Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,642)

Search Parameters:
Keywords = nuclear receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8344 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1 mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 8600 KiB  
Article
A Small-Molecule Compound Targeting Canine Mammary Cancer Regulates CXCL10 and MECOM Transcripts via Histone Modifications in CMT-N7
by Rongrong Wang, Chuyang Zhu, Xiaoyue Yuan, Cuipeng Zhu, Saber Y. Adam, Haoyu Liu, Demin Cai and Jiaguo Liu
Animals 2025, 15(15), 2274; https://doi.org/10.3390/ani15152274 - 4 Aug 2025
Abstract
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with [...] Read more.
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with a relative incidence rate of 46.71% for CMT in China over the past five years, severely threatening the life and health of dogs. Therefore, the search for novel drugs targeting canine mammary cancer is of great significance. This study aims to investigate how the RORγ inhibitors W6134 and XY018 affect the expression of inflammatory genes through histone modifications in CMT-N7 cells. These results show that W6134 and XY018 can upregulate signaling pathways related to inflammation and apoptosis and influence the expression of associated genes. The close link between RORγ and inflammation-related genes further confirms that RORγ may serve as a therapeutic target for canine cancer. Additionally, ChIP-qPCR was used to detect the enrichment of histone markers such as P300, H3K27ac, H3K4me1, H3K9la, and H3K9bhb at the target loci of CXCL10 and MECOM genes. Collectively, our findings provide molecular evidence for the protective role of RORγ in canine mammary cancer, potentially by regulating inflammatory pathways via histone modifications, offering new insights for improving the cure rate and survival of affected dogs. Full article
(This article belongs to the Special Issue Nutrition, Physiology and Metabolism of Companion Animals)
Show Figures

Figure 1

21 pages, 2399 KiB  
Review
Various Approaches Employed to Enhance the Bioavailability of Antagonists Interfering with the HMGB1/RAGE Axis
by Harbinder Singh
Int. J. Transl. Med. 2025, 5(3), 35; https://doi.org/10.3390/ijtm5030035 - 2 Aug 2025
Viewed by 205
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein that can interact with a transmembrane cell surface receptor for advanced glycation end products (RAGEs) and mediates the inflammatory pathways that lead to various pathological conditions like cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders. [...] Read more.
High-mobility group box 1 (HMGB1) is a nuclear protein that can interact with a transmembrane cell surface receptor for advanced glycation end products (RAGEs) and mediates the inflammatory pathways that lead to various pathological conditions like cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders. Blocking the HMGB1/RAGE axis using various small synthetic or natural molecules has been proven to be an effective therapeutic approach to treating these inflammatory conditions. However, the low water solubility of these pharmacoactive molecules limits their clinical use. Pharmaceutically active molecules with low solubility and bioavailability in vivo convey a higher risk of failure for drug development and drug innovation. The pharmacokinetic and pharmacodynamics parameters of these compounds are majorly affected by their solubility. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. This review mainly describes various technologies utilized to improve the bioavailability of synthetic or natural molecules which have been particularly used in various inflammatory conditions acting specifically through the HMGB1/RAGE pathway. Full article
Show Figures

Figure 1

19 pages, 1584 KiB  
Article
Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy
by Krzysztof Piątek, Grażyna Kurzawińska, Marcin Ożarowski, Piotr Józef Olbromski, Adam Kamiński, Maciej Brązert, Tomasz M. Karpiński, Wiesław Markwitz and Agnieszka Seremak-Mrozikiewicz
Int. J. Mol. Sci. 2025, 26(15), 7456; https://doi.org/10.3390/ijms26157456 - 1 Aug 2025
Viewed by 106
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by the onset of pruritus and elevated serum transaminases and bile acids (BA). The key enzyme in BA synthesis is CYP7A1, and its functions are regulated by various nuclear receptors. The goal of this study is [...] Read more.
Intrahepatic cholestasis of pregnancy (ICP) is characterized by the onset of pruritus and elevated serum transaminases and bile acids (BA). The key enzyme in BA synthesis is CYP7A1, and its functions are regulated by various nuclear receptors. The goal of this study is to evaluate the association between CYP7A1, NR1H1, RXRA, and PPARA gene variants and risk of ICP. Five single nucleotide variants (SNVs), rs3808607 (CYP7A1), rs56163822 (NR1H4), rs1800206 (PPARA), rs749759, and rs11381416 (NR2B1), were genotyped in a group of 96 ICP and 211 controls. The T allele of the CYP7A1 (rs3808607) variant may be a protective factor against ICP risk (OR = 0.697, 95% CI: 0.495–0.981, p = 0.038). Genetic model analysis showed that rs3808607 was associated with decreased risk of ICP under dominant (OR = 0.55, 95% CI: 0.32–3.16, p = 0.032, AIC = 380.9) and log-additive models (OR = 0.71, 95% CI: 0.51–1.00, p = 0.046, AIC = 381.4). The A insertion in the rs11381416 NR2B1 variant was associated with the degree of elevation in the liver function tests TBA (34.3 vs. 18.8 μmol/L, p = 0.002), ALT (397.0 vs. 213.0 IU/L, p = 0.017), and AST (186.0 vs. 114.4 IU/L, p = 0.032) in ICP women. Results indicate an association between the CYP7A1 rs3808607 and the risk of ICP and the association of the rs11381416 of the NR2B1 receptor with higher values of liver function tests in women with ICP. A better understanding of the cooperation of proteins involved in BA metabolism may have important therapeutic implications in ICP and other hepatobiliary diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 5008 KiB  
Article
Enhanced Modulation of CaMKII in Mouse Hippocampus by an Antidepressant-like Dose of Melatonin/Ketamine Combination
by Armida Miranda-Riestra, Rosa Estrada-Reyes, Luis A. Constantino-Jonapa, Jesús Argueta, Julián Oikawa-Sala, Miguel A. Reséndiz-Gachús, Daniel Albarrán-Gaona and Gloria Benítez-King
Cells 2025, 14(15), 1187; https://doi.org/10.3390/cells14151187 - 1 Aug 2025
Viewed by 282
Abstract
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of [...] Read more.
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of Ca2+/Calmodulin-dependent Kinase II (CaMKII), promoting dendrite formation and neurogenic processes in human olfactory neuronal precursors and rat organotypic cultures. Similarly, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, modulates CaMKII activity. Importantly, co-treatment of low doses of ketamine (10−7 M) in combination with melatonin (10−7 M) produces additive effects on neurogenic responses in olfactory neuronal precursors. Importantly, enhanced neurogenic responses are produced by conventional antidepressants like ISSRs. The goal of this study was to investigate whether hippocampal CaMKII participates in the signaling pathway elicited by combining doses of melatonin with ketamine acutely administered to mice, 30 min before being subjected to the forced swimming test. The results showed that melatonin, in conjunction with ketamine, significantly enhances CaMKII activation and changes its subcellular distribution in the dentate gyrus of the hippocampus. Remarkably, melatonin causes nuclear translocation of the active form of CaMKII. Luzindole, a non-selective MT1 and MT2 receptor antagonist, abolished these effects, suggesting that CaMKII is downstream of the melatonin receptor pathway that causes the antidepressant-like effects. These findings provide molecular insights into the combined effects of melatonin and ketamine on neuronal plasticity-related signaling pathways and pave the way for combating depression using combination therapy. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

25 pages, 3526 KiB  
Article
Valine–Niclosamide for Treatment of Androgen Receptor Splice Variant-Positive Hepatocellular Carcinoma
by Emma J. Hoelzen, Hanna S. Radomska, Samuel K. Kulp, Adeoluwa A. Adeluola, Lauren A. Granchie, Jeffrey Cheng, Anees M. Dauki, Moray J. Campbell, Shabber Mohammed, Enming Xing, Min Hai, Mayu Fukuda, Xiaolin Cheng, Mitch A. Phelps, Pui-Kai Li and Christopher C. Coss
Cancers 2025, 17(15), 2535; https://doi.org/10.3390/cancers17152535 - 31 Jul 2025
Viewed by 290
Abstract
Background/Objectives: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and currently is the second-leading cause of cancer-related mortality globally. Current front-line systemic therapies for advanced HCC offer only modest improvements in patient overall survival. HCC is a sexually dimorphic disease, and [...] Read more.
Background/Objectives: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and currently is the second-leading cause of cancer-related mortality globally. Current front-line systemic therapies for advanced HCC offer only modest improvements in patient overall survival. HCC is a sexually dimorphic disease, and cancer progression is driven in part by AR activity. Here, we present novel niclosamide pro-drugs for use in advanced HCC based upon niclosamide’s known anti-AR activity and additional anti-cancer pathway efficacy. Methods: Niclosamide analogs were evaluated for their impacts on the AR protein in two HCC cell lines with different AR phenotypes. Amino acid conjugates of niclosamide were developed, and pharmacokinetic (PK) analyses were conducted to determine improvements in clearance and oral exposure. Finally, niclosamide analogs and amino acid conjugates were evaluated in an in vivo model of HCC. Results: Niclosamide analogs maintained anti-AR properties in HCC. Valine-conjugated niclosamide showed improved oral exposure, positioning it as a potential therapeutic in advanced HCC. Conclusions: Valine–niclosamide improves upon niclosamide’s poor solubility and oral bioavailability, increasing its utility for a variety of therapeutic uses. Further study of valine–niclosamide in advanced HCC and in other cancers or diseases is warranted. Full article
(This article belongs to the Special Issue Drug Repurposing and Reformulation for Cancer Treatment: 2nd Edition)
Show Figures

Figure 1

19 pages, 4477 KiB  
Article
Agapanthussaponin A from the Underground Parts of Agapanthus africanus Induces Apoptosis and Ferroptosis in Human Small-Cell Lung Cancer Cells
by Tomoki Iguchi, Tamami Shimazaki and Yoshihiro Mimaki
Molecules 2025, 30(15), 3189; https://doi.org/10.3390/molecules30153189 - 30 Jul 2025
Viewed by 215
Abstract
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were [...] Read more.
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were isolated and identified by nuclear magnetic resonance spectral analysis. Compounds 13 exhibited cytotoxicity against SBC-3 human SCLC cells, with IC50 values of 0.56, 1.4, and 7.4 µM, respectively. Compound 1, also known an agapanthussaponin A, demonstrated the most potent cytotoxicity among the isolated compounds and was evaluated for its apoptosis- and ferroptosis-inducing activities. Compound 1 arrested the cell cycle of SBC-3 cells in the G2/M phase and induced apoptosis primarily via the mitochondrial pathway, characterized by caspases-3 and -9 activation, loss of mitochondrial membrane potential, and overproduction of reactive oxygen species. Additionally, 1 triggered ferroptosis via a dual mechanism consisting of enhanced cellular iron uptake through upregulation of transferrin and transferrin receptor 1 expression and impaired glutathione synthesis via downregulation of both xCT and glutathione peroxidase 4 expression. Compound 1 induces cell death via the apoptosis and ferroptosis pathways, suggesting its promise as a seed compound for the development of anticancer therapeutics against SCLC. Full article
Show Figures

Graphical abstract

21 pages, 604 KiB  
Review
Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae
by Lais Alves do-Nascimento, Nicolle Rakanidis Machado, Isabella Siuffi Bergamasco, João Vitor da Silva Borges, Fabio da Ressureição Sgnotto and Jefferson Russo Victor
COVID 2025, 5(8), 121; https://doi.org/10.3390/covid5080121 - 30 Jul 2025
Viewed by 268
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly known as long-COVID—can persist for months. Recent studies have identified the emergence of diverse autoantibodies in COVID-19, including those targeting nuclear antigens, phospholipids, type I interferons, cytokines, endothelial components, and G-protein-coupled receptors. These autoantibodies are more frequently detected in patients with moderate to severe disease and have been implicated in immune dysregulation, vascular injury, and persistent symptoms. This review examines the underlying immunological mechanisms driving autoantibody production during SARS-CoV-2 infection—including molecular mimicry, epitope spreading, and bystander activation—and discusses their functional roles in acute and post-acute disease. We further explore the relevance of autoantibodies in maternal–fetal immunity and comorbid conditions such as autoimmunity and cancer, and we summarize current and emerging therapeutic strategies. A comprehensive understanding of SARS-CoV-2-induced autoantibodies may improve risk stratification, inform clinical management, and guide the development of targeted immunomodulatory therapies. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 318
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

23 pages, 2776 KiB  
Review
Nuclear Receptors in Bladder Cancer: Insights into miRNA-Mediated Regulation and Potential Therapeutic Implications
by José Javier Flores-Estrada, Adriana Jiménez, Georgina Victoria-Acosta, Enoc Mariano Cortés-Malagón, María Guadalupe Ortiz-López, María Elizbeth Alvarez-Sánchez, Stephanie I. Nuñez-Olvera, Yussel Fernando Pérez-Navarro, Marcos Morales-Reyna and Jonathan Puente-Rivera
Int. J. Mol. Sci. 2025, 26(15), 7340; https://doi.org/10.3390/ijms26157340 - 29 Jul 2025
Viewed by 235
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression and are involved in diverse physiological and pathological processes, including carcinogenesis. In bladder cancer (BCa), dysregulation of NR signaling pathways has been linked to tumor initiation, progression, therapy resistance, and immune evasion. [...] Read more.
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression and are involved in diverse physiological and pathological processes, including carcinogenesis. In bladder cancer (BCa), dysregulation of NR signaling pathways has been linked to tumor initiation, progression, therapy resistance, and immune evasion. Recent evidence highlights the intricate crosstalk between NRs and microRNAs (miRNAs), which are small non-coding RNAs that posttranscriptionally modulate gene expression. This review provides an integrated overview of the molecular interactions between key NRs and miRNAs in BCa. We investigated how miRNAs regulate NR expression and function and, conversely, how NRs influence miRNA biogenesis, thereby forming regulatory feedback loops that shape tumor behavior. Specific miRNA–NR interactions affecting epithelial-to-mesenchymal transition, metabolic reprogramming, angiogenesis, and chemoresistance are discussed in detail. Additionally, we highlight therapeutic strategies targeting NR–miRNA networks, including selective NR modulators, miRNA mimics and inhibitors, as well as RNA-based combinatorial approaches focusing on their utility as diagnostic biomarkers and personalized treatment targets. Understanding the molecular complexity of NR–miRNA regulation in BCa may open new avenues for improving therapeutic outcomes and advancing precision oncology in urological cancers. Full article
(This article belongs to the Special Issue Urologic Cancers: Molecular Basis for Novel Therapeutic Approaches)
Show Figures

Graphical abstract

14 pages, 2113 KiB  
Article
NR2F6 as a Disease Driver and Candidate Therapeutic Target in Experimental Cerebral Malaria
by Victoria E. Stefan, Victoria Klepsch, Nikolaus Thuille, Martina Steinlechner, Sebastian Peer, Kerstin Siegmund, Peter Lackner, Erich Schmutzhard, Karin Albrecht-Schgör and Gottfried Baier
Cells 2025, 14(15), 1162; https://doi.org/10.3390/cells14151162 - 28 Jul 2025
Viewed by 256
Abstract
Cerebral malaria (CM) is the severe progression of an infection with Plasmodium falciparum, causing detrimental damage to brain tissue and is the most frequent cause of Plasmodium falciparum mortality. The critical role of brain-infiltrating CD8+ T cells in the pathophysiology of [...] Read more.
Cerebral malaria (CM) is the severe progression of an infection with Plasmodium falciparum, causing detrimental damage to brain tissue and is the most frequent cause of Plasmodium falciparum mortality. The critical role of brain-infiltrating CD8+ T cells in the pathophysiology of CM having been revealed, our investigation focuses on the role of NR2F6, an established immune checkpoint, as a candidate driver of CM pathology. We employed an experimental mouse model of CM based on Plasmodium berghei ANKA (PbA) infection to compare the relative susceptibility of Nr2f6-knock-out and wild-type C57BL6/N mice. As a remarkable result, Nr2f6 deficiency confers a significant survival benefit. In terms of mechanism, we detected less severe endotheliopathy and, hence, less damage to the blood–brain barrier (BBB), accompanied by decreased sequestered parasites and less cytotoxic T-lymphocytes within the brain, manifesting in a better disease outcome. We present evidence that NR2F6 deficiency renders mice more resistant to experimental cerebral malaria (ECM), confirming a causal and non-redundant role for NR2F6 in the progression of ECM disease. Consequently, pharmacological inhibitors of the NR2F6 pathway could be of use to bolster BBB integrity and protect against CM. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

26 pages, 1745 KiB  
Review
Emerging PET Imaging Agents and Targeted Radioligand Therapy: A Review of Clinical Applications and Trials
by Maierdan Palihati, Jeeban Paul Das, Randy Yeh and Kathleen Capaccione
Tomography 2025, 11(8), 83; https://doi.org/10.3390/tomography11080083 - 28 Jul 2025
Viewed by 493
Abstract
Targeted radioligand therapy (RLT) is an emerging field in anticancer therapeutics with great potential across tumor types and stages of disease. While much progress has focused on agents targeting somatostatin receptors and prostate-specific membrane antigen (PSMA), the same advanced radioconjugation methods and molecular [...] Read more.
Targeted radioligand therapy (RLT) is an emerging field in anticancer therapeutics with great potential across tumor types and stages of disease. While much progress has focused on agents targeting somatostatin receptors and prostate-specific membrane antigen (PSMA), the same advanced radioconjugation methods and molecular targeting have spurred the development of numerous theranostic combinations for other targets. A number of the most promising agents have progressed to clinical trials and are poised to change the landscape of positron emission tomography (PET) imaging. Here, we present recent data on some of the most important emerging molecular targeted agents with their exemplar clinical images, including agents targeting fibroblast activation protein (FAP), hypoxia markers, gastrin-releasing peptide receptors (GRPrs), and integrins. These radiopharmaceuticals share the promising characteristic of being able to image multiple types of cancer. Early clinical trials have already demonstrated superiority to 18F-fluorodeoxyglucose (18F-FDG) for some, suggesting the potential to supplant this longstanding PET radiotracer. Here, we provide a primer for practicing radiologists, particularly nuclear medicine clinicians, to understand novel PET imaging agents and their clinical applications, as well as the availability of companion targeted radiotherapeutics, the status of their regulatory approval, the potential challenges associated with their use, and the future opportunities and perspectives. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

16 pages, 3919 KiB  
Article
Autophagy and PXR Crosstalk in the Regulation of Cancer Drug Metabolism and Resistance According to Gene Mutational Status in Colorectal Cancer
by Evangelos Koustas, Panagiotis Sarantis, Eleni-Myrto Trifylli, Eleftheria Dikoglou-Tzanetatou, Evangelia Ioakeimidou, Ioanna A. Anastasiou, Michalis V. Karamouzis and Stamatios Theocharis
Genes 2025, 16(8), 892; https://doi.org/10.3390/genes16080892 - 28 Jul 2025
Viewed by 293
Abstract
Background and Objectives: Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies worldwide. Although chemotherapy is an effective treatment for colorectal cancer (CRC), its effectiveness is frequently hindered by the emergence of resistant cancer cells. Studies have demonstrated a linkage between [...] Read more.
Background and Objectives: Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies worldwide. Although chemotherapy is an effective treatment for colorectal cancer (CRC), its effectiveness is frequently hindered by the emergence of resistant cancer cells. Studies have demonstrated a linkage between drug resistance and the pregnane X receptor (PXR), which influences the metabolism and the transport of chemotherapeutic agents. Likewise, autophagy is also a well-established mechanism that contributes to chemotherapy resistance, and it is closely tied to tumor progression. This pre-clinical study aims to investigate the role of mtKRAS-dependent autophagy with PXR expression after treatment with Irinotecan in colorectal cancer. Methods: CRC lines were treated with specific inhibitors, such as 3-methyladeninee, hydroxychloroquine PI-103, and irinotecan hydrochloride, and subjected to various assays, including MTT for cell viability, Western blot for protein expression, siRNA-mediated PXR knock-out, and confocal microscopy for autophagic vacuole visualization. Protein quantification, gene knockdown, and subcellular localization studies were performed under standardized conditions to investigate treatment effects on autophagy and apoptosis pathways. Conclusions: Our experiments showed that PXR knockdown does not alter autophagy levels following Irinotecan treatment, but it promotes apoptotic cell death despite elevated autophagy. Moreover, late-stage autophagy inhibition reduces PXR expression, whereas induction through PI3K/AKT/mTOR inhibition leads to increased expression of PXR. Our experiments uncover a mechanism by which autophagy facilitates the nuclear translocation of the PXR, thereby promoting resistance to Irinotecan across multiple cell lines. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1525 KiB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Viewed by 405
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

24 pages, 1080 KiB  
Review
Epigenetic and Genotoxic Mechanisms of PFAS-Induced Neurotoxicity: A Molecular and Transgenerational Perspective
by Narimane Kebieche, Seungae Yim, Claude Lambert and Rachid Soulimani
Toxics 2025, 13(8), 629; https://doi.org/10.3390/toxics13080629 - 26 Jul 2025
Viewed by 395
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
Show Figures

Figure 1

Back to TopTop