Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = normal spring constant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2266 KiB  
Article
Erythropoiesis and Gene Expression Analysis in Erythroid Progenitor Cells Derived from Patients with Hemoglobin H/Constant Spring Disease
by Narawich Wongkhammul, Pinyaphat Khamphikham, Siripong Tongjai, Adisak Tantiworawit, Kanda Fanhchaksai, Somsakul Pop Wongpalee, Alisa Tubsuwan, Supawadee Maneekesorn and Pimlak Charoenkwan
Int. J. Mol. Sci. 2024, 25(20), 11246; https://doi.org/10.3390/ijms252011246 - 19 Oct 2024
Viewed by 1255
Abstract
Hemoglobin H/Constant Spring (Hb H/CS) disease represents a form of non-deletional Hb H disease characterized by chronic hemolytic anemia that ranges from moderate to severe and may lead to transfusion-dependent thalassemia. To study the underlying mechanisms of this disease, we conducted an analysis [...] Read more.
Hemoglobin H/Constant Spring (Hb H/CS) disease represents a form of non-deletional Hb H disease characterized by chronic hemolytic anemia that ranges from moderate to severe and may lead to transfusion-dependent thalassemia. To study the underlying mechanisms of this disease, we conducted an analysis of erythropoiesis and gene expression in erythroid progenitor cells derived from CD34+ hematopoietic stem/progenitor cells from patients with Hb H/CS disease and normal controls. Twelve patients with Hb H/CS disease and five normal controls were enrolled. Peripheral blood samples were collected to isolate CD34+ hematopoietic stem/progenitor cells for the analysis of cell proliferation and differentiation. Six samples from patients with Hb H/CS disease and three controls were subsequently studied for gene expression by next generation sequencing analysis. Erythroid progenitor cells derived from patients with Hb H/CS disease exhibited a trend towards increased rates of erythroid proliferation and decreased cell viability compared to those from controls. Moreover, erythroid progenitor cells derived from patients with Hb H/CS disease demonstrated delayed terminal differentiation. Gene expression profiling revealed elevated levels of genes encoding molecular chaperones, including the heat shock protein genes (HSPs) and the chaperonin containing TCP-1 subunit genes (CCTs) in the Hb H/CS disease group. In summary, erythroid progenitor cells derived from patients with Hb H/CS disease exhibit a trend towards heightened erythroid proliferation, diminished cell viability, and delayed terminal differentiation. Additionally, the increased expression of genes encoding molecular chaperones was observed, providing information on potential underlying pathophysiological mechanisms. Full article
(This article belongs to the Special Issue Genomic Research of Rare Diseases)
Show Figures

Graphical abstract

16 pages, 10808 KiB  
Article
Design and Analysis of a Stable Support Structure for a Near-Infrared Space-Borne Doppler Asymmetric Spatial Heterodyne Interferometer
by Jian Sun, Wei Wang, Chenguang Chang, Di Fu, Xiongbo Hao, Juan Li, Yutao Feng and Bingliang Hu
Appl. Sci. 2023, 13(18), 10446; https://doi.org/10.3390/app131810446 - 19 Sep 2023
Viewed by 1180
Abstract
As spectral resolution increases, the dimension of the Doppler Asymmetric Spatial Heterodyne (DASH) interferometer increases. The existing approach for stably mounting the interferometer is limited to mounting a normal-sized DASH interferometer. In this study, a novel and stable structure is proposed, with its [...] Read more.
As spectral resolution increases, the dimension of the Doppler Asymmetric Spatial Heterodyne (DASH) interferometer increases. The existing approach for stably mounting the interferometer is limited to mounting a normal-sized DASH interferometer. In this study, a novel and stable structure is proposed, with its effecti1veness exemplified for a near-infrared (NIR) DASH interferometer. The mathematical model of a flexible structure was established. The parameters of the support structure were optimized by requiring the mechanical stress of the flexible structure and shear stress at the bonding surface to be less than the strength value. The spring constants were optimally designed to adjust natural frequency and minimize stress. The finite element analysis (FEA) results show that the maximum mechanical stress was 65.56 MPa. The maximum shear stress was 3.4 MPa. All stress values had a high safety margin. The mechanical material and adhesive area were optimally designed. Therefore, the thermal resistance of the structure was improved by 7.5 times. The test results indicate that the proposed flexible support structure could satisfy the requirements of the launch environment. The results from FEA and vibration tests were consistent with the model calculation results. Compared to existing structures, the mechanical performance and thermal resistance were improved. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

24 pages, 5440 KiB  
Article
Transient Translational–Rotational Motion of an Ocean Current Converter Mooring System with Initial Conditions
by Shueei-Muh Lin, Wen-Rong Wang and Hsin Yuan
J. Mar. Sci. Eng. 2023, 11(8), 1533; https://doi.org/10.3390/jmse11081533 - 31 Jul 2023
Cited by 3 | Viewed by 1232
Abstract
Systems of ocean current power generation are generally moored deep in the seabed. The mooring system is like ropes. The ropes are very long and can provide tension but not compression, and their dynamic displacement is large and unstable, which is different from [...] Read more.
Systems of ocean current power generation are generally moored deep in the seabed. The mooring system is like ropes. The ropes are very long and can provide tension but not compression, and their dynamic displacement is large and unstable, which is different from traditional structures. To generate high-efficiency ocean current power generation, it is necessary to design a stable mooring system. Maintaining the stability and small dynamic displacement of the ocean current invertor is significantly helpful for the high efficiency of the invertor. In addition, the stability of the mooring system and a small dynamic tension, high safety factor, and long life of the mooring ropes are essential. In this study, we investigate the transient behavior of a mooring system composed of an inverter platform, pontoon, and ropes under initial conditions. An analytical method is proposed. The transient translational and rotational displacements are composed of 36 independent normalized fundamental solutions. The composition depends on the initial conditions. Each fundamental solution is derived by using the Frobenius method. This study proposes the replacement of the traditional single-rope mode with the double-rope parallel mode, which can maintain a high fracture strength and low effective spring constant in the rope. It is verified that this design can decrease instantaneous tension and increase the safety factor of the rope. Additionally, high hydrodynamic damping coefficients can significantly increase the stability of the mooring system. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

23 pages, 15928 KiB  
Article
Shear Behavior and Asperity Damage of 3D Rough Joints under CNS Boundary Conditions Based on CZM Simulation
by Shubo Zhang, Xin Zheng, Changsheng Wang and Gang Wang
Sustainability 2023, 15(6), 5064; https://doi.org/10.3390/su15065064 - 13 Mar 2023
Cited by 3 | Viewed by 1922
Abstract
Although boundary conditions can significantly impact the shear behaviors and asperity damage evolution of jointed rocks, numerical studies on the damage of 3D rough rock joints under the constant normal stiffness (CNS) boundary condition have rarely been reported. In this work, the three-dimensional [...] Read more.
Although boundary conditions can significantly impact the shear behaviors and asperity damage evolution of jointed rocks, numerical studies on the damage of 3D rough rock joints under the constant normal stiffness (CNS) boundary condition have rarely been reported. In this work, the three-dimensional model of the irregular joint surface is established by using point cloud reconstruction technology. Based on the cohesive zone model (CZM), we simulate the shear behavior of three-dimensional rough rock joints under the CNS boundary condition, which is realized by using embedded spring elements implemented with a Python subroutine. We conducted laboratory direct shear tests under CNS boundary conditions. The agreement with the laboratory experimental results verifies the fidelity of the numerical method. Our results show that boundary conditions can significantly affect the shear behavior of rock joints, especially in the post-peak stage. Under the same initial normal stress, the peak shear stress and the number of microcracks in the asperities increase significantly with the increase of normal stiffness. The proportion of shear cracks positively correlates with the normal stiffness, indicating that the normal stiffness affects the joint failure mode. The damaged area and the volume of asperities increase with the increase of normal stiffness. Moreover, the distribution of shear-induced asperity loss becomes more nonuniform, and the loss of joint roughness increases rapidly and nonlinearly. Full article
Show Figures

Figure 1

20 pages, 3734 KiB  
Article
DnFCA Isoforms Cooperatively Regulate Temperature-Related Flowering in Dendrobium nobile
by Ting Pan, Ning-Meng Deng, Wu-Xia Guo, Min-Zhen Wan, Yan-Tong Zheng, Song-Yi Chen, Chuan-Liang Liu, Hong-Bo Li and Shan Liang
Biology 2023, 12(2), 331; https://doi.org/10.3390/biology12020331 - 19 Feb 2023
Cited by 2 | Viewed by 3055
Abstract
Timely flowering is a determinative trait for many economically valuable species in the Dendrobium genus of the Orchidaceae family, some of which are used for ornamental and medicinal purposes. D. nobile, a representative species of nobile-type Dendrobium, normally flowers in spring [...] Read more.
Timely flowering is a determinative trait for many economically valuable species in the Dendrobium genus of the Orchidaceae family, some of which are used for ornamental and medicinal purposes. D. nobile, a representative species of nobile-type Dendrobium, normally flowers in spring after exposure to sufficient low temperatures in winter. However, flowering can be stopped or disrupted by the untimely application of high temperatures. Little is known about the regulation and the mechanisms behind this switch. In this study, we report two isoforms from the KFK09_017173 locus of the D. nobile genome, named DnFCAγ and DnFCAβ, respectively, that cooperatively regulate flowering in D. nobile. These two isoforms are generated by alternative 3′ polyadenylation of DnFCA (FLOWERING CONTROL LOCUS C in D. nobile) pre-mRNA and contain a distinct 3′-terminus. Both can partially rescue late flowering in the Arabidopsis fca-1 mutant, while in wild-type Arabidopsis, they tend to delay the flowering time. When introduced into the detached axillary buds or young seedlings of D. nobile, both were able to induce the transcription of DnAGL19 (AGAMOUS LIKE 19 in D. nobile) in seedlings, whereas only DnFCAγ was able to suppress the transcription of DnAPL1 (AP1-LIKE 1 in D. nobile) in axillary buds. Furthermore, the time-course change of DnFCAγ accumulation was opposite to that of DnAPL1 in axillary buds, which was remarkable under low temperatures and within a short time after the application of high temperatures, supporting the suggestion that the expression of DnAPL1 can be inhibited by a high accumulation of DnFCAγ in floral buds. In leaves, the accumulation of DnFCAβ was in accordance with that of DnAGL19 and DnFT (FLOWERING LOCUS T in D. nobile) to a large extent, suggesting the activation of the DnAGL19–DnFT pathway by DnFCAβ. Taken together, these results suggest that the DnFCAγ–DnAPL1 pathway in axillary buds and the DnFCAβ–DnAGL19 pathway in the leaves cooperatively promote flowering under low temperatures. The long-term and constant, or untimely, application of high temperatures leads to the constitutive suppression of DnAPL1 by a high level of DnFCAγ in axillary buds, which consequently delays floral development. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

29 pages, 4218 KiB  
Article
Prospective Climates, and Water Availabilities under Different Projections of Environmental Changes in Prince Edward Island, Canada
by Ahmad Zeeshan Bhatti, Aitazaz Ahsan Farooque, Nicholas Krouglicof, Wayne Peters, Qing Li and Bishnu Acharya
Water 2022, 14(5), 740; https://doi.org/10.3390/w14050740 - 25 Feb 2022
Cited by 8 | Viewed by 3938
Abstract
Climate change impacts on temperatures, precipitations, streamflows, and recharges were studied across eastern, central, and western Prince Edward Island (PEI) between climate normals in 1991–2020, 2021–2050, and 2051–2080 using observed and projected data, and SWAT modeling. Average annual temperature can significantly rise from [...] Read more.
Climate change impacts on temperatures, precipitations, streamflows, and recharges were studied across eastern, central, and western Prince Edward Island (PEI) between climate normals in 1991–2020, 2021–2050, and 2051–2080 using observed and projected data, and SWAT modeling. Average annual temperature can significantly rise from the existing 5.90–6.86 °C to 8.26–11.09 °C in different parts during the next 30–60 years under different RCP scenarios. Average annual precipitations would not significantly change except in western PEI where a 17% likely increase would offset further warming impact; therefore, current streamflows (~650 mm/year) and recharges (~320 mm/year) would not be much affected there. However, warming and increased pumping together in its Wilmot River watershed could reduce streamflows up to 9%, and 13% during 2021–2050, and 2051–2080, respectively. In the eastern forest-dominated Bear River watershed, no significant reductions in current streamflows (~692 mm/year) or recharges (~597 mm/year) are expected. Nevertheless, near constant precipitation and warming could cumulatively reduce streamflows/recharges up to 8% there, as pumping will be negligible. In the central zone, precipitation could insignificantly increase up to 5%, but current streamflows (~737 mm/year) and recharges (~446 mm/year) would not be significantly affected, except for RCP8.5 under which streamflows could reduce by ~16% during 2051–2080. Overall, more attenuated streamflows and recharges are likely with higher quantities in late winter and early spring, and somewhat lesser ones in summer, which could reduce water supplies during the growing season. Besides, precipitation uncertainty of ~300 mm/year between dry and wet years continues to be a major water management challenge. Adapting policies and regulations to the changing environment would ensure sustainable water management in PEI. Full article
Show Figures

Figure 1

19 pages, 18314 KiB  
Article
Rapid and Easy Assessment of Friction and Load-Bearing Capacity in Thin Coatings
by Luís Vilhena, Fábio Ferreira, João Carlos Oliveira and Amílcar Ramalho
Electronics 2022, 11(3), 296; https://doi.org/10.3390/electronics11030296 - 18 Jan 2022
Cited by 5 | Viewed by 2142
Abstract
The present research paper aims to evaluate the tribological behavior of coatings in applications where high wear resistance and low friction are required, commonly used in refurbishment of various items of industrial equipment. Twelve tribological pairs made of six different coatings, corresponding to [...] Read more.
The present research paper aims to evaluate the tribological behavior of coatings in applications where high wear resistance and low friction are required, commonly used in refurbishment of various items of industrial equipment. Twelve tribological pairs made of six different coatings, corresponding to three different coating families, have been studied: TiSiN, Cr, and DLC (diamond-like carbon). The coatings were produced using a technique called high power impulse magnetron sputtering (HiPIMS). To perform the tribological tests, two methods were used to measure friction, namely energy dissipation in vibratory systems and sliding indentation. The first technique is based on the evaluation of free vibration movement with damping of a mass–spring system induced by a mechanical impulse where the contact between the vibrating device and the sample to be analyzed acts as an additional energy dissipation. At the same time, friction is determined through the inverse analysis by comparing the experimental vibratory movement with the analytical equation of the movement. The determination of the load-bearing capacity of the various coatings has been evaluated using sliding indentation tests against spherical bodies using a constant sliding speed and increasing normal loads. The results obtained in both tests allow to verify a relationship between the friction coefficients of the studied tribological pairs: µDLC < µTiSiN < µCr. This relationship does not occur in the case of the vibration test with the 100Cr6 counter-body. Full article
Show Figures

Figure 1

9 pages, 2143 KiB  
Article
Resonant Motions of Dynamic Offshore Structures in Large Waves
by Ove Tobias Gudmestad
Fluids 2021, 6(10), 352; https://doi.org/10.3390/fluids6100352 - 7 Oct 2021
Cited by 2 | Viewed by 2363
Abstract
In marine engineering, the dynamics of fixed offshore structures (for oil and gas production or for wind turbines) are normally found by modelling of the motion by a classical mass-spring damped system. On slender offshore structures, the loading due to waves is normally [...] Read more.
In marine engineering, the dynamics of fixed offshore structures (for oil and gas production or for wind turbines) are normally found by modelling of the motion by a classical mass-spring damped system. On slender offshore structures, the loading due to waves is normally calculated by applying a force which consists of two parts: a linear “inertia/mass force” and a non-linear “drag force” that is proportional to the square of the velocity of the particles in the wave, multiplied by the direction of the wave particle motion. This is the so-called Morison load model. The loading function can be expanded in a Fourier series, and the drag force contribution exhibits higher order harmonic loading terms, potentially in resonance with the natural frequencies of the system. Currents are implemented as constant velocity terms in the loading function. The paper highlights the motion of structures due to non-linear resonant motion in an offshore environment with high wave intensity. It is shown that “burst”/“ringing” type motions could be triggered by the drag force during resonance situations. Full article
(This article belongs to the Special Issue Hydrodynamics and Its Interaction with Structures)
Show Figures

Figure 1

12 pages, 5793 KiB  
Technical Note
Start of the Green Season and Normalized Difference Vegetation Index in Alaska’s Arctic National Parks
by David K. Swanson
Remote Sens. 2021, 13(13), 2554; https://doi.org/10.3390/rs13132554 - 30 Jun 2021
Cited by 6 | Viewed by 3044
Abstract
Daily Normalized Difference Vegetation Index (NDVI) values from the MODIS Aqua and Terra satellites were compared with on-the-ground camera observations at five locations in northern Alaska. Over half of the spring rise in NDVI was due to the transition from the snow-covered landscape [...] Read more.
Daily Normalized Difference Vegetation Index (NDVI) values from the MODIS Aqua and Terra satellites were compared with on-the-ground camera observations at five locations in northern Alaska. Over half of the spring rise in NDVI was due to the transition from the snow-covered landscape to the snow-free surface prior to the deciduous leaf-out. In the fall after the green season, NDVI fluctuated between an intermediate level representing senesced vegetation and lower values representing clouds and intermittent snow, and then dropped to constant low levels after establishment of the permanent winter snow cover. The NDVI value of snow-free surfaces after fall leaf senescence was estimated from multi-year data using a 90th percentile smoothing spline curve fit to a plot of daily NDVI values vs. ordinal date. This curve typically showed a flat region of intermediate NDVI values in the fall that represent cloud- and snow-free days with senesced vegetation. This “fall plateau” was readily identified in a large systematic sample of MODIS NDVI values across the study area, in typical tundra, shrub, and boreal forest environments. The NDVI level of the fall plateau can be extrapolated to the spring rising leg of the annual NDVI curve to approximate the true start of green season. Full article
Show Figures

Figure 1

26 pages, 18454 KiB  
Article
Effect of the Rolling Friction on the Heap Formation of Dry and Wet Coarse Discs
by Becaye Cissokho Ndiaye, Zhengguo Gao, Massamba Fall and Yajun Zhang
Appl. Sci. 2021, 11(13), 6043; https://doi.org/10.3390/app11136043 - 29 Jun 2021
Cited by 1 | Viewed by 2139
Abstract
We performed 2D numerical simulations to study the dynamic heap formation of coarse particles in different dry and wet conditions. Our results show that the dynamics of the particles depend not only on the amount of liquid contained in the bulk, but also [...] Read more.
We performed 2D numerical simulations to study the dynamic heap formation of coarse particles in different dry and wet conditions. Our results show that the dynamics of the particles depend not only on the amount of liquid contained in the bulk, but also on the initial particles packing, i.e., the arrangement of the grains. The wet particles cohesion model effect on coarse discs heap formation is minimal. This effect is mostly noticed in the particle arrangement and the energy variation rather than the heap formation. We found that the energy of the system varies with the liquid content up to a threshold value, equal to 219% in our study, where the influences of the parameters are minimal. At high liquid volume, the final pile height and radius tend towards an asymptotic value. The initial particles arrangement has a significant impact on the behavior of the bulk after the opening of the lateral walls. The number of particles in the triangle, formed by the initial width of the packing as a base and with a depth equal to N × D, with N representing the number of particles on a vertical line and D their diameter, influences the final shape of the pile. Indeed, the larger the number, the smaller the height of the pile. The simulations performed with the same initial packing show that the cohesion and capillary forces reduce the bulk kinetic energy and increase the potential energy when used with the elastic-plastic spring dashpot model. For the directional constant model, the dependance of the torque on the normal force and the particle size explains that there is almost no difference between the dry and wet model regarding energies. Finally, the elastic-plastic spring-dashpot model is more efficient in reducing the kinetic energy of the system and producing stable piles. Our simulation results using glass beads are in good agreement with the experiments. Full article
Show Figures

Figure 1

7 pages, 4191 KiB  
Article
Misleading HbA1c Measurement in Diabetic Patients with Hemoglobin Variants
by Manthana Mitchai, Nattakarn Suwansaksri, Suphakdee Seanseeha, Jindamanee Saenboonsiri, Putthichai Kraitree, Jirasak Piyapromdee and Atit Silsirivanit
Med. Sci. 2021, 9(2), 43; https://doi.org/10.3390/medsci9020043 - 7 Jun 2021
Cited by 10 | Viewed by 9094
Abstract
Background and Objectives: Hemoglobin A1c (HbA1c) is widely used for the monitoring and management of diabetes mellitus. The aim of this study is to investigate the influence of hemoglobin (Hb) variants on the measurement of HbA1c. Materials and Methods: HbA1c levels of 845 [...] Read more.
Background and Objectives: Hemoglobin A1c (HbA1c) is widely used for the monitoring and management of diabetes mellitus. The aim of this study is to investigate the influence of hemoglobin (Hb) variants on the measurement of HbA1c. Materials and Methods: HbA1c levels of 845 blood samples obtained from diabetic patients with various hemoglobin types were measured using a turbidimetric inhibition immunoassay and capillary electrophoresis. Results: Of 845 patients with diabetes, 65.7% (555/845) have the normal hemoglobin type (A2A) and 34.3% (290/845) have various abnormal hemoglobin types, including heterozygous HbE 30.2% (255/845), homozygous HbE 1.9 % (16/845), Hb Constant Spring (CS) trait 1.4% (12/845), CSEA Bart’s 0.2% (2/845), and beta-thalassemia trait 0.6% (5/845). In most of the patients with diabetes, HbA1c levels determined by two different methods, inhibition immunoassay and capillary electrophoresis, gave strong positive correlation (R = 0.901, P < 0.001), except for those with homozygous HbE (N = 16) and CSEA Bart’s (N = 2). In all 18 patients with homozygous HbE and CSEA Bart’s, the HbA1c was undetectable by capillary electrophoresis, meaning that their estimated average glucose was undeterminable, although their HbA1c levels could be measured using an inhibition immunoassay. The discrepancy of HbA1c results obtained from two different methods is noted in patients without HbA. Conclusions: We have demonstrated the erroneous nature of HbA1c measurement in patients with hemoglobin variants, especially in those without HbA expression. Therefore, in the population with a high prevalence of hemoglobinopathies, hemoglobin typing should be considered as basic information prior to HbA1c measurement. Full article
(This article belongs to the Section Endocrinology and Metabolic Diseases)
Show Figures

Figure 1

9 pages, 1761 KiB  
Article
Application of Fractional Calculus to Modeling the Non-Linear Behaviors of Ferroelectric Polymer Composites: Viscoelasticity and Dielectricity
by Ruifan Meng
Membranes 2021, 11(6), 409; https://doi.org/10.3390/membranes11060409 - 29 May 2021
Cited by 18 | Viewed by 2904
Abstract
Ferroelectric polymer composites normally show non-linear mechanical and electrical behaviors due to the viscoelastic and dielectric relaxation of polymer matrixes. In this paper, a fractional calculus approach is used to describe the non-linear behavior of ferroelectric polymer composites from both viscoelastic and dielectric [...] Read more.
Ferroelectric polymer composites normally show non-linear mechanical and electrical behaviors due to the viscoelastic and dielectric relaxation of polymer matrixes. In this paper, a fractional calculus approach is used to describe the non-linear behavior of ferroelectric polymer composites from both viscoelastic and dielectric perspectives. The fractional elements for viscoelasticity and dielectricity are “spring-pot” and “cap-resistor”, which can capture the intermediate properties between spring and dashpot or capacitor and resistor, respectively. For modeling the viscoelastic deformation, the “spring-pot” equation is directly used as the fractional mechanical model. By contrast, for the dielectricity of ferroelectric polymer composites, which is usually characterized by dielectric constants and dielectric losses, the “cap-resistor” equation is further formulated into the frequency domain by Fourier transform to obtain the fractional order dielectric model. The comparisons with experimental results suggest that the proposed models can well describe the viscoelastic deformation as well as the frequency dependence of the dielectric constant and dielectric loss of ferroelectric polymer composites. It is noted that the fractional order dielectric model needs to be separated into two regions at low and high frequencies due to the polarization effect. Additionally, when the dipole relaxations occur at higher frequencies, the proposed model cannot describe the rise of the dielectric loss curve. Full article
(This article belongs to the Special Issue Application of Ferroelectric-Polymer Composites)
Show Figures

Figure 1

12 pages, 66715 KiB  
Article
Reliability Analysis of Accelerated Destructive Degradation Testing Data for Bi-Functional DC Motor Systems
by Chinuk Lee, Munwon Lim, Chanjoong Kim and Suk Joo Bae
Appl. Sci. 2021, 11(6), 2537; https://doi.org/10.3390/app11062537 - 12 Mar 2021
Cited by 13 | Viewed by 3094
Abstract
An accelerated degradation test (ADT) has become a popular method to accelerate degradation mechanisms by stressing products beyond their normal use conditions. The components of an automobile are degraded over time or cycle due to their constant exposure to friction or wear. Sometimes, [...] Read more.
An accelerated degradation test (ADT) has become a popular method to accelerate degradation mechanisms by stressing products beyond their normal use conditions. The components of an automobile are degraded over time or cycle due to their constant exposure to friction or wear. Sometimes, the performance degradation can be measured only by destructive inspection such as operating torques of return-springs in a bi-functional DC motor system. Plastic deformation of the return-spring causes the degradation of actuating forces for shield movement, resulting in deterioration of the shield moving speed in a headlight system. We suggest a step-by-step procedure for a reliability analysis for a bi-functional DC motor in a headlight system, based mainly on accelerated destructive degradation test (ADDT) data. We also propose nonlinear degradation models to describe the ADDT data of the return-springs. Exposure effects of high temperatures on the return-springs are quantitatively modeled through the ADDT models. We compare the estimation results from both the closed-form expression and Monte Carlo simulation to predict the failure–time distribution at normal use conditions, showing that the lifetime estimation results from the closed-form formulation are more conservative. Full article
(This article belongs to the Special Issue Reliability Modelling and Analysis for Complex Systems)
Show Figures

Figure 1

18 pages, 9108 KiB  
Article
Land Cover Classification by Integrating NDVI Time Series and GIS Data to Evaluate Water Circulation in Aso Caldera, Japan
by Hiroki Amano and Yoichiro Iwasaki
Int. J. Environ. Res. Public Health 2020, 17(18), 6605; https://doi.org/10.3390/ijerph17186605 - 10 Sep 2020
Cited by 7 | Viewed by 4039
Abstract
Grasslands in Aso caldera, Japan, are a type of land cover that is integral for biodiversity, tourist attractions, agriculture, and groundwater recharge. However, the area of grasslands has been decreasing in recent years as a result of natural disasters and changes in social [...] Read more.
Grasslands in Aso caldera, Japan, are a type of land cover that is integral for biodiversity, tourist attractions, agriculture, and groundwater recharge. However, the area of grasslands has been decreasing in recent years as a result of natural disasters and changes in social conditions surrounding agriculture. The question of whether the decrease in spring water discharge in Aso caldera is related to the decrease in grasslands remains unanswered. To clarify this relationship, a water circulation model that considers land covers with different hydrological features is needed. In this study, by integrating Normalized Difference Vegetation Index (NDVI) time series and Geographic Information System (GIS) data, we generated land cover maps from the past (in 1981 and 1991) to the present (in 2015 and 2016), before and after the 2016 Kumamoto earthquake, and then for the future (in the 2040s); these maps formed the dataset for building a water circulation model. The results show that the area of grasslands, which are reported to have a higher groundwater recharge rate than that of forests, in 2016 had decreased to 68% of the area in 1981 as a result of afforestation and transformation into forests, as well as landslides induced by the earthquake. The area of grasslands is predicted to further drop to 60% by the 2040s. On the other hand, the area of forests (conifers and hardwoods) in 2016 had increased by 119% relative to that in 1981 because of the transformation of grasslands into forests, although these areas decreased as a result of landslides due to the 2016 Kumamoto earthquake. Quantification of groundwater recharge from grasslands and forests using the land cover maps generated for 1981, 1996, 2015, and 2016 shows that the annual increase in precipitation in these years significantly affected groundwater recharge; these effects were greater than those associated with the type of land cover. Thus, the groundwater recharge increased, despite the decrease in grasslands. However, when constant precipitation was assumed, the groundwater recharge presented a decreasing trend, indicating the importance of maintaining and conserving grasslands from the viewpoint of groundwater conservation. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

15 pages, 2899 KiB  
Article
Friction-Induced Vibration in a Bi-Stable Compliant Mechanism
by Alborz Niknam and Kambiz Farhang
Vibration 2019, 2(4), 285-299; https://doi.org/10.3390/vibration2040018 - 9 Oct 2019
Viewed by 3699
Abstract
This paper investigates friction-induced self-excited vibration in a bi-stable compliant mechanism. A single-degree-of-freedom oscillator, hanged vertically, vibrates on a belt moving horizontally with a constant velocity. The oscillator is excited through the frictional input provided by the belt. The friction coefficient is defined [...] Read more.
This paper investigates friction-induced self-excited vibration in a bi-stable compliant mechanism. A single-degree-of-freedom oscillator, hanged vertically, vibrates on a belt moving horizontally with a constant velocity. The oscillator is excited through the frictional input provided by the belt. The friction coefficient is defined as an exponentially decaying function of the sliding velocity. Due to the specific configuration of spring and damper, the normal contact force is variable. Therefore, the friction force is a function of the system states, namely, slider velocity and position. Employing eigenvalue analysis gives an overview of the local stability of the linearized system in the vicinity of each equilibrium point. It is shown that the normal force, spring pre-compression and belt velocity are bifurcation parameters. Since the system is highly nonlinear, a local analysis does not provide enough information about the steady-state response. Therefore, the oscillating system is studied numerically to attain a global qualitative picture of the steady-state response. The possibility of the mass-belt detachment and overshoot are studied. It is shown that one equilibrium point is always dominant. In addition, three main questions, i.e., possible mass-belt separation, location of stick-slip transition and overshoot are answered. It is proven that the occurrence of overshoot is impossible. Full article
Show Figures

Figure 1

Back to TopTop