Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = nuclear matter experiments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4428 KiB  
Article
Pore Structure Characteristics and Controlling Factors of the Lower Cambrian Niutitang Formation Shale in Northern Guizhou: A Case Study of Well QX1
by Yuanyan Yin, Niuniu Zou, Daquan Zhang, Yi Chen, Zhilong Ye, Xia Feng and Wei Du
Fractal Fract. 2025, 9(8), 524; https://doi.org/10.3390/fractalfract9080524 - 13 Aug 2025
Viewed by 165
Abstract
Shale pore architecture governs gas storage capacity, permeability, and production potential in reservoirs. Therefore, this study systematically investigates the pore structure features and influencing factors of the Niutitang Formation shale from the QX1 well in northern Guizhou using field emission scanning electron microscopy [...] Read more.
Shale pore architecture governs gas storage capacity, permeability, and production potential in reservoirs. Therefore, this study systematically investigates the pore structure features and influencing factors of the Niutitang Formation shale from the QX1 well in northern Guizhou using field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion (HPMI), low-temperature nitrogen adsorption (LTNA), and nuclear magnetic resonance (NMR) experiments. The results show that ① The pore size of the QX1 well’s Niutitang Formation shale is primarily in the nanometer range, with pore types including intragranular pores, intergranular pores, organic matter pores, and microfractures, with the former two types constituting the primary pore network. ② Pore shapes are plate-shaped intersecting conical microfractures or plate-shaped intersecting ink bottles, ellipsoidal, and beaded pores. ③ The pore size distribution showed a multi-peak distribution, predominantly mesopores, followed by micropores, with the fewest macropores. ④ The fractal dimension D1 > D2 indicates that the shale pore system is characterized by a rough surface and some connectivity of the pore network. ⑤ Carbonate mineral abundances are the main controlling factors affecting the pore structure of shales in the study area, and total organic carbon (TOC) content also has some influence, while clay mineral content shows negligible statistical correlation. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

58 pages, 5907 KiB  
Review
The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms
by Günter A. Müller
Bioengineering 2025, 12(5), 532; https://doi.org/10.3390/bioengineering12050532 - 15 May 2025
Cited by 1 | Viewed by 1273
Abstract
So far, synthetic biology approaches for the construction of artificial microorganisms have fostered the transformation of acceptor cells with genomes from donor cells. However, this strategy seems to be limited to closely related bacterial species only, due to the need for a “fit” [...] Read more.
So far, synthetic biology approaches for the construction of artificial microorganisms have fostered the transformation of acceptor cells with genomes from donor cells. However, this strategy seems to be limited to closely related bacterial species only, due to the need for a “fit” between donor and acceptor proteomes and structures. “Fitting” of cellular regulation of metabolite fluxes and turnover between donor and acceptor cells, i.e. cybernetic heredity, may be even more difficult to achieve. The bacterial transformation experiment design 1.0, as introduced by Frederick Griffith almost one century ago, may support integration of DNA, macromolecular, topological, cybernetic and cellular heredity: (i) attenuation of donor Pneumococci of (S) serotype fosters release of DNA, and hypothetically of non-DNA structures compatible with subsequent transfer to and transformation of acceptor Pneumococci from (R) to (S) serotype; (ii) use of intact donor cells rather than of subcellular or purified fractions may guarantee maximal diversity of the structural and cybernetic matter and information transferred; (iii) “Blending” or mixing and fusion of donor and acceptor Pneumococci may occur under accompanying transfer of metabolites and regulatory circuits. A Griffith transformation experiment design 2.0 is suggested, which may enable efficient exchange of DNA as well as non-DNA structural and cybernetic matter and information, leading to unicellular hybrid microorganisms with large morphological/metabolic phenotypic differences and major features compared to predeceding cells. The prerequisites of horizontal gene and somatic cell nuclear transfer, the molecular mechanism of transformation, the machineries for the biogenesis of bacterial cytoskeleton, micelle-like complexes and membrane landscapes are briefly reviewed on the basis of underlying conceptions, ranging from Darwin’s “gemmules” to “stirps”, cytoplasmic and “plasmon” inheritance, “rhizene agency”, “communicology”, “transdisciplinary membranology” to up to Kirschner’s “facilitated variation”. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

27 pages, 1056 KiB  
Article
Quantum Mechanical Numerical Model for Interaction of Dark Atom with Atomic Nucleus of Matter
by Timur Bikbaev, Maxim Khlopov and Andrey Mayorov
Physics 2025, 7(1), 8; https://doi.org/10.3390/physics7010008 - 7 Mar 2025
Viewed by 1190
Abstract
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with [...] Read more.
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with sodium nuclei. Since this effect is not observed in other underground WIMP (weakly interacting massive particle) search experiments, it is necessary to explain these results by investigating the possibility of the existence of low-energy bound states between dark atoms and the nuclei of matter. Numerical modeling is used to solve this problem, since the study of the XHe–nucleus system is a three-body problem and leaves no possibility of an analytical solution. To understand the key properties and patterns underlying the interaction of dark atoms with the nuclei of baryonic matter, we develop the quantum mechanical description of such an interaction. In the numerical quantum mechanical model presented, takes into account the effects of quantum physics, self-consistent electromagnetic interaction, and nuclear attraction. This approach allows us to obtain a numerical model of the interaction between the dark atom and the nucleus of matter and interpret the results of direct experiments on the underground search for dark matter, within the framework of the dark atom hypothesis. Thus, in this paper, for the first time, steps are taken towards a consistent quantum mechanical description of the interaction of dark atoms, with unshielded nuclear attraction, with the nuclei of atoms of matter. The total effective interaction potential of the OHe–Na system has therefore been restored, the shape of which allows for the preservation of the integrity and stability of the dark atom, which is an essential requirement for confirming the validity of the OHe hypothesis. Full article
(This article belongs to the Special Issue Beyond the Standard Models of Physics and Cosmology: 2nd Edition)
Show Figures

Figure 1

8 pages, 11915 KiB  
Article
Development of the NUCLEUS Detector to Explore Coherent Elastic Neutrino-Nucleus Scattering
by Nicole Schermer
Particles 2025, 8(1), 8; https://doi.org/10.3390/particles8010008 - 22 Jan 2025
Viewed by 1074
Abstract
The NUCLEUS experiment, currently being commissioned at the Technical University of Munich, is designed to observe coherent elastic neutrino-nucleus scattering (CEνNS) from reactor neutrinos and measure its cross-section with a percent-level precision at recoil energies below 100 eV [...] Read more.
The NUCLEUS experiment, currently being commissioned at the Technical University of Munich, is designed to observe coherent elastic neutrino-nucleus scattering (CEνNS) from reactor neutrinos and measure its cross-section with a percent-level precision at recoil energies below 100 eV. As a Standard Model process, CEνNS provides a unique probe into neutrino properties, potential new physics, and background suppression techniques relevant to dark matter experiments. The experiment utilizes gram-scale cryogenic calorimeters operating at 10 mK with an energy threshold of 20 eV. Situated at a shallow overburden of 3 m of water equivalent, the experimental site necessitates an advanced shielding strategy combining active vetoes and passive layers to reduce background rates to approximately 100counts/(kg·day·keV), as confirmed by full setup simulations. The commissioning phase has successfully demonstrated the stable operation of the cryogenic target detectors, achieving baseline resolutions below 10 eV, and the integration of the various shielding systems. Following this milestone, the experiment is set to transition to the EdF Chooz B nuclear reactor in France in 2025, where it will enable precise measurements of CEνNS, contributing to the understanding of neutrino interactions and advancing the field of astroparticle physics. Full article
Show Figures

Figure 1

10 pages, 320 KiB  
Article
Elliptic and Quadrangular Flow of Protons in the High-Baryon-Density Region
by Shaowei Lan, Zuowen Liu, Like Liu and Shusu Shi
Universe 2025, 11(1), 27; https://doi.org/10.3390/universe11010027 - 17 Jan 2025
Cited by 1 | Viewed by 696
Abstract
The collective flow provides valuable insights into the anisotropic expansion of particles produced in heavy-ion collisions and is sensitive to the equation of the state of nuclear matter in high-baryon-density regions. In this paper, we use the hadronic transport model SMASH to investigate [...] Read more.
The collective flow provides valuable insights into the anisotropic expansion of particles produced in heavy-ion collisions and is sensitive to the equation of the state of nuclear matter in high-baryon-density regions. In this paper, we use the hadronic transport model SMASH to investigate the elliptic flow (v2), quadrangular flow (v4), and their ratio (v4/v22) in Au+Au collisions at high baryon density. Our results show that the inclusion of baryonic mean-field potential in the model successfully reproduces experimental data from the HADES experiment, indicating that baryonic interactions play an important role in shaping anisotropic flow. In addition to comparing the transverse momentum (pT), rapidity, and centrality dependence of v4/v22 between HADES data and model calculations, we also explore its time evolution and energy dependence across sNN= 2.4 to 4.5 GeV. While the ratio v4/v22 for high-pT particles approaches 0.5, which aligns with expectations from hydrodynamic behavior, we emphasize that this result primarily reflects agreement with the HADES measurements rather than a definitive indication of ideal fluid behavior. These findings contribute to understanding the early-stage dynamics in heavy-ion collisions at high baryon density. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

14 pages, 1315 KiB  
Article
NMR Evaluation of Shale Oil Mobility: Combined Pyrolysis and CO2 Huff-N-Puff
by Jianmeng Sun, Yibo Yao, Fujing Sun, Junlei Su, Jing Lu, Kun Liu and Peng Chi
Appl. Sci. 2024, 14(23), 11251; https://doi.org/10.3390/app142311251 - 2 Dec 2024
Viewed by 1035
Abstract
The occurrence and mobility of shale oil are critical issues in exploration and development. Shale reservoirs exhibit a complex fluid state, with oil and water present in various forms. The presence of organic matter and clay minerals within the reservoir framework further complicates [...] Read more.
The occurrence and mobility of shale oil are critical issues in exploration and development. Shale reservoirs exhibit a complex fluid state, with oil and water present in various forms. The presence of organic matter and clay minerals within the reservoir framework further complicates the fluid’s occurrence and mobility. Utilizing two-dimensional nuclear magnetic resonance (NMR) experiments, in this study, core samples from the Shengli Oilfield’s shale oil reservoirs were analyzed. We conducted pyrolysis-NMR and CO2 huff-n-puff-NMR joint measurement experiments to assess the shale oil mobility. The results indicated that CO2 huff-n-puff was the most effective in the initial cycle, with diminishing returns in subsequent cycles, and NMR signal changes were predominantly observed in the movable oil fraction. The selected samples showed an average recovery rate of 26.9%, suggesting good mobility of shale oil in the study area. Based on the experimental results, a fluid component identification template for the study region was established, which mainly consists of the following five parts: movable oil, adsorbed oil, asphaltene, clay-bound water, structural water, and kerogen. This research provides valuable insights for the efficient development of shale oil reservoirs. Full article
Show Figures

Figure 1

15 pages, 1375 KiB  
Article
Effect of Fermented Mulberry Leaves on Gut Health of Finishing Pigs
by Su Peng, Yiyan Cui, Miao Yu, Min Song, Zhimei Tian, Dun Deng, Zhichang Liu and Xianyong Ma
Animals 2024, 14(19), 2911; https://doi.org/10.3390/ani14192911 - 9 Oct 2024
Cited by 1 | Viewed by 1635
Abstract
This study was conducted to investigate the effects of supplementing fermented mulberry leaves (FML) on intestinal morphology, antioxidant capacity, and immune function in the gut of finishing pigs. Eighteen 132-day-old healthy crossbred (Duroc × Landrace × Yorkshire) male castrated pigs were randomly divided [...] Read more.
This study was conducted to investigate the effects of supplementing fermented mulberry leaves (FML) on intestinal morphology, antioxidant capacity, and immune function in the gut of finishing pigs. Eighteen 132-day-old healthy crossbred (Duroc × Landrace × Yorkshire) male castrated pigs were randomly divided into two treatment groups with nine replicates per group. The control (CON) group was fed the basal diet, and the FML group was fed the basal diet supplemented with 10% FML. The experiment lasted 69 days. The results showed that 10% FML improved gut health. The apparent total tract digestibility in dry matter, crude protein, crude fiber, neutral detergent fiber, acidic detergent fiber, ether extract, and crude ash increased in the 10% FML group of finishing pigs compared to the CON group (p < 0.05). Duodenal, jejunal, and ileal intestinal morphology, such as villus height and villus-height-to-crypt-depth ratio, increased in the 10% FML group compared to the CON group, whereas crypt depth decreased in the duodenum, jejunum, and ileum (p < 0.05). Total antioxidant capacity increased in the ileum of the 10% FML group compared with the CON group (p < 0.05). The FML supplementation improved the contents of duodenal immunoglobulin A, jejunal interleukin-1β, interleukin-8, ileal interleukin-1β, interleukin-6, interferon-γ, and immunoglobulins A and M compared to the control group (p < 0.05). Moreover, FML downregulated the mRNA expression levels of tumor necrosis factor-α in the duodenum, Toll-like receptor 4, nuclear factor-κ B-P65, and myeloid differentiation factor 88 in the jejunum, and Toll-like receptor 4 and nuclear factor-κ B-P65 in the ileum (p < 0.05). The FML also upregulated Montrose uniting church 1 in the duodenum and claudin 2 in the ileum (p < 0.05). In conclusion, dietary supplementation with 10% FML improved the gut health of finishing pigs and FML is a potential feed ingredient for pig breeding. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 4523 KiB  
Review
Probing the Equation of State of Dense Nuclear Matter by Heavy Ion Collision Experiments
by Peter Senger
Symmetry 2024, 16(9), 1162; https://doi.org/10.3390/sym16091162 - 5 Sep 2024
Cited by 2 | Viewed by 1488
Abstract
The investigation of the nuclear matter equation of state (EOS) beyond saturation density has been a fundamental goal of heavy ion collision experiments for more than 40 years. First constraints on the EOS of symmetric nuclear matter at high densities were extracted from [...] Read more.
The investigation of the nuclear matter equation of state (EOS) beyond saturation density has been a fundamental goal of heavy ion collision experiments for more than 40 years. First constraints on the EOS of symmetric nuclear matter at high densities were extracted from heavy ion data measured at AGS and GSI. At GSI, symmetry energy has also been investigated in nuclear collisions. These results of laboratory measurements are complemented by the analysis of recent astrophysical observations regarding the mass and radius of neutron stars and gravitational waves from neutron star merger events. The research programs of upcoming laboratory experiments include the study of the EOS at neutron star core densities and will also shed light on the elementary degrees of freedom of dense QCD matter. The status of the CBM experiment at FAIR and the perspective regarding the studies of the EOS of symmetric and asymmetric dense nuclear matter will be presented. Full article
(This article belongs to the Special Issue Symmetry Energy in Nuclear Physics and Astrophysics)
Show Figures

Figure 1

16 pages, 1918 KiB  
Article
Convolutional Neural Network Processing of Radio Emission for Nuclear Composition Classification of Ultra-High-Energy Cosmic Rays
by Tudor Alexandru Calafeteanu, Paula Gina Isar and Emil Ioan Sluşanschi
Universe 2024, 10(8), 327; https://doi.org/10.3390/universe10080327 - 15 Aug 2024
Cited by 1 | Viewed by 1474
Abstract
Ultra-high-energy cosmic rays (UHECRs) are extremely rare energetic particles of ordinary matter in the Universe, traveling astronomical distances before reaching the Earth’s atmosphere. When primary cosmic rays interact with atmospheric nuclei, cascading extensive air showers (EASs) of secondary elementary particles are developed. Radio [...] Read more.
Ultra-high-energy cosmic rays (UHECRs) are extremely rare energetic particles of ordinary matter in the Universe, traveling astronomical distances before reaching the Earth’s atmosphere. When primary cosmic rays interact with atmospheric nuclei, cascading extensive air showers (EASs) of secondary elementary particles are developed. Radio detectors have proven to be a reliable method for reconstructing the properties of EASs, such as the shower’s axis, its energy, and its maximum (Xmax). This aids in understanding fundamental astrophysical phenomena, like active galactic nuclei and gamma-ray bursts. Concurrently, data science has become indispensable in UHECR research. By applying statistical, computational, and deep learning methods to both real-world and simulated radio data, researchers can extract insights and make predictions. We introduce a convolutional neural network (CNN) architecture designed to classify simulated air shower events as either being generated by protons or by iron nuclei. The classification achieved a stable test error of 10%, with Accuracy and F1 scores of 0.9 and an MCC of 0.8. These metrics indicate strong prediction capability for UHECR’s nuclear composition, based on data that can be gathered by detectors at the world’s largest cosmic rays experiment on Earth, the Pierre Auger Observatory, which includes radio antennas, water Cherenkov detectors, and fluorescence telescopes. Full article
(This article belongs to the Special Issue Advanced Studies in Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

25 pages, 8740 KiB  
Article
Open-Source Optimization of Hybrid Monte Carlo Methods for Fast Response Modeling of NaI (Tl) and HPGe Gamma Detectors
by Matthew Niichel and Stylianos Chatzidakis
J. Nucl. Eng. 2024, 5(3), 274-298; https://doi.org/10.3390/jne5030019 - 5 Aug 2024
Cited by 1 | Viewed by 1652
Abstract
Modeling the response of gamma detectors has long been a challenge within the nuclear community. Significant research has been conducted to digitally replicate instruments that can cost over USD 100,000 and are difficult to operate outside of a laboratory setting. The large cost [...] Read more.
Modeling the response of gamma detectors has long been a challenge within the nuclear community. Significant research has been conducted to digitally replicate instruments that can cost over USD 100,000 and are difficult to operate outside of a laboratory setting. The large cost and availability prevent some from making use of such equipment. Subsequently, there have been multiple attempts to create cost-effective codes that replicate the response of sodium-iodide and high-purity germanium detectors for data derivation related to gamma-ray interaction with matter. While robust programs do exist, they are often subject to export controls and/or they are not intuitive to use. Through the use of hybrid Monte Carlo methods, MATLAB can be used to produce a fast first-order response of various gamma-ray detectors. The combination of a graphical user interface with a numerical-based script allows for open-source and intuitive code. When benchmarked with experimental data from Co-60, Cs-137, and Na-22, the code can numerically calculate a response comparable to experimental and industry-standard response codes. Evidence supports both savings in computational requirements and the inclusion of an intuitive user experience that does not heavily compromise data when compared to other standard codes, such as MCNP and GADRAS, or experimental results. When the application is installed on a Dell Intel i7 computer with 16 cores, the average time to simulate the benchmarked isotopes is 0.26 s. Installation on an HP Intel i7 four-core machine runs the same isotopes in 1.63 s. The results indicate that simple gamma detectors can be modeled in an open-source format. The anticipation for the MATLAB application is to be a tool that can be easily accessible and provide datasets for use in an academic setting requiring gamma-ray detectors. Ultimately, this article provides evidence that hybrid Monte Carlo codes in an open-source format can benefit the nuclear community in both computational time and up-front cost for access. Full article
(This article belongs to the Special Issue Monte Carlo Simulation in Reactor Physics)
Show Figures

Figure 1

22 pages, 9597 KiB  
Article
Dynamic Change Characteristics and Main Controlling Factors of Pore Gas and Water in Tight Reservoir of Yan’an Gas Field in Ordos Basin
by Yongping Wan, Zhenchuan Wang, Meng Wang, Xiaoyan Mu, Jie Huang, Mengxia Huo, Ye Wang, Kouqi Liu and Shuangbiao Han
Processes 2024, 12(7), 1504; https://doi.org/10.3390/pr12071504 - 17 Jul 2024
Viewed by 1008
Abstract
Tight sandstone gas has become an important field of natural gas development in China. The tight sandstone gas resources of Yan’an gas field in Ordos Basin have made great progress. However, due to the complex gas–water relationship, its exploration and development have been [...] Read more.
Tight sandstone gas has become an important field of natural gas development in China. The tight sandstone gas resources of Yan’an gas field in Ordos Basin have made great progress. However, due to the complex gas–water relationship, its exploration and development have been seriously restricted. The occurrence state of water molecules in tight reservoirs, the dynamic change characteristics of gas–water two-phase seepage and its main controlling factors are still unclear. In this paper, the water-occurrence state, gas–water two-phase fluid distribution and dynamic change characteristics of different types of tight reservoir rock samples in Yan’an gas field were studied by means of water vapor isothermal adsorption experiment and nuclear magnetic resonance methane flooding experiment, and the main controlling factors were discussed. The results show that water molecules in different types of tight reservoirs mainly occur in clay minerals and their main participation is in the formation of fractured and parallel plate pores. The adsorption characteristics of water molecules conform to the Dent model; that is, the adsorption is divided into single-layer adsorption, multi-layer adsorption and capillary condensation. In mudstone, limestone and fine sandstone, water mainly occurs in small-sized pores with a diameter of 0.001 μm–0.1 μm. The dynamic change characteristics of gas and water are not obvious and no longer change under 7 MPa displacement pressure, and the gas saturation is low. The gas–water dynamic change characteristics of conglomerate and medium-coarse sandstone are obvious and no longer change under 9 MPa displacement pressure. The gas saturation is high, and the water molecules mainly exist in large-sized pores with a diameter of 0.1 μm–10 μm. The development of organic matter in tight reservoir mudstone is not conducive to the occurrence of water molecules. Clay minerals are the main reason for the high water saturation of different types of tight reservoir rocks. Tight rock reservoirs with large pore size and low clay mineral content are more conducive to natural gas migration and occurrence, which is conducive to tight sandstone gas accumulation. Full article
Show Figures

Figure 1

7 pages, 789 KiB  
Communication
Nuclear Modification Factor of Inclusive Charged Particles in Au+Au Collisions at sNN = 27 GeV with the STAR Experiment
by Alisher Aitbayev
Universe 2024, 10(3), 139; https://doi.org/10.3390/universe10030139 - 13 Mar 2024
Viewed by 1624
Abstract
The Beam Energy Scan (BES) program at RHIC aims to explore the QCD phase diagram, including the search for the evidence of the 1st order phase transition from hadronic matter to Quark-Gluon Plasma (QGP) and the location of the QCD critical point. One [...] Read more.
The Beam Energy Scan (BES) program at RHIC aims to explore the QCD phase diagram, including the search for the evidence of the 1st order phase transition from hadronic matter to Quark-Gluon Plasma (QGP) and the location of the QCD critical point. One of the features previously observed in the study of QGP is the effect of suppression of particle production with high transverse momenta pT (>2 GeV/c) at energies sNN = 62.4200 GeV, which was deduced from the charged-particle nuclear modification factor (RCP) measured using the data from Beam Energy Scan Program Phase I (BES-I) of STAR experiment. In 2018, STAR has collected over 500 million events from Au+Au collisions at sNN = 27 GeV as a part of the STAR BES-II program, which is about a factor of 10 higher than BES-I 27 GeV data size. In this report, we present new measurements of charged particle production and the nuclear modification factor RCP, from this new 27 GeV data set and compare them with the BES-I results. The new measurements extend the previous BES-I results to higher transverse momentum range, which allows better exploration of the jet quenching effects at low RHIC energies, and may help to understand the effects of the formation and properties of QGP at these energies. Full article
(This article belongs to the Special Issue Multiparticle Dynamics)
Show Figures

Figure 1

12 pages, 3364 KiB  
Article
Events as Elements of Physical Observation: Experimental Evidence
by J. Gerhard Müller
Entropy 2024, 26(3), 255; https://doi.org/10.3390/e26030255 - 13 Mar 2024
Cited by 4 | Viewed by 4113
Abstract
It is argued that all physical knowledge ultimately stems from observation and that the simplest possible observation is that an event has happened at a certain space–time location X=x,t. Considering historic experiments, which have been groundbreaking [...] Read more.
It is argued that all physical knowledge ultimately stems from observation and that the simplest possible observation is that an event has happened at a certain space–time location X=x,t. Considering historic experiments, which have been groundbreaking in the evolution of our modern ideas of matter on the atomic, nuclear, and elementary particle scales, it is shown that such experiments produce as outputs streams of macroscopically observable events which accumulate in the course of time into spatio-temporal patterns of events whose forms allow decisions to be taken concerning conceivable alternatives of explanation. Working towards elucidating the physical and informational characteristics of those elementary observations, we show that these represent hugely amplified images of the initiating micro-events and that the resulting macro-images have a cognitive value of 1 bit and a physical value of Wobs=Eobsτobsh. In this latter equation, Eobs stands for the energy spent in turning the initiating micro-events into macroscopically observable events, τobs for the lifetimes during which the generated events remain macroscopically observable, and h for Planck’s constant. The relative value Gobs=Wobs/h finally represents a measure of amplification that was gained in the observation process. Full article
Show Figures

Figure 1

34 pages, 3157 KiB  
Systematic Review
Characteristics of Developmental and Epileptic Encephalopathy Associated with PACS2 p.Glu209Lys Pathogenic Variant—Our Experience and Systematic Review of the Literature
by Adina Stoian, Zoltan Bajko, Rodica Bălașa, Sebastian Andone, Mircea Stoian, Ioana Ormenișan, Carmen Muntean and Claudia Bănescu
Biomolecules 2024, 14(3), 270; https://doi.org/10.3390/biom14030270 - 23 Feb 2024
Cited by 1 | Viewed by 4199
Abstract
Background: Developmental and epileptic encephalopathies (DEE) encompass a group of rare diseases with hereditary and genetic causes as well as acquired causes such as brain injuries or metabolic abnormalities. The phosphofurin acidic cluster sorting protein 2 (PACS2) is a multifunctional protein with nuclear [...] Read more.
Background: Developmental and epileptic encephalopathies (DEE) encompass a group of rare diseases with hereditary and genetic causes as well as acquired causes such as brain injuries or metabolic abnormalities. The phosphofurin acidic cluster sorting protein 2 (PACS2) is a multifunctional protein with nuclear gene expression. The first cases of the recurrent c.625G>A pathogenic variant of PACS2 gene were reported in 2018 by Olson et al. Since then, several case reports and case series have been published. Methods: We performed a systematic review of the PUBMED and SCOPUS databases using Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Our search parameters included DEE66 with a pathogenic PACS2 gene p.Glu209Lys mutation published cases to which we added our own clinical experience regarding this pathology. Results: A total of 11 articles and 29 patients were included in this review, to which we added our own experience for a total of 30 patients. There was not a significant difference between sexes regarding the incidence of this pathology (M/F: 16/14). The most common neurological and psychiatric symptoms presented by the patients were: early onset epileptic seizures, delayed global development (including motor and speech delays), behavioral disturbances, limited intellectual capacity, nystagmus, hypotonia, and a wide-based gait. Facial dysmorphism and other organs’ involvement were also frequently reported. Brain MRIs evidenced anomalies of the posterior cerebellar fossa, foliar distortion of the cerebellum, vermis hypoplasia, white matter reduction, and lateral ventricles enlargement. Genetic testing is more frequent in children. Only 4 cases have been reported in adults to date. Conclusions: It is important to maintain a high suspicion of new pathogenic gene variants in adult patients presenting with a characteristic clinical picture correlated with radiologic changes. The neurologist must gradually recognize the distinct evolving phenotype of DEE66 in adult patients, and genetic testing must become a scenario with which the neurologist attending adult patients should be familiar. Accurate diagnosis is required for adequate treatment, genetic counseling, and an improved long-term prognosis. Full article
(This article belongs to the Special Issue Recent Advances in Neurological Diseases)
Show Figures

Figure 1

28 pages, 692 KiB  
Article
Nuclear Matter Properties and Neutron Star Phenomenology Using the Finite Range Simple Effective Interaction
by Xavier Viñas, Parveen Bano, Zashmir Naik and Tusar Ranjan Routray
Symmetry 2024, 16(2), 215; https://doi.org/10.3390/sym16020215 - 10 Feb 2024
Cited by 3 | Viewed by 1892
Abstract
The saturation properties of symmetric and asymmetric nuclear matter have been computed using the finite range simple effective interaction with Yukawa form factor. The results of higher-order derivatives of the energy per particle and the symmetry energy computed at saturation, namely, Q0 [...] Read more.
The saturation properties of symmetric and asymmetric nuclear matter have been computed using the finite range simple effective interaction with Yukawa form factor. The results of higher-order derivatives of the energy per particle and the symmetry energy computed at saturation, namely, Q0, Ksym, Kτ, Qsym, are compared with the corresponding values extracted from studies involving theory, experiment and astrophysical observations. The overall uncertainty in the values of these quantities, which results from a wide spectrum of studies described in earlier literature, lies in the ranges 1200Q0400 MeV, 400Ksym100 MeV, 840Kτ126 MeV and 200Qsym800 MeV, respectively. The ability of the equations of state computed with this simple effective interaction in predicting the threshold mass for prompt collapse in binary neutron star merger and gravitational redshift has been examined in terms of the compactness of the neutron star and the incompressibility at the central density of the maximum mass star. The correlations existing between neutron star properties and the nuclear matter saturation properties have been analyzed and compared with the predictions of other model calculations. Full article
(This article belongs to the Special Issue The Nuclear Physics of Neutron Stars)
Show Figures

Figure 1

Back to TopTop