL12 specifically localized at the UV-induced DNA damage sites only in the presence of Bm65. We speculate that after viral infection in cells subjected to UV-induced DNA damage, viral protein Bm65 interacts with BmRPL12 and localizes BmRPL12 to sites of UV-damaged DNA. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

23 pages, 3679 KB  
Article
Unveiling the Movement of RanBP1 During the Cell Cycle and Its Interaction with a Cyclin-Dependent Kinase (CDK) in Plants
by Vanessa Thomé, Pedro B. Ferreira, Greice Lubini, Fernanda M. Nogueira, Edward J. Strini, Vitor F. Pinoti, Joelma O. Cruz, Juca A. B. San Martin, Andréa C. Quiapim, Luis L. P. daSilva and Maria Helena S. Goldman
Int. J. Mol. Sci. 2025, 26(1), 46; https://doi.org/10.3390/ijms26010046 - 24 Dec 2024
Viewed by 1765
Abstract
In the Nicotiana tabacum flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 (N. tabacum Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle [...] Read more.
In the Nicotiana tabacum flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 (N. tabacum Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner. RanBP1 is an essential regulatory protein of the RanGTPase system, contributing to the formation of the Ran gradient, which modulates different important cellular processes. RanBP1 is crucial in the nuclear import/export machinery during interphase and spindle checkpoint formation during cell division. These processes are well studied in animals, but very little is known about them in plants. We confirmed NtCDKG;2 and NtRanBP1 interaction by pairwise Y2H and characterized the localization of both proteins during plant cell division. We demonstrated the presence of NtRanBP1 in the cytoplasm during interphase and its nuclear arrest at mitosis onset. Meanwhile, we showed that NtCDKG;2 is localized in the mitotic spindle during cell division, indicating an analogous function to the human CDK11. We propose that the phosphorylation of the nuclear export signal at RanBP1 by NtCDKG;2 may be responsible for the reported nuclear arrest. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 4796 KB  
Article
Mutations of Key Functional Residues in CRM1/XPO1 Differently Alter Its Intranuclear Localization and the Nuclear Export of Endogenous Cargos
by Miren Josu Omaetxebarria, Maria Sendino, Liher Arrizabalaga, Irune Mota, Ana Maria Zubiaga and José Antonio Rodríguez
Biomolecules 2024, 14(12), 1578; https://doi.org/10.3390/biom14121578 - 10 Dec 2024
Viewed by 1725
Abstract
CRM1 (XPO1) has been well-characterized as a shuttling receptor that mediates the export of protein and RNA cargos to the cytoplasm, and previous analyses have pinpointed several key residues (A541, F572, K568, S1055, and Q742) that modulate CRM1 export activity. CRM1 also has [...] Read more.
CRM1 (XPO1) has been well-characterized as a shuttling receptor that mediates the export of protein and RNA cargos to the cytoplasm, and previous analyses have pinpointed several key residues (A541, F572, K568, S1055, and Q742) that modulate CRM1 export activity. CRM1 also has a less studied nuclear function in RNA biogenesis, which is reflected by its localization to the Cajal body and the nucleolus. Here, we have investigated how the mutation of these key residues affects the intranuclear localization of CRM1 and its ability to mediate export of endogenous cargos. We identify A541K as a separation-of-function mutant that reveals the independent nature of the Cajal body and nucleolar localizations of CRM1. We also show that the F572A mutation may have strikingly opposite effects on the export of specific cargos. Importantly, and in contrast to previous claims, our findings indicate that S1055 phosphorylation is not generally required for CRM1 function and that the Q742 is not a function-defining residue in human CRM1. Collectively, our findings provide new insights into an understudied aspect of CRM1 biology and highlight several important issues related to CRM1 function and regulation that need to be re-evaluated and addressed in more detail. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

17 pages, 868 KB  
Article
Cellular Compartmentalization as a Physical Regulatory Mechanism of Signaling Pathways
by Ahmed N. Fayad, Diego Mazo-Durán and David G. Míguez
Biophysica 2024, 4(4), 634-650; https://doi.org/10.3390/biophysica4040042 - 10 Dec 2024
Viewed by 1882
Abstract
Cells compartmentalize biochemical processes using physical barriers in the form of membranes. Eukaryotes have a wide diversity of membrane-based compartments that can be used in this context, with the main ones being the extracellular membrane, which separates the inside from the outside of [...] Read more.
Cells compartmentalize biochemical processes using physical barriers in the form of membranes. Eukaryotes have a wide diversity of membrane-based compartments that can be used in this context, with the main ones being the extracellular membrane, which separates the inside from the outside of the cell, and the nuclear membrane, which separates the nucleus from the cytoplasm. The nuclear membrane not only isolates and protects the DNA and the transcription and replication processes from the other processes that are occurring in the cytoplasm but also has an active role in the regulation of cellular signaling. The TGF-β pathway is one of the most important and conserved signaling cascades, and it achieves compartmentalization using a well-tuned balance between the import and export rates of the active and inactive forms of key proteins. Thus, compartmentalization serves as an additional regulatory mechanism, physically isolating transcription factors from their targets, influencing the dynamics and strength of signal transduction. This contribution focuses on this biophysical layer of regulation, using the TGF-β pathway to illustrate the molecular mechanisms underlying this process, as well as the biological consequences of this compartmentalization. We also introduce a simplified mathematical formulation for studying the dynamics of this process using a generalized approach. Full article
(This article belongs to the Special Issue State-of-the-Art Biophysics in Spain 2.0)
Show Figures

Figure 1

24 pages, 3934 KB  
Article
Nuclear–Cytoplasmic Shuttling of the Usher Syndrome 1G Protein SANS Differs from Its Paralog ANKS4B
by Jacques S. Fritze, Felizitas F. Stiehler and Uwe Wolfrum
Cells 2024, 13(22), 1855; https://doi.org/10.3390/cells13221855 - 8 Nov 2024
Viewed by 1535
Abstract
The USH1G protein SANS is a small multifunctional scaffold protein. It is involved in several different cellular processes, such as intracellular transport, in the cytoplasm, or splicing of pre-mRNA, in the cell nucleus. Here, we aimed to gain insight into the regulation of [...] Read more.
The USH1G protein SANS is a small multifunctional scaffold protein. It is involved in several different cellular processes, such as intracellular transport, in the cytoplasm, or splicing of pre-mRNA, in the cell nucleus. Here, we aimed to gain insight into the regulation of the subcellular localization and the nuclear–cytoplasmic shuttling of SANS and its paralog ANKS4B, not yet reported in the nucleus. We identified karyopherins mediating the nuclear import and export by screening the nuclear interactome of SANS. Sequence analyses predicted in silico evolutionarily conserved nuclear localization sequences (NLSs) and nuclear export sequences (NESs) in SANS, but only NESs in ANKS4B, which are suitable for karyopherin binding. Quantifying the nuclear–cytoplasmic localization of wild-type SANS and NLS/NES mutants, we experimentally confirmed in silico predicted NLS and NES functioning in the nuclear–cytoplasmic shuttling in situ in cells. The comparison of SANS and its paralog ANKS4B revealed substantial differences in the interaction with the nuclear splicing protein PRPF31 and in their nuclear localization. Finally, our results on pathogenic USH1G/SANS mutants suggest that the loss of NLSs and NESs and thereby the ability to control nuclear–cytoplasmic shuttling is disease-relevant. Full article
(This article belongs to the Section Cell Nuclei: Function, Transport and Receptors)
Show Figures

Figure 1

9 pages, 1602 KB  
Communication
Imaging the Raf–MEK–ERK Signaling Cascade in Living Cells
by Young-Chul Shin, Minkyung Cho, Jung Me Hwang, Kyungjae Myung, Hee-Seok Kweon, Zee-Won Lee, Hyun-A. Seong and Kyung-Bok Lee
Int. J. Mol. Sci. 2024, 25(19), 10587; https://doi.org/10.3390/ijms251910587 - 1 Oct 2024
Cited by 3 | Viewed by 2042
Abstract
Conventional biochemical methods for studying cellular signaling cascades have relied on destructive cell disruption. In contrast, the live cell imaging of fluorescent-tagged transfected proteins offers a non-invasive approach to understanding signal transduction events. One strategy involves monitoring the phosphorylation-dependent shuttling of a fluorescent-labeled [...] Read more.
Conventional biochemical methods for studying cellular signaling cascades have relied on destructive cell disruption. In contrast, the live cell imaging of fluorescent-tagged transfected proteins offers a non-invasive approach to understanding signal transduction events. One strategy involves monitoring the phosphorylation-dependent shuttling of a fluorescent-labeled kinase between the nucleus and cytoplasm using nuclear localization, export signals, or both. In this paper, we introduce a simple method to visualize intracellular signal transduction in live cells by exploring the translocation properties of PKC from the cytoplasm to the membrane. We fused bait protein to PKC, allowing the bait (RFP-labeled) and target (GFP-labeled) proteins to co-translocate from the cytoplasm to the membrane. However, in non-interacting protein pairs, only the bait protein was translocated to the plasma membrane. To verify our approach, we examined the Raf–MEK–ERK signaling cascade (ERK pathway). We successfully visualized direct Raf1/MEK2 interaction and the KSR1-containing ternary complex (Raf1/MEK2/KSR1). However, the interaction between MEK and ERK was dependent on the presence of the KSR1 scaffold protein under our experimental conditions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 27181 KB  
Article
Interferon-γ as a Potential Inhibitor of SARS-CoV-2 ORF6 Accessory Protein
by Elena Krachmarova, Peicho Petkov, Elena Lilkova, Dayana Stoynova, Kristina Malinova, Rossitsa Hristova, Anastas Gospodinov, Nevena Ilieva, Genoveva Nacheva and Leandar Litov
Int. J. Mol. Sci. 2024, 25(4), 2155; https://doi.org/10.3390/ijms25042155 - 10 Feb 2024
Viewed by 2505
Abstract
The ORF6 protein of the SARS-CoV-2 virus plays a crucial role in blocking the innate immune response of the infected cells by inhibiting interferon pathways. Additionally, it binds to and immobilises the RAE1 protein on the cytoplasmic membranes, thereby blocking mRNA transport from [...] Read more.
The ORF6 protein of the SARS-CoV-2 virus plays a crucial role in blocking the innate immune response of the infected cells by inhibiting interferon pathways. Additionally, it binds to and immobilises the RAE1 protein on the cytoplasmic membranes, thereby blocking mRNA transport from the nucleus to the cytoplasm. In all these cases, the host cell proteins are tethered by the flexible C-terminus of ORF6. A possible strategy to inhibit the biological activity of ORF6 is to bind its C-terminus with suitable ligands. Our in silico experiments suggest that hIFNγ binds the ORF6 protein with high affinity, thus impairing its interactions with RAE1 and, consequently, its activity in viral invasion. The in vitro studies reported here reveal a shift of the localisation of RAE1 in ORF6 overexpressing cells upon treatment with hIFNγ from predominantly cytoplasmic to mainly nuclear, resulting in the restoration of the export of mRNA from the nucleus. We also explored the expression of GFP in transfected-with-ORF6 cells by means of fluorescence microscopy and qRT-PCR, finding that treatment with hIFNγ unblocks the mRNA trafficking and reinstates the GFP expression level. The ability of the cytokine to block ORF6 is also reflected in minimising its negative effects on DNA replication by reducing accumulated RNA-DNA hybrids. Our results, therefore, suggest hIFNγ as a promising inhibitor of the most toxic SARS-CoV-2 protein. Full article
(This article belongs to the Special Issue Cytokines: From Cancer to Autoimmunity: 2nd Edition)
Show Figures

Figure 1

23 pages, 6746 KB  
Article
Cyclin B Export to the Cytoplasm via the Nup62 Subcomplex and Subsequent Rapid Nuclear Import Are Required for the Initiation of Drosophila Male Meiosis
by Kanta Yamazoe and Yoshihiro H. Inoue
Cells 2023, 12(22), 2611; https://doi.org/10.3390/cells12222611 - 11 Nov 2023
Cited by 3 | Viewed by 2334
Abstract
The cyclin-dependent kinase 1 (Cdk1)–cyclin B (CycB) complex plays critical roles in cell-cycle regulation. Before Drosophila male meiosis, CycB is exported from the nucleus to the cytoplasm via the nuclear porin 62kD (Nup62) subcomplex of the nuclear pore complex. When this export is [...] Read more.
The cyclin-dependent kinase 1 (Cdk1)–cyclin B (CycB) complex plays critical roles in cell-cycle regulation. Before Drosophila male meiosis, CycB is exported from the nucleus to the cytoplasm via the nuclear porin 62kD (Nup62) subcomplex of the nuclear pore complex. When this export is inhibited, Cdk1 is not activated, and meiosis does not initiate. We investigated the mechanism that controls the cellular localization and activation of Cdk1. Cdk1–CycB continuously shuttled into and out of the nucleus before meiosis. Overexpression of CycB, but not that of CycB with nuclear localization signal sequences, rescued reduced cytoplasmic CycB and inhibition of meiosis in Nup62-silenced cells. Full-scale Cdk1 activation occurred in the nucleus shortly after its rapid nuclear entry. Cdk1-dependent centrosome separation did not occur in Nup62-silenced cells, whereas Cdk1 interacted with Cdk-activating kinase and Twine/Cdc25C in the nuclei of Nup62-silenced cells, suggesting the involvement of another suppression mechanism. Silencing of roughex rescued Cdk1 inhibition and initiated meiosis. Nuclear export of Cdk1 ensured its escape from inhibition by a cyclin-dependent kinase inhibitor. The complex re-entered the nucleus via importin β at the onset of meiosis. We propose a model regarding the dynamics and activation mechanism of Cdk1–CycB to initiate male meiosis. Full article
(This article belongs to the Special Issue Nuclear Pore Complex in Nanomedicine 2.0)
Show Figures

Graphical abstract

26 pages, 2698 KB  
Review
Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host
by Makram Mghezzi-Habellah, Léa Prochasson, Pierre Jalinot and Vincent Mocquet
Viruses 2023, 15(11), 2218; https://doi.org/10.3390/v15112218 - 6 Nov 2023
Viewed by 2576
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many [...] Read more.
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments. Full article
(This article belongs to the Special Issue Host Membranes and Virus Infection Cycle)
Show Figures

Figure 1

20 pages, 9927 KB  
Article
The Disruption of a Nuclear Export Signal in the C-Terminus of the Herpes Simplex Virus 1 Determinant of Pathogenicity UL24 Protein Leads to a Syncytial Plaque Phenotype
by Carmen Elena Gonzalez, Nawel Ben Abdeljelil and Angela Pearson
Viruses 2023, 15(9), 1971; https://doi.org/10.3390/v15091971 - 21 Sep 2023
Cited by 3 | Viewed by 2119
Abstract
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the [...] Read more.
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the C-terminal domain of UL24 accumulates in the Golgi apparatus; its importance during infection is unknown. We generated a series of mammalian expression vectors encoding UL24 with nested deletions in the C-terminal domain. Interestingly, enhanced nuclear staining was observed for several UL24-deleted forms in transient transfection assays. The substitution of a threonine phosphorylation site had no effect on UL24 localization or viral titers in cell culture. In contrast, mutations targeting a predicted nuclear export signal (NES) significantly enhanced nuclear localization, indicating that UL24 is able to shuttle between the nucleus and the cytoplasm. Recombinant viruses that encode UL24-harboring substitutions in the NES led to the accumulation of UL24 in the nucleus. Treatment with the CRM-1-specific inhibitor leptomycin B blocked the nuclear export of UL24 in transfected cells but not in the context of infection. Viruses encoding UL24 with NES mutations resulted in a syncytial phenotype, but viral yield was unaffected. These results are consistent with a role for HSV-1 UL24 in late cytoplasmic events in HSV-1 replication. Full article
(This article belongs to the Special Issue Advances in HSV Research)
Show Figures

Figure 1

Back to TopTop