Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = northern Apennines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 15012 KiB  
Article
New Insights in the Helicellini Ihering, 1909 with Description of Kherattolactea Gen. Nov. and the First Record of Orexana Chueca, Gómez-Moliner, Madeira & Pfenninger, 2018 from Algeria
by Issaad Kawther Ezzine, Houria Bouaziz-Yahiatene, Willy De Mattia and Eike Neubert
Diversity 2025, 17(8), 550; https://doi.org/10.3390/d17080550 - 2 Aug 2025
Viewed by 196
Abstract
Recent sampling efforts in northern Algeria and the investigation of some collection material has revealed the presence of taxa with conchological and genital morphological similarities to the Candidula-like group. A detailed investigation of the anatomy of the genitalia combined with the analysis [...] Read more.
Recent sampling efforts in northern Algeria and the investigation of some collection material has revealed the presence of taxa with conchological and genital morphological similarities to the Candidula-like group. A detailed investigation of the anatomy of the genitalia combined with the analysis of two mitochondrial and two nuclear markers of representatives of the known genera as well as two Algerian taxa has been conducted. The result confirms the affiliation of the latter in the Candidula-like complex. Comparative anatomical analysis led to the description of a new genus, Kherattolactea gen. nov., endemic to northern Algeria with Xerophila keratae, Kobelt, 1892 as the type species. The anatomical distinction corroborates the result of the molecular analysis that reveals apomorphic nucleotide substitution. Moreover, the result of the combined analysis provides the first confirmed record of the genus Orexana Chueca, Gómez-Moliner, Madeira & Pfenninger, 2018, in north Africa, represented by the species Orexana lemoinei Kobelt, 1882 nov. comb. A new Xerogyra species, Xerogyra halgassi nov. sp., from the Apennine Mountain has been described based on the combination of morphoanatomical and molecular traits. For the first time, the morphoanatomical description of the known Xerogyra species has been presented. Full article
Show Figures

Figure 1

21 pages, 5062 KiB  
Article
Forest Management Effects on Breeding Bird Communities in Apennine Beech Stands
by Guglielmo Londi, Francesco Parisi, Elia Vangi, Giovanni D’Amico and Davide Travaglini
Ecologies 2025, 6(3), 54; https://doi.org/10.3390/ecologies6030054 - 1 Aug 2025
Viewed by 239
Abstract
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate [...] Read more.
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate the effect of forest management regimes on bird communities in the Italian Peninsula during 2022 through audio recordings. We studied the structure, composition, and specialization of the breeding bird community in four managed beech stands (three even-aged beech stands aged 20, 60, and 100 years old, managed by a uniform shelterwood system; one uneven-aged stand, managed by a single-tree selection system) and one uneven-aged, unmanaged beech stand in the northern Apennines (Tuscany region, Italy). Between April and June 2022, data were collected through four 1-hour audio recording sessions per site, analyzing 5 min sequences. The unmanaged stand hosted a richer (a higher number of species, p < 0.001) and more specialized (a higher number of cavity-nesting species, p < 0.001; higher Woodland Bird Community Index (WBCI) values, p < 0.001; and eight characteristic species, including at least four highly specialized ones) bird community, compared to all the managed forests; moreover, the latter were homogeneous (similar to each other). Our study suggests that the unmanaged beech forests should be a priority option for conservation, while in terms of the managed beech forests, greater attention should be paid to defining the thresholds for snags, deadwood, and large trees to be retained to enhance their biodiversity value. Studies in additional sites, conducted over more years and including multi-taxon communities, are recommended for a deeper understanding and generalizable results. Full article
Show Figures

Figure 1

37 pages, 23165 KiB  
Article
Leveraging High-Frequency UAV–LiDAR Surveys to Monitor Earthflow Dynamics—The Baldiola Landslide Case Study
by Francesco Lelli, Marco Mulas, Vincenzo Critelli, Cecilia Fabbiani, Melissa Tondo, Marco Aleotti and Alessandro Corsini
Remote Sens. 2025, 17(15), 2657; https://doi.org/10.3390/rs17152657 - 31 Jul 2025
Viewed by 246
Abstract
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and [...] Read more.
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and photogrammetric surveys, acquired at average intervals of 14 days over a four-month period. UAV-derived orthophotos and DEMs supported displacement analysis through homologous point tracking (HPT), with robotic total station measurements serving as ground-truth data for validation. DEMs were also used for multi-temporal DEM of Difference (DoD) analysis to assess elevation changes and identify depletion and accumulation patterns. Displacement trends derived from HPT showed strong agreement with RTS data in both horizontal (R2 = 0.98) and vertical (R2 = 0.94) components, with cumulative displacements ranging from 2 m to over 40 m between April and August 2024. DoD analysis further supported the interpretation of slope processes, revealing sector-specific reactivations and material redistribution. UAV-based monitoring provided accurate displacement measurements, operational flexibility, and spatially complete datasets, supporting its use as a reliable and scalable tool for landslide analysis. The results support its potential as a stand-alone solution for both monitoring and emergency response applications. Full article
Show Figures

Figure 1

28 pages, 146959 KiB  
Article
An Integrated Remote Sensing and Near-Surface Geophysical Approach to Detect and Characterize Active and Capable Faults in the Urban Area of Florence (Italy)
by Luigi Piccardi, Antonello D’Alessandro, Eutizio Vittori, Vittorio D’Intinosante and Massimo Baglione
Remote Sens. 2025, 17(15), 2644; https://doi.org/10.3390/rs17152644 - 30 Jul 2025
Viewed by 243
Abstract
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of [...] Read more.
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of its recent tectonic structures, unlike those of nearby basins that have produced Mw > 6 events. This study focuses on the southeastern sector of the basin, including the urban area of Florence, using tectonic geomorphology derived from remote sensing, in particular LiDAR data, field verification, and high-resolution geophysical surveys such as electrical resistivity tomography and seismic reflection profiles. The integration of these techniques enabled interpretation of the subdued and anthropogenically masked tectonic structures, allowing the identification of Holocene activity and significant, although limited, surface vertical offset for three NE–SW-striking normal faults, the Peretola, Scandicci, and Maiano faults. The Scandicci and Maiano faults appear to segment the southeasternmost strand of the master fault of the FPB, the Fiesole Fault, which now shows activity only along isolated segments and cannot be considered a continuous active fault. From empirical relationships, the Scandicci Fault, the most relevant among the three active faults, ~9 km long within the basin and with an approximate Late Quaternary slip rate of ~0.2 mm/year, might source Mw > 5.5 earthquakes. These findings highlight the need to reassess the local seismic hazard for more informed urban planning and for better preservation of the cultural and architectural heritage of Florence and the other artistic towns located in the FPB. Full article
Show Figures

Figure 1

22 pages, 13424 KiB  
Article
Measurement of Fracture Networks in Rock Sample by X-Ray Tomography, Convolutional Filtering and Deep Learning
by Alessia Caputo, Maria Teresa Calcagni, Giovanni Salerno, Elisa Mammoliti and Paolo Castellini
Sensors 2025, 25(14), 4409; https://doi.org/10.3390/s25144409 - 15 Jul 2025
Viewed by 435
Abstract
This study presents a comprehensive methodology for the detection and characterization of fractures in geological samples using X-ray computed tomography (CT). By combining convolution-based image processing techniques with advanced neural network-based segmentation, the proposed approach achieves high precision in identifying complex fracture networks. [...] Read more.
This study presents a comprehensive methodology for the detection and characterization of fractures in geological samples using X-ray computed tomography (CT). By combining convolution-based image processing techniques with advanced neural network-based segmentation, the proposed approach achieves high precision in identifying complex fracture networks. The method was applied to a marly limestone sample from the Maiolica Formation, part of the Umbria–Marche stratigraphic succession (Northern Apennines, Italy), a geological context where fractures often vary in size and contrast and are frequently filled with minerals such as calcite or clays, making their detection challenging. A critical part of the work involved addressing multiple sources of uncertainty that can impact fracture identification and measurement. These included the inherent spatial resolution limit of the CT system (voxel size of 70.69 μm), low contrast between fractures and the surrounding matrix, artifacts introduced by the tomographic reconstruction process (specifically the Radon transform), and noise from both the imaging system and environmental factors. To mitigate these challenges, we employed a series of preprocessing steps such as Gaussian and median filtering to enhance image quality and reduce noise, scanning from multiple angles to improve data redundancy, and intensity normalization to compensate for shading artifacts. The neural network segmentation demonstrated superior capability in distinguishing fractures filled with various materials from the host rock, overcoming the limitations observed in traditional convolution-based methods. Overall, this integrated workflow significantly improves the reliability and accuracy of fracture quantification in CT data, providing a robust and reproducible framework for the analysis of discontinuities in heterogeneous and complex geological materials. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 4663 KiB  
Article
New Data from Minor Mountainous Lakes as High-Resolution Geological Archives of the Northern Apennines, Italy: Lake Moo
by Yago Nestola and Stefano Segadelli
Geosciences 2025, 15(6), 217; https://doi.org/10.3390/geosciences15060217 - 11 Jun 2025
Viewed by 360
Abstract
Sedimentary basins developed in mountain belts are natural traps of catchment erosion products and can produce comprehensive palaeoflood records that extend beyond instrumental or historical data. This study investigates the Lake Moo plain (1120 m a.s.l.), located in the Mt. Ragola (1712 m [...] Read more.
Sedimentary basins developed in mountain belts are natural traps of catchment erosion products and can produce comprehensive palaeoflood records that extend beyond instrumental or historical data. This study investigates the Lake Moo plain (1120 m a.s.l.), located in the Mt. Ragola (1712 m a.s.l.) ophiolitic massif in the Northern Apennines (Italy), which serves as an excellent case study for inferring the chronology of past flood events due to its position relative to the dominant atmospheric flow and its favorable geological and geomorphological characteristics. The Northern Apennines is a relatively understudied region regarding the reconstruction of past Holocene flood activity through the analysis of lake sediments and peat bogs, compared with areas like the Alps. The main objective of this research was to analyze sediment cores taken from a lake situated in a catchment area dominated by ultramafic rock lithologies and associated residual weathering cover deposits. This allowed us to detect and characterize past flood events in the Ligurian–Emilian Apennines. A multidisciplinary approach, integrated with reference data on geology, geomorphology, pedology, and petrography, enabled a more detailed description of the changes in the hydrologic cycle. Collectively, these data suggest that periods of increased past flood activity were closely linked to phases of rapid climate change at the scale of the Ligurian–Emilian Apennines. The preliminary results suggest that floods occurring during periods of temperature drops have distinct characteristics compared with those during temperature rises. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

28 pages, 32576 KiB  
Article
Machine Learning Algorithms of Remote Sensing Data Processing for Mapping Changes in Land Cover Types over Central Apennines, Italy
by Polina Lemenkova
J. Imaging 2025, 11(5), 153; https://doi.org/10.3390/jimaging11050153 - 12 May 2025
Viewed by 1174
Abstract
This work presents the use of remote sensing data for land cover mapping with a case of Central Apennines, Italy. The data include 8 Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite images in six-year period (2018–2024). The operational workflow included satellite [...] Read more.
This work presents the use of remote sensing data for land cover mapping with a case of Central Apennines, Italy. The data include 8 Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite images in six-year period (2018–2024). The operational workflow included satellite image processing which were classified into raster maps with automatically detected 10 classes of land cover types over the tested study. The approach was implemented by using a set of modules in Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). To classify remote sensing (RS) data, two types of approaches were carried out. The first is unsupervised classification based on the MaxLike approach and clustering which extracted Digital Numbers (DN) of landscape feature based on the spectral reflectance of signals, and the second is supervised classification performed using several methods of Machine Learning (ML), technically realised in GRASS GIS scripting software. The latter included four ML algorithms embedded from the Python’s Scikit-Learn library. These classifiers have been implemented to detect subtle changes in land cover types as derived from the satellite images showing different vegetation conditions in spring and autumn periods in central Apennines, northern Italy. Full article
Show Figures

Figure 1

23 pages, 13788 KiB  
Article
The Sonoscape of a Rural Town in the Mediterranean Region: A Case Study of Fivizzano
by Almo Farina and Timothy C. Mullet
Acoustics 2025, 7(2), 23; https://doi.org/10.3390/acoustics7020023 - 22 Apr 2025
Viewed by 1049
Abstract
The sonoscape of a small town at the foot of the Northern Apennines Mountains in north–central Italy was studied using a regular grid of automatic recording devices, which collected ambient sounds during the spring of 2024. The study area is characterized by high [...] Read more.
The sonoscape of a small town at the foot of the Northern Apennines Mountains in north–central Italy was studied using a regular grid of automatic recording devices, which collected ambient sounds during the spring of 2024. The study area is characterized by high landscape heterogeneity, a result of widespread suburban agricultural abandonment and urban development. Sonic data were analyzed using the Sonic Heterogeneity Index and nine derivative metrics. The sonic signatures from 26 stations exhibited distinct, spatially explicit patterns that were hypothesized to be related to a set of 11 landcover types and seven landscape metrics. The unique sound profile of each sample site was consistent with the emerging heterogeneity of landcover typical of many Mediterranean regions. Some sonic indices exhibited stronger correlations with landscape metrics than others. In particular, the Effective Number of Frequency Bins Ratio (ENFBr) and Sheldon’s Evenness (E) proved particularly effective at revealing the link between sonic processes and landscape patterns. The sonoscape and landscape displayed correlations significantly aligned with their variability, highlighting the ecological heterogeneity of the sonic and physical domains in the study area. This case study underscores the importance of selecting appropriate metrics to describe complex ecological processes, such as the relationships and cause-and-effect dynamics of environmental sounds among human altered landscapes. Full article
Show Figures

Figure 1

27 pages, 5854 KiB  
Article
Naturalness and Tree Composition Determine the Abundance of Rare and Threatened Orchids in Mature and Old-Growth Abies alba Forests in the Northern Apennines (Italy)
by Antonio Pica, Bartolomeo Schirone, Sara Magrini, Paolo Laghi, Kevin Cianfaglione and Alfredo Di Filippo
Land 2025, 14(3), 579; https://doi.org/10.3390/land14030579 - 10 Mar 2025
Viewed by 1088
Abstract
Forest Orchidaceae are important for European temperate forests, yet their distribution and abundance have so far interested limited research. In three pure or mixed silver fir stands in the Foreste Casentinesi National Park (NP) (Northern Apennines, Italy) we analysed how structural traits in [...] Read more.
Forest Orchidaceae are important for European temperate forests, yet their distribution and abundance have so far interested limited research. In three pure or mixed silver fir stands in the Foreste Casentinesi National Park (NP) (Northern Apennines, Italy) we analysed how structural traits in mature and old-growth forests affected orchid communities in terms of abundance of the main genera, trophic strategy and rarity in the NP. We established three 20 × 60 m plots to quantify the structure of living and dead tree community, including a set of old-growth attributes connected to large trees, deadwood, and established regeneration. In each plot, we measured the abundance of all orchid species and explored their behaviour according to the trophic strategy (autotrophy/mixotrophy, obligate mycoheterotrophy), rarity within the NP, and threatened status according to the IUCN Red List. We used multivariate ordination and classification techniques to assess plot similarities according to forest structure and Orchid Community and identify the main structural factors related to orchid features. The main structural factors were used as predictors of community traits. Forest composition (i.e., the dominance/abundance of silver fir) affected the presence of the main orchid genera: Epipactis were abundant in silver fir-dominated forests, Cephalanthera in mixed beech and fir forests. Interestingly, Cephalanthera could become limited even in beech-dominated conditions if fir regeneration was abundant and established. Old-growth attributes like the density of deadwood and large tree volume were important determinants of the presence of rare and mycoheterotrophic species. Our results provided a first quantitative description of forest reference conditions to be used in the protection and restoration of threatened and rare orchid species. Full article
(This article belongs to the Special Issue Species Vulnerability and Habitat Loss II)
Show Figures

Figure 1

12 pages, 5212 KiB  
Article
Identifying Ecological Corridors of the Bush Cricket Saga pedo in Fragmented Landscapes
by Francesca Della Rocca, Emanuele Repetto, Livia De Caria and Pietro Milanesi
Insects 2025, 16(3), 279; https://doi.org/10.3390/insects16030279 - 6 Mar 2025
Cited by 1 | Viewed by 1756
Abstract
The bush cricket Saga pedo, listed as Vulnerable globally by the IUCN and included in Annex IV of the EU Habitats Directive, is a parthenogenetic species highly sensitive to environmental changes, facing threats from forest expansion and agricultural intensification. S. pedo prefers [...] Read more.
The bush cricket Saga pedo, listed as Vulnerable globally by the IUCN and included in Annex IV of the EU Habitats Directive, is a parthenogenetic species highly sensitive to environmental changes, facing threats from forest expansion and agricultural intensification. S. pedo prefers dry, open habitats with sparse vegetation, and its pronounced thermo-heliophily makes it an indicator of xerothermic habitats. In many areas of Italy, including the Northern Apennines (Piedmont), semi-natural grasslands are fragmented. Open habitats have been reduced to small, isolated patches surrounded by forests due to the abandonment of agropastoral activities. Consequently, the occurrence of open habitat species is related to the quality and availability of suitable areas and ecological connectivity. We developed a spatial Bayesian framework to identify areas of occurrence for S. pedo. Using the inverse probability of occurrence, we derived ecological corridors among suitable patches. Our findings indicate that the occurrence and connectivity of S. pedo are reduced by intensive cultivation but favored by open habitats with 10–50% woody tree cover, suggesting sustainable land management is crucial for supporting the species. Given the extinction risk S. pedo faces, we urge local administrations to maintain and improve suitable areas and guarantee the network of ecological corridors identified. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Insects)
Show Figures

Graphical abstract

24 pages, 4166 KiB  
Article
Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge
by Nicolas E. Beaudoin, Daniel Koehn, Einat Aharonov, Andrea Billi, Matthieu Daeron and Adrian Boyce
Minerals 2025, 15(1), 73; https://doi.org/10.3390/min15010073 - 14 Jan 2025
Cited by 2 | Viewed by 891
Abstract
Rough surfaces known as stylolites are common geological features that are developed by pressure solution, especially in carbonate rocks, where they are used as strain markers and as stress gauges. As applications are developing in various geological settings, questions arise regarding the uncertainties [...] Read more.
Rough surfaces known as stylolites are common geological features that are developed by pressure solution, especially in carbonate rocks, where they are used as strain markers and as stress gauges. As applications are developing in various geological settings, questions arise regarding the uncertainties associated with quantitative estimates of paleostress using stylolite roughness. This contribution reports for the first time a measurement of the temperature at which pressure solution was active by applying clumped isotopes thermometry to calcite cement found in jogs linking the tips of the stylolites. This authigenic calcite formed as a redistribution of the surrounding dissolved material by the same dissolution processes that formed the extensive stylolite network. We compare the depth derived from these temperatures to the depth calculated from the vertical stress inversion of a bedding parallel stylolite population documented on a slab of the Calcare Massiccio formation (early Jurassic) formerly collected in the Umbria-Marches Arcuate Ridge (Northern Apennines, Italy). We further validate the coevality between the jog development and the pressure solution by simulating the stress field around the stylolite tip. Calcite clumped isotopes constrain crystallization to temperatures between 35 and 40 °C from a common fluid with a δ18O signature around −1.3‰ SMOW. Additional δ18O isotopes on numerous jogs allows the range of precipitation temperature to be extended to from 25 to 53 °C, corresponding to a depth range of 650 to 1900 m. This may be directly compared to the results of stylolite roughness inversion for stress, which predict a range of vertical stress from 14 to 46 MPa, corresponding to depths from 400 to 2000 m. The overall correlation between these two independent depth estimates suggests that sedimentary stylolites can reliably be used as a depth gauge, independently of the thermal gradient. Beyond the method validation, our study also reveals some mechanisms of pressure solution and the associated p,T conditions favouring their development in carbonates. Full article
(This article belongs to the Special Issue Stylolites: Development, Properties, Inversion and Scaling)
Show Figures

Figure 1

19 pages, 22002 KiB  
Article
Plio–Quaternary Tectonic Activity in the Northern Nubian Belts: The Main Driving Forces
by Enzo Mantovani, Marcello Viti, Daniele Babbucci and Caterina Tamburelli
Appl. Sci. 2025, 15(2), 587; https://doi.org/10.3390/app15020587 - 9 Jan 2025
Cited by 3 | Viewed by 822
Abstract
It is suggested that the occurrence of tectonic activity in the northern Nubian belts (Tell-Rif and Atlas systems) since the Late Pliocene can be interpreted as one of the processes that were produced in the central and western Mediterranean zones by the collision [...] Read more.
It is suggested that the occurrence of tectonic activity in the northern Nubian belts (Tell-Rif and Atlas systems) since the Late Pliocene can be interpreted as one of the processes that were produced in the central and western Mediterranean zones by the collision of the Adriatic continental promontory with the Anatolian–Aegean Tethyan system. Since then, the consumption of the residual low-buoyancy domains in the Mediterranean area was allowed by a major change in the plate mosaic and the related kinematics. The new tectonic setting started with the decoupling of a large portion of the Adriatic domain (Adria plate) from Nubia, through the formation of a long discontinuity crossing the Ionian domain (Victor Hensen–Medina fault) and the Hyblean–Pelagian domain (Sicily channel fault system). Once decoupled, the Adria plate underwent a clockwise rotation, at the expense of E–W shortening in the Hyblean–Pelagian domain and in the northern Nubian margin. The shortening in the Pelagian domain was accommodated by the northward escape of the Adventure wedge, which in turn caused the northward displacement of the eastern Maghrebian sector. The indentation of these structures into the Alpine–Apennine material lying east of the Corsica–Sardinia block induced an east to southeastward escape of wedges (southern Apennines and Calabria). This occured at the expense of the remnant Ionian Tethys oceanic domain and the thinned Adriatic margin. The extensional regime that developed in the wake of the migrating wedges led to the formation of the central and southern Tyrrhenian basins. In the northern Nubian belts, the westward push of the Adria–Hyblean–Pelagian domain has been accommodated by oroclinal bending, thrusting and uplifting across the Tell and Atlas belts. This geodynamic context might explain some features of the seismicity time pattern observed in the Tell system. Full article
Show Figures

Figure 1

15 pages, 8308 KiB  
Article
The Diatom Genus Navicula in Spring Ecosystems with the Description of Navicula aquaesuavis sp. nov.
by María Cid-Rodríguez, Marco Cantonati, Nicola Angeli, Olena Bilous, Maha Al-Harbi, Horst Lange-Bertalot, Zlatko Levkov, Lucia Piana, Daniel Spitale and Abdullah A. Saber
Water 2024, 16(19), 2751; https://doi.org/10.3390/w16192751 - 27 Sep 2024
Cited by 2 | Viewed by 2969
Abstract
Given the limited understanding of species diversity and ecological preferences of diatoms of the genus Navicula in spring ecosystems, herein we present and describe as species new to science, Navicula aquaesuavis Lange-Bert., Levkov, Cid-Rodríguez, A.A.Saber and Cantonati sp. nov. This species was collected [...] Read more.
Given the limited understanding of species diversity and ecological preferences of diatoms of the genus Navicula in spring ecosystems, herein we present and describe as species new to science, Navicula aquaesuavis Lange-Bert., Levkov, Cid-Rodríguez, A.A.Saber and Cantonati sp. nov. This species was collected from a mountain spring located above the tree line at 1613 m a.s.l. in the Northern Apennines. The Fontana del Vescovo (Bishop’s spring), which is the locus classicus of the new species, has a low conductivity (60–70 µS cm−1), temperature of ca. 5 °C, circumneutral pH (7.3–7.5), relatively low nitrate (ca. 1 mg L−1), and also suffered from a discharge reduction from 1 to 0.1 L s−1 from 2011 to 2023. The putative new species was confirmed by a second finding in Northern Macedonia, and we thoroughly document this second population as well. We seized the opportunity to describe this new Navicula and review the global literature on the diatom genus Navicula in spring ecosystems. Using the results of this review and our own databases on springs and wells in central Europe and Egypt, we discuss the main Navicula species and their environmental preferences in spring habitats. Full article
(This article belongs to the Special Issue Biodiversity of Freshwater Ecosystems: Monitoring and Conservation)
Show Figures

Figure 1

24 pages, 14071 KiB  
Article
Synergistic Use of Synthetic Aperture Radar Interferometry and Geomorphological Analysis in Slow-Moving Landslide Investigation in the Northern Apennines (Italy)
by Carlotta Parenti, Francesca Grassi, Paolo Rossi, Mauro Soldati, Edda Pattuzzi and Francesco Mancini
Land 2024, 13(9), 1505; https://doi.org/10.3390/land13091505 - 16 Sep 2024
Cited by 1 | Viewed by 1521
Abstract
In mountain environments, landslide activity can be assessed through a combination of remote and proximal sensing techniques performed at different scales. The complementarity of methods and the synergistic use of data can be crucial for landslide recognition and monitoring. This paper explored the [...] Read more.
In mountain environments, landslide activity can be assessed through a combination of remote and proximal sensing techniques performed at different scales. The complementarity of methods and the synergistic use of data can be crucial for landslide recognition and monitoring. This paper explored the potential of Multi-Temporal Differential Synthetic Aperture Radar Interferometry (MT-DInSAR) to detect and monitor slope deformations at the basin scale in a catchment area of the Northern Apennines (Italy) and verified the consistency between the landslide classification by the Inventory of Landslide Phenomena in Italy (IFFI) and displacements from the SAR data. In this research, C- and X-band SAR were considered to provide insights into the performances and suitability of sensors operating at different frequencies. This study provides clues about the state of activity of slow-moving landslides and critically assessed its contribution to the IFFI inventory update. Moreover, it demonstrated the benefits of the synergistic use of SAR and geomorphological analysis to investigate slope dynamics in clayey terrains by exemplifying the approach for a relevant case study, the Gaiato landslide. Notwithstanding the widespread use of MT-DInSAR for landslide kinematics investigations, the main limiting factors are discussed along with the expected improvements related to the upcoming new generations of L-band SAR satellites. Full article
(This article belongs to the Special Issue Remote Sensing Application in Landslide Detection and Assessment)
Show Figures

Figure 1

21 pages, 11739 KiB  
Article
Land Cover and Spatial Distribution of Surface Water Loss Hotspots in Italy
by Irene Palazzoli, Gianluca Lelli and Serena Ceola
Sustainability 2024, 16(18), 8021; https://doi.org/10.3390/su16188021 - 13 Sep 2024
Viewed by 1449
Abstract
Increasing water withdrawals and changes in land cover/use are critically altering surface water bodies, often causing a noticeable reduction in their area. Such anthropogenic modification of surface waters needs to be thoroughly examined to recognize the dynamics through which humans affect the loss [...] Read more.
Increasing water withdrawals and changes in land cover/use are critically altering surface water bodies, often causing a noticeable reduction in their area. Such anthropogenic modification of surface waters needs to be thoroughly examined to recognize the dynamics through which humans affect the loss of surface water. By leveraging remotely-sensed data and employing a distance–decay model, we investigate the loss of surface water resources that occurred in Italy between 1984 and 2021 and explore its association with land cover change and potential human pressure. In particular, we first estimate the land cover conversion across locations experiencing surface water loss. Next, we identify and analytically model the influence of irrigated and built-up areas, which heavily rely on surface waters, on the spatial distribution of surface water losses across river basin districts and river basins in Italy. Our results reveal that surface water losses are mainly located in northern Italy, where they have been primarily replaced by cropland and vegetation. As expected, we find that surface water losses tend to be more concentrated in the proximity of both irrigated and built-up areas yet showing differences in their spatial occurrence and extent. These observed spatial patterns are well captured by our analytical model, which outlines the predominant role of irrigated areas, mainly across northern Italy and Sicily, and more dominant effects of built-up areas across the Apennines and in Sardinia. By highlighting land cover patterns following the loss of surface water and evaluating the relative distribution of surface water losses with respect to areas of human pressure, our analysis provides key information that could support water management and prevent future conditions of water scarcity due to unsustainable water exploitation. Full article
Show Figures

Figure 1

Back to TopTop