Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = nonthermal actions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1565 KiB  
Review
The Role of Inactivation Methods in Shaping Postbiotic Composition and Modulating Bioactivity: A Review
by Ying Zhu, Meiling Xiao, Tangying Kang, Yufeng He, Jiayan Zhang, Yansheng Zhao and Xiang Xiao
Foods 2025, 14(13), 2358; https://doi.org/10.3390/foods14132358 - 2 Jul 2025
Viewed by 590
Abstract
Postbiotics, as the metabolic products and cellular components of probiotics, possess the characteristics of being non-living yet retaining biological activity. Postbiotics have unique advantages such as high stability, good security, and a clear target of action. In recent years, they have attracted extensive [...] Read more.
Postbiotics, as the metabolic products and cellular components of probiotics, possess the characteristics of being non-living yet retaining biological activity. Postbiotics have unique advantages such as high stability, good security, and a clear target of action. In recent years, they have attracted extensive attention due to their potential roles in immune regulation, anti-inflammation, antioxidation, antibacterial activity, and improving intestinal health. This article systematically reviews the composition of postbiotics and their diversity in fermented foods, with a focus on the impact of different inactivation methods (thermal and non-thermal inactivation) on their biological activities. Many studies have shown that the choice of inactivation method directly affects the immune regulation, anti-inflammatory, and antioxidative functions of postbiotics. Additionally, this review summarizes the application potential of postbiotics in the food industry, the field of medicine and food homology, pet food, and animal breeding, and points out the challenges existing in current research. Future studies need to focus on optimizing inactivation methods to maximize the biological efficacy of postbiotics, thereby promoting the precise application of postbiotics in various fields. Full article
(This article belongs to the Special Issue Fermented Foods: Microbiology, Technology, and Health Benefits)
Show Figures

Figure 1

14 pages, 2081 KiB  
Article
Evaluation of Adequate Type of Non-Thermal Plasma for Treating Oily Sludge to Produce Refined Fuel
by Cherng-Yuan Lin
Processes 2025, 13(6), 1822; https://doi.org/10.3390/pr13061822 - 8 Jun 2025
Cited by 1 | Viewed by 581
Abstract
Although oily sludge is an industrial waste and difficult to separate, its calorific value can still reach 6000 cal/g, thus possessing significant recycling value. This study compares various types of non-thermal plasma for refining oily sludge. The pre-treatment technology utilized filtration combined with [...] Read more.
Although oily sludge is an industrial waste and difficult to separate, its calorific value can still reach 6000 cal/g, thus possessing significant recycling value. This study compares various types of non-thermal plasma for refining oily sludge. The pre-treatment technology utilized filtration combined with solvent extraction to extract the oil portion from the oily sludge. Subsequently, two types of non-thermal plasma, DC streamer discharge and dielectric plasma discharge, were used to crack and activate the oily sludge under different operating conditions. The fuel compositions and properties of the refined fuel treated by two types of non-thermal plasma were compared. The elemental carbon and oxygen of the oily sludge after treatment in a direct DBD plasma reactor for 8 min were 1.96 wt.% less and 1.38 wt.% higher than those of commercial diesel. The research results indicate that the pre-treatment process can effectively improve the refined fuel properties. After pre-treatment, the calorific value of the primary product from the oily sludge can reach 10,598 cal/g. However, the carbon residue of the oily sludge after pre-treatment remained as high as 5.58 wt.%, which implied that further refining processes are required. The streamer discharge plasma reactor used a tungsten needle tip as a high-voltage electrode, leading to a rather small treated range. Corona discharge and arc formation are prone to being produced during the plasma action. Moreover, the addition of quartz glass beads can form a protruding area on the surface of the oily sludge, generating an increase in the reacting surface of the oily sludge, and hence an enhancement of treatment efficiency, in turn. The direct treatment of DBD plasma can thus have a wider and more uniform operating range of plasma generation and a superior efficiency of plasma reaction. Therefore, a direct DBD type of non-thermal equilibrium plasma reactor is preferable to treat oily sludge among those three types of plasma reactor designs. Additionally, when the plasma voltage is increased, it effectively enhances fuel properties. Full article
Show Figures

Graphical abstract

17 pages, 2093 KiB  
Review
Plasma-Activated Water as a Sustainable Nitrogen Source: Supporting the UN Sustainable Development Goals (SDGs) in Controlled Environment Agriculture
by Pamela Estefania Andrade, Patrice Jacob Savi, Flavia Souza Almeida, Bruno Augusto Carciofi, Abby Pace, Yugeng Zou, Nathan Eylands, George Annor, Neil Mattson and Christian Nansen
Crops 2025, 5(3), 35; https://doi.org/10.3390/crops5030035 - 6 Jun 2025
Viewed by 981
Abstract
Global agriculture remains dependent on nitrogen fertilizers produced through fossil fuel-based processes, contributing to greenhouse gas emissions, energy use, and supply chain vulnerabilities. This review introduces plasma-activated water (PAW) as a novel, electricity-driven alternative for sustainable nitrogen delivery. Generated by non-thermal plasma, PAW [...] Read more.
Global agriculture remains dependent on nitrogen fertilizers produced through fossil fuel-based processes, contributing to greenhouse gas emissions, energy use, and supply chain vulnerabilities. This review introduces plasma-activated water (PAW) as a novel, electricity-driven alternative for sustainable nitrogen delivery. Generated by non-thermal plasma, PAW infuses water with reactive oxygen and nitrogen species, offering a clean, decentralized substitute for conventional synthetic fertilizers derived from the Haber–Bosch and Ostwald processes. It can be produced on-site using renewable energy, reducing transportation costs and depending on fertilizers. Beyond its fertilizer properties, PAW enhances seed germination, plant growth, stress tolerance, and pest resistance, making it a multifunctional input for controlled environment agriculture. We also assess PAW’s techno-economic viability, including energy requirements, production costs, and potential scalability through renewable energy. These factors are crucial for determining its feasibility in both industrial systems and localized agricultural applications. Finally, the review examines PAW’s contribution to the ten United Nations Sustainable Development Goals, particularly in climate action, clean energy, and sustainable food production. By combining agronomic performance with circular production and emissions reduction, PAW presents a promising path toward more resilient, low-impact, and self-sufficient agricultural systems. Full article
Show Figures

Figure 1

24 pages, 11315 KiB  
Article
Enhancing Ferroptosis in Lung Adenocarcinoma Cells via the Synergistic Action of Nonthermal Biocompatible Plasma and a Bioactive Phenolic Compound
by Sabnaj Khanam, Young June Hong, Youngsun Kim, Eun Ha Choi and Ihn Han
Biomolecules 2025, 15(5), 691; https://doi.org/10.3390/biom15050691 - 9 May 2025
Cited by 1 | Viewed by 1342
Abstract
Para-coumaric acid (p-CA) is a phenolic compound that has antioxidant, anti-inflammatory, and anticancer properties which make it potential for cancer treatment. However, its effectiveness has been limited by poor solubility, rapid metabolism, and poor absorptivity. Nonthermal biocompatible pressure plasma (NBP) has gained attention [...] Read more.
Para-coumaric acid (p-CA) is a phenolic compound that has antioxidant, anti-inflammatory, and anticancer properties which make it potential for cancer treatment. However, its effectiveness has been limited by poor solubility, rapid metabolism, and poor absorptivity. Nonthermal biocompatible pressure plasma (NBP) has gained attention as a cancer treatment due to its ability to generate reactive oxygen and nitrogen species (RONS), inducing oxidative stress that damages cancer cells. This study aimed to investigate the combined effect of NBP and p-CA on the induction of ferroptosis in lung adenocarcinoma via the GPX4, xCT, and NRF2 pathways. H460 and A549 lung adenocarcinoma cells as well as normal lung cells (MRC5) were treated with p-CA, NBP, and their combination. Cell movement, intracellular RONS levels, and lipid peroxidation, along with apoptosis and ferroptosis-related gene expression, were evaluated by co-treatment. Co-treatment also significantly elevated NO2, NO3, and H2O2 levels and reduced cancer cell (H460, A549) viability (26, 31%) without affecting normal cells MRC5 (7%). Elevated MDA levels and changed expression of ferroptotic proteins indicated mitochondrial dysfunction, oxidative damage, lipid peroxidation, and DNA damage, which resulted in the induction of ferroptosis. These findings reveal a novel ferroptosis mechanism, emphasizing co-treatment for delivering bioavailable natural anticancer drugs. Full article
(This article belongs to the Special Issue Signaling Pathways as Therapeutic Targets for Cancer)
Show Figures

Figure 1

26 pages, 7326 KiB  
Article
Hybrid Drying Method: Influence of Pre-Treatment and Process Conditions of Ultrasound-Assisted Drying on Apple Quality
by Aleksandra Jedlińska, Katarzyna Rybak, Katarzyna Samborska, Alicja Barańska-Dołomisiewicz, Aleksandra Skarżyńska, Magdalena Trusińska, Dorota Witrowa-Rajchert and Małgorzata Nowacka
Appl. Sci. 2025, 15(10), 5309; https://doi.org/10.3390/app15105309 - 9 May 2025
Viewed by 564
Abstract
Ultrasound (US) is a non-thermal food processing method that can be used as a pre-treatment or integrated during drying to enhance mass transfer by inducing cavitation and forming microchannels in plant tissue. Thus, this study investigated the combined effect of ultrasound pre-treatment (21 [...] Read more.
Ultrasound (US) is a non-thermal food processing method that can be used as a pre-treatment or integrated during drying to enhance mass transfer by inducing cavitation and forming microchannels in plant tissue. Thus, this study investigated the combined effect of ultrasound pre-treatment (21 kHz; 180 W; 10 min, 20 min, 30 min) and the subsequent hybrid drying process—ultrasound-assisted hot-air drying (temperature of 70 °C, frequency of 36 kHz; ultrasound power of 120 W, 160 W, 200 W)—on the drying kinetics and quality attributes of dried Gloster apples. The experimental design was optimized using the response surface methodology (RSM). The effects of ultrasound parameters on drying time, dry matter content, water activity, rehydration and hygroscopic properties, color change, textural properties, content of vitamin C, polyphenols and flavonoids, and antioxidant activity were evaluated. Among the analyzed variants, the most effective combinations were longer US duration (30 min) with lower US power (120 W) or shorter US duration (10 min) with higher US power (200 W). To obtain dried material with the most desirable rehydration and hygroscopic properties, a US power in the range of 120–160 W, preceded by a US pre-treatment lasting 20 min, should be selected. Conversely, optimizing the content of bioactive components would involve choosing the longest US treatment time and medium to high ultrasonic power during drying. These results provide actionable insights for the industry to tailor drying parameters based on the desired product attributes. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Graphical abstract

23 pages, 4335 KiB  
Review
Non-Thermal Stabilization Strategies for Rice Bran: Mechanistic Insights, Technological Advances, and Implications for Industrial Applications
by Lu Zhou, Jiangqi Huang, Yutong Du, Fanghao Li, Wenbin Xu, Chenguang Zhou and Siyao Liu
Foods 2025, 14(9), 1448; https://doi.org/10.3390/foods14091448 - 22 Apr 2025
Viewed by 1130
Abstract
Rice bran, a major byproduct of rice processing, is rich in unsaturated fatty acids, high-quality proteins, and bioactive compounds such as γ-oryzanol and ferulic acid. However, its poor storage stability and susceptibility to hydrolytic and oxidative rancidity critically limit industrial exploitation. Recent advances [...] Read more.
Rice bran, a major byproduct of rice processing, is rich in unsaturated fatty acids, high-quality proteins, and bioactive compounds such as γ-oryzanol and ferulic acid. However, its poor storage stability and susceptibility to hydrolytic and oxidative rancidity critically limit industrial exploitation. Recent advances in non-thermal stabilization technologies—valued for their energy efficiency, scalability, and nutrient preservation—offer promising solutions. This review systematically elucidates the enzymatic and microbial mechanisms driving bran rancidity, emphasizing lipase and lipoxygenase activity, and critically evaluates the efficacy of emerging non-thermal strategies. Key findings highlight the superiority of non-thermal methods: cold plasma reduces lipase activity by 70% within 5 min via reactive oxygen species-induced structural disruption; ultra-high pressure preserves 95% of γ-oryzanol by selectively breaking hydrogen bonds in enzymes; high-energy electron beam irradiation suppresses rancidity markers by 45–78%; and enzymatic stabilization with immobilized papain achieves 78% lipase inactivation while retaining <5% nutrient loss. Compared to thermal approaches, non-thermal technologies enhance bioactive retention, while extending shelf-life by 2–3 weeks. By addressing challenges such as microbial synergy, parameter optimization, and industrial scalability, this review provides actionable insights for deploying green, energy-efficient strategies to valorize rice bran into functional foods and nutraceuticals, aligning with global demands for sustainable ingredient innovation. Full article
Show Figures

Figure 1

39 pages, 5682 KiB  
Review
Non-Thermal Technologies in Food Processing: Implications for Food Quality and Rheology
by Zainab T. Al-Sharify, Shahad Z. Al-Najjar, Christian Kosisochukwu Anumudu, Abarasi Hart, Taghi Miri and Helen Onyeaka
Appl. Sci. 2025, 15(6), 3049; https://doi.org/10.3390/app15063049 - 11 Mar 2025
Cited by 2 | Viewed by 3242
Abstract
The food industry mostly utilises thermal processing technologies to enhance the food safety and shelf life by inactivating enzymes, pathogens, and spores. However, there is a shift towards consumer preference for minimally processed foods due to health concerns and the limitations of the [...] Read more.
The food industry mostly utilises thermal processing technologies to enhance the food safety and shelf life by inactivating enzymes, pathogens, and spores. However, there is a shift towards consumer preference for minimally processed foods due to health concerns and the limitations of the conventional thermal processing methods. Thus, the food industry has recently increased the utilisation of non-thermal technologies for food processing and preservation in the production of foods while maintaining the nutritional and sensory qualities of the food. Non-thermal approaches including a Pulsed Electric Field (PEF), High-Pressure Processing (HPP), Ionising Radiation (IOR), Ultraviolet (UV) light, Pulsed Light (PL), and Cold plasma (CP) are increasingly being employed for food preservation, especially for heat-sensitive foods, as they enable microbial inactivation with minimal or no thermal application and less degradation of bioactive constituents of foods. As opposed to conventional thermal technologies that may compromise the food quality, non-thermal preservation processes retain the texture, taste, and rheological properties, therefore presenting an invaluable option in the food chain system. Moreover, non-thermal food processing approaches are becoming well-established within the food sector as they can be utilised for a wide range of food items. This paper provides a critical review of the industrial applications, mechanisms of action, and efficiency of major non-thermal food processing technologies. In addition, it also addresses their impact on the food quality, microstructure, and rheology, while exploring their limitations. Although these technologies are of great value in preserving the shelf life and food integrity, high upfront investment costs continue to discourage large-scale adoption. However, with the growing demand for fresh and minimally processed foods, the operational costs for these technologies are expected to become more accessible, promoting their widespread adoption in the industry. Full article
Show Figures

Figure 1

19 pages, 9544 KiB  
Article
Effects of High-Voltage Discharge Plasma on Drying Properties, Microstructure, and Nutrients of Oat Grass
by Xixuan Wang, Zhidan Liu, Peishuo Zhao and Zhiqing Song
Agronomy 2025, 15(2), 408; https://doi.org/10.3390/agronomy15020408 - 6 Feb 2025
Cited by 1 | Viewed by 1138
Abstract
In this study, the drying properties of new-mown oat grass were investigated using three methods: high-voltage discharge plasma drying (HVDP), hot-air drying (HAD), and natural air drying (AD). The HVDP process mainly generates discharge plasma between needle electrodes and a dielectric plate by [...] Read more.
In this study, the drying properties of new-mown oat grass were investigated using three methods: high-voltage discharge plasma drying (HVDP), hot-air drying (HAD), and natural air drying (AD). The HVDP process mainly generates discharge plasma between needle electrodes and a dielectric plate by changing the discharge voltage. HVDP, which is a new type of non-thermal drying technology, uses the energy exchange associated with the action of plasma and the non-uniform electric field force to accelerate the evaporation of water. The results show that HVDP has obvious advantages in terms of the drying rate and drying time, as well as reducing energy consumption while retaining nutrients. In particular, under the condition of 35 kV, HVDP not only effectively shortened the drying time and reduced the energy consumption but also selectively degraded the nutrient-reducing substances (e.g., lignin) and retained the substances positively correlated with the nutrient quality, significantly improving the nutrient content of the treated oat grass. In conclusion, as an innovative non-thermal drying technology, HVDP has great potential to improve the drying efficiency and reduce nutrient degradation in oat grass, providing an innovative solution to improve its quality and utilisation. Full article
(This article belongs to the Special Issue High-Voltage Plasma Applications in Agriculture)
Show Figures

Figure 1

26 pages, 3315 KiB  
Review
An Innovative Food Processing Technology: Microwave Electrodeless Ultraviolet, Luminescence Mechanism, Microbial Inactivation, and Food Application
by Shuqi Chang, Zhaoyi Zhang, Qin Liu, Haixia Wu and Alideertu Dong
Foods 2024, 13(24), 4110; https://doi.org/10.3390/foods13244110 - 19 Dec 2024
Cited by 2 | Viewed by 4860
Abstract
Microwave electrodeless ultraviolet (MWUV) technology, as an emerging food processing technique, has garnered growing attention in the realm of food science in recent years. Based on different application requirements, MWUV equipment types are categorized as microwave oven reactor, continuous-flow UV-microwave reactor, coaxially driven [...] Read more.
Microwave electrodeless ultraviolet (MWUV) technology, as an emerging food processing technique, has garnered growing attention in the realm of food science in recent years. Based on different application requirements, MWUV equipment types are categorized as microwave oven reactor, continuous-flow UV-microwave reactor, coaxially driven MWUV reactor, and complete ultraviolet reactor. The luminescence properties of MWUV equipment depend on their filler gas; mercury is commonly used as a filler gas to produce a wavelength at 253.7 nm for food non-thermal sterilization. The microbial sterilization effect of MWUV is primarily attributed to the synergistic action of microwave and ultraviolet (UV): MWUV enhances reactive oxygen species (ROS) production, disrupts the cell membrane structures of bacteria, leads to bacterial endosome leakage, and induces nucleic acid damage. MWUV extends food shelf-life by eliminating microorganisms without significantly altering food quality compared with traditional thermal sterilization methods. Additionally, MWUV, combined with digestion reagents such as HNO3 and H2O2, can effectively enhance the digestion of food samples to detect essential and toxic elements. Studies on MWUV technology hold broad potential in the food industry, with promising implications for food safety and consumer demand for high-quality food. Future research may focus on optimizing the equipment parameters and integrating with other food processing technologies to facilitate further development and application of MWUV. Full article
Show Figures

Figure 1

25 pages, 1213 KiB  
Review
The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology
by Carrie Anne Minnaar, Gyula Peter Szigeti and Andras Szasz
Cancers 2024, 16(23), 3908; https://doi.org/10.3390/cancers16233908 - 21 Nov 2024
Viewed by 1270
Abstract
Background: Modulated electro-hyperthermia (mEHT) is unique due to its combination of thermal and non-thermal effects. Method: This report summarizes the literature on the effects of mEHT observed in vitro and in vivo. Results: The thermal and electrical heterogeneity of tissues allows the radiofrequency [...] Read more.
Background: Modulated electro-hyperthermia (mEHT) is unique due to its combination of thermal and non-thermal effects. Method: This report summarizes the literature on the effects of mEHT observed in vitro and in vivo. Results: The thermal and electrical heterogeneity of tissues allows the radiofrequency signal to selectively target malignant tissue. The applied modulation appears to activate various apoptotic pathways, predominantly leading to immunogenic cell death (ICD). ICD promotes the release of damage-associated molecular patterns, potentially producing tumour-specific antigen-presenting cells. This abscopal-type effect may target distant metastases while treating the primary tumour locally. This immune memory effect is like vaccination mechanisms. Conclusions: The application of mEHT has the potential to expand from local to systemic disease, enabling the simultaneous treatment of micro- and macro-metastases. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

23 pages, 5600 KiB  
Article
Effects of Atmospheric Pressure Plasma Jet on 3D-Printed Acrylonitrile Butadiene Styrene (ABS)
by Andrei Vasile Nastuta, Mihai Asandulesa, Iuliana Spiridon, Cristian-Dragos Varganici, Ramona Huzum and Ilarion Mihaila
Materials 2024, 17(8), 1848; https://doi.org/10.3390/ma17081848 - 17 Apr 2024
Cited by 4 | Viewed by 1976
Abstract
Polymers are essential in several sectors, yet some applications necessitate surface modification. One practical and eco-friendly option is non-thermal plasma exposure. The present research endeavors to examine the impacts of dielectric barrier discharge atmospheric pressure plasma on the chemical composition and wettability properties [...] Read more.
Polymers are essential in several sectors, yet some applications necessitate surface modification. One practical and eco-friendly option is non-thermal plasma exposure. The present research endeavors to examine the impacts of dielectric barrier discharge atmospheric pressure plasma on the chemical composition and wettability properties of acrylonitrile butadiene styrene surfaces subject to the action of additive manufacturing. The plasma source was produced by igniting either helium or argon and then adjusted to maximize the operational conditions for exposing polymers. The drop in contact angle and the improvement in wettability after plasma exposure can be due to the increased oxygen-containing groups onto the surface, together with a reduction in carbon content. The research findings indicated that plasma treatment significantly improved the wettability of the polymer surface, with an increase of up to 60% for both working gases, while the polar index increased from 0.01 up to 0.99 after plasma treatment. XPS measurements showed an increase of up to 10% in oxygen groups at the surface of He–plasma-treated samples and up to 13% after Ar–plasma treatment. Significant modifications were observed in the structure that led to a reduction of its roughness by 50% and also caused a leveling effect after plasma treatment. A slight decrease in the glass and melting temperature after plasma treatment was pointed out by differential scanning calorimetry and broadband dielectric spectroscopy. Up to a 15% crystallinity index was determined after plasma treatment, and the 3D printing process was measured through X-ray diffraction. The empirical findings encourage the implementation of atmospheric pressure plasma-based techniques for the environmentally sustainable manipulation of polymers for applications necessitating higher levels of adhesion and specific prerequisites. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing and Application)
Show Figures

Figure 1

19 pages, 3062 KiB  
Article
Non-Thermal Plasma Reduces HSV-1 Infection of and Replication in HaCaT Keratinocytes In Vitro
by Julia Sutter, Jascha Brettschneider, Brian Wigdahl, Peter J. Bruggeman, Fred C. Krebs and Vandana Miller
Int. J. Mol. Sci. 2024, 25(7), 3839; https://doi.org/10.3390/ijms25073839 - 29 Mar 2024
Cited by 5 | Viewed by 1995
Abstract
Herpes simplex virus type 1 (HSV-1) is a lifelong pathogen characterized by asymptomatic latent infection in the trigeminal ganglia (TG), with periodic outbreaks of cold sores caused by virus reactivation in the TG and subsequent replication in the oral mucosa. While antiviral therapies [...] Read more.
Herpes simplex virus type 1 (HSV-1) is a lifelong pathogen characterized by asymptomatic latent infection in the trigeminal ganglia (TG), with periodic outbreaks of cold sores caused by virus reactivation in the TG and subsequent replication in the oral mucosa. While antiviral therapies can provide relief from cold sores, they are unable to eliminate HSV-1. We provide experimental results that highlight non-thermal plasma (NTP) as a new alternative therapy for HSV-1 infection that would resolve cold sores faster and reduce the establishment of latent infection in the TG. Additionally, this study is the first to explore the use of NTP as a therapy that can both treat and prevent human viral infections. The antiviral effect of NTP was investigated using an in vitro model of HSV-1 epithelial infection that involved the application of NTP from two separate devices to cell-free HSV-1, HSV-1-infected cells, and uninfected cells. It was found that NTP reduced the infectivity of cell-free HSV-1, reduced viral replication in HSV-1-infected cells, and diminished the susceptibility of uninfected cells to HSV-1 infection. This triad of antiviral mechanisms of action suggests the potential of NTP as a therapeutic agent effective against HSV-1 infection. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

23 pages, 396 KiB  
Review
Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses
by Patryk Wiśniewski, Wioleta Chajęcka-Wierzchowska and Anna Zadernowska
Foods 2024, 13(1), 14; https://doi.org/10.3390/foods13010014 - 19 Dec 2023
Cited by 12 | Viewed by 3635
Abstract
High-pressure processing (HPP) is currently one of the leading methods of non-thermal food preservation as an alternative to traditional methods based on thermal processing. The application of HPP involves the simultaneous action of a combination of several factors—pressure values (100–600 MPa), time of [...] Read more.
High-pressure processing (HPP) is currently one of the leading methods of non-thermal food preservation as an alternative to traditional methods based on thermal processing. The application of HPP involves the simultaneous action of a combination of several factors—pressure values (100–600 MPa), time of operation (a few–several minutes), and temperature of operation (room temperature or lower)—using a liquid medium responsible for pressure transfer. The combination of these three factors results in the inactivation of microorganisms, thus extending food shelf life and improving the food’s microbiological safety. HPP can provide high value for the sensory and quality characteristics of products and reduce the population of pathogenic microorganisms such as L. monocytogenes to the required safety level. Nevertheless, the technology is not without impact on the cellular response of pathogens. L. monocytogenes cells surviving the HPP treatment may have multiple damages, which may impact the activation of mechanisms involved in the repair of cellular damage, increased virulence, or antibiotic resistance, as well as an increased expression of genes encoding pathogenicity and antibiotic resistance. This review has demonstrated that HPP is a technology that can reduce L. monocytogenes cells to below detection levels, thus indicating the potential to provide the desired level of safety. However, problems have been noted related to the possibilities of cell recovery during storage and changes in virulence and antibiotic resistance due to the activation of gene expression mechanisms, and the lack of a sufficient number of studies explaining these changes has been reported. Full article
Show Figures

Graphical abstract

19 pages, 6625 KiB  
Article
On the Effect of Non-Thermal Atmospheric Pressure Plasma Treatment on the Properties of PET Film
by Irena Maliszewska, Małgorzata Gazińska, Maciej Łojkowski, Emilia Choińska, Daria Nowinski, Tomasz Czapka and Wojciech Święszkowski
Polymers 2023, 15(21), 4289; https://doi.org/10.3390/polym15214289 - 31 Oct 2023
Cited by 9 | Viewed by 3295
Abstract
The aim of the work was to investigate the effect of non-thermal plasma treatment of an ultra-thin polyethylene terephthalate (PET) film on changes in its physicochemical properties and biodegradability. Plasma treatment using a dielectric barrier discharge plasma reactor was carried out in air [...] Read more.
The aim of the work was to investigate the effect of non-thermal plasma treatment of an ultra-thin polyethylene terephthalate (PET) film on changes in its physicochemical properties and biodegradability. Plasma treatment using a dielectric barrier discharge plasma reactor was carried out in air at room temperature and atmospheric pressure twice for 5 and 15 min, respectively. It has been shown that pre-treatment of the PET surface with non-thermal atmospheric plasma leads to changes in the physicochemical properties of this polymer. After plasma modification, the films showed a more developed surface compared to the control samples, which may be related to the surface etching and oxidation processes. After a 5-min plasma exposure, PET films were characterized by the highest wettability, i.e., the contact angle decreased by more than twice compared to the untreated samples. The differential scanning calorimetry analysis revealed the influence of plasma pretreatment on crystallinity content and the melt crystallization behavior of PET after soil degradation. The main novelty of the work is the fact that the combined action of two factors (i.e., physical and biological) led to a reduction in the content of the crystalline phase in the tested polymeric material. Full article
(This article belongs to the Collection Polymers and Polymer Composites: Structure-Property Relationship)
Show Figures

Figure 1

27 pages, 5890 KiB  
Review
The Clinical Validation of Modulated Electro-Hyperthermia (mEHT)
by Sun-Young Lee, Gergo Lorant, Laszlo Grand and Attila Marcell Szasz
Cancers 2023, 15(18), 4569; https://doi.org/10.3390/cancers15184569 - 15 Sep 2023
Cited by 9 | Viewed by 4008
Abstract
The mEHT method uses tissues’ thermal and bioelectromagnetic heterogeneity for the selective mechanisms. The success of the therapy for advanced, relapsed, and metastatic aggressive tumors can only be demonstrated by measuring survival time and quality of life (QoL). The complication is that mEHT-treated [...] Read more.
The mEHT method uses tissues’ thermal and bioelectromagnetic heterogeneity for the selective mechanisms. The success of the therapy for advanced, relapsed, and metastatic aggressive tumors can only be demonstrated by measuring survival time and quality of life (QoL). The complication is that mEHT-treated patients cannot be curatively treated any longer with “gold standards”, where the permanent progression of the disease, the refractory, relapsing situation, the organ failure, the worsening of blood counts, etc., block them. Collecting a cohort of these patients is frequently impossible. Only an intent-to-treat (ITT) patient group was available. Due to the above limitations, many studies have single-arm data collection. The Phase III trial of advanced cervix tumors subgrouping of HIV-negative and -positive patients showed the stable efficacy of mEHT in all patients’ subgroups. The single-arm represents lower-level evidence, which can be improved by comparing the survival data of various studies from different institutes. The Kaplan–Meier probability comparison had no significant differences, so pooled data were compared to other methods. Following this approach, we demonstrate the feasibility and superiority of mEHT in the cases of glioblastoma multiform, pancreas carcinomas, lung tumors, and colorectal tumors. Full article
(This article belongs to the Special Issue Advanced Research in Oncology in 2023)
Show Figures

Graphical abstract

Back to TopTop