Non-Thermal Technologies in Food Processing: Implications for Food Quality and Rheology
Abstract
:1. Introduction
2. Pulsed Electric Field (PEF)
3. High-Pressure Processing (HPP)
4. Ionising Radiation (IOR)
5. Ultraviolet and Pulsed Light
6. Cold Plasma (CP)
7. Utilisation of Non-Thermal Food Processing Technologies
7.1. Non-Thermal Technologies in Liquid Foods
7.2. Non-Thermal Technologies in Solid and Semi-Solid Foods
8. Challenges and Future Strategies in Adopting Non-Thermal Food Processing Technologies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Floros, J.D.; Newsome, R.; Fisher, W.; Barbosa-Cánovas, G.V.; Chen, H.; Dunne, C.P.; German, J.B.; Hall, R.L.; Heldman, D.R.; Karwe, M.V. Feeding the world today and tomorrow: The importance of food science and technology: An IFT scientific review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 572–599. [Google Scholar] [CrossRef]
- Roobab, U.; Aadil, R.M.; Madni, G.M.; Bekhit, A.E.D. The impact of nonthermal technologies on the microbiological quality of juices: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 437–457. [Google Scholar] [CrossRef] [PubMed]
- Morales-de la Peña, M.; Welti-Chanes, J.; Martín-Belloso, O. Novel technologies to improve food safety and quality. Curr. Opin. Food Sci. 2019, 30, 1–7. [Google Scholar] [CrossRef]
- Troy, D.J.; Ojha, K.S.; Kerry, J.P.; Tiwari, B.K. Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview. Meat Sci. 2016, 120, 2–9. [Google Scholar] [CrossRef]
- Hernández-Hernández, H.; Moreno-Vilet, L.; Villanueva-Rodríguez, S. Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innov. Food Sci. Emerg. Technol. 2019, 58, 102233. [Google Scholar] [CrossRef]
- Chacha, J.S.; Zhang, L.; Ofoedu, C.E.; Suleiman, R.A.; Dotto, J.M.; Roobab, U.; Agunbiade, A.O.; Duguma, H.T.; Mkojera, B.T.; Hossaini, S.M. Revisiting non-thermal food processing and preservation methods—Action mechanisms, pros and cons: A technological update (2016–2021). Foods 2021, 10, 1430. [Google Scholar] [CrossRef]
- Knockaert, G.; Pulissery, S.K.; Lemmens, L.; Van Buggenhout, S.; Hendrickx, M.; Van Loey, A. Carrot β-carotene degradation and isomerization kinetics during thermal processing in the presence of oil. J. Agric. Food Chem. 2012, 60, 10312–10319. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Vendrell-Pacheco, M.; Heskitt, B.; Chitchumroonchokchai, C.; Failla, M.; Sastry, S.K.; Francis, D.M.; Martin-Belloso, O.; Elez-Martínez, P.; Kopec, R.E. Novel processing technologies as compared to thermal treatment on the bioaccessibility and Caco-2 cell uptake of carotenoids from tomato and kale-based juices. J. Agric. Food Chem. 2019, 67, 10185–10194. [Google Scholar] [CrossRef]
- Valdramidis, V.P.; Koutsoumanis, K.P. Challenges and perspectives of advanced technologies in processing, distribution and storage for improving food safety. Curr. Opin. Food Sci. 2016, 12, 63–69. [Google Scholar] [CrossRef]
- Mittal, S.M.; Griffiths, W.M. Emerging Technologies for Food Processing; University of Guelph: Guelph, ON, Canada; Elsevier Ltd.: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Martin, O.; Qin, B.; Chang, F.; Barbosa-Cánovas, G.; Swanson, B. Inactivation of Escherichia coli in skim milk by high intensity pulsed electric fields. J. Food Process Eng. 1997, 20, 317–336. [Google Scholar] [CrossRef]
- Obileke, K.; Onyeaka, H.; Miri, T.; Nwabor, O.F.; Hart, A.; Al-Sharify, Z.T.; Al-Najjar, S.; Anumudu, C. Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. J. Food Process Eng. 2022, 45, e14138. [Google Scholar] [CrossRef]
- Anumudu, C.; Hart, A.; Miri, T.; Onyeaka, H. Recent advances in the application of the antimicrobial peptide nisin in the inactivation of spore-forming bacteria in foods. Molecules 2021, 26, 5552. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A. Use of ozone in the food industry. LWT-Food Sci. Technol. 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Komanapalli, I.; Lau, B. Ozone-induced damage of Escherichia coli K-12. Appl. Microbiol. Biotechnol. 1996, 46, 610–614. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.P.; Tiwari, B.K.; Cullen, P.J.; Rice, R.G. Ozone in Food Processing; JohnWiley & Sons: Chichester, UK, 2012. [Google Scholar]
- Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci. Technol. 2016, 49, 24–34. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Raghavan, V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit. Rev. Food Sci. Nutr. 2021, 61, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Sorour, H.; Tanaka, F.; Uchino, T. Impact of non-thermal processing on the microbial and bioactive content of foods. Glob. J. Biol. Agric. Health Sci. 2014, 3, 153–161. [Google Scholar]
- Patras, A.; Tiwari, B.; Brunton, N.; Butler, F. Modelling the effect of different sterilisation treatments on antioxidant activity and colour of carrot slices during storage. Food Chem. 2009, 114, 484–491. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Rawson, A.; Koidis, A.; Rai, D.K.; Tuohy, M.; Brunton, N. Influence of sous vide and water immersion processing on polyacetylene content and instrumental color of parsnip (Pastinaca sativa) disks. J. Agric. Food Chem. 2010, 58, 7740–7747. [Google Scholar] [CrossRef] [PubMed]
- Butz, P.; Tauscher, B. Emerging technologies: Chemical aspects. Food Res. Int. 2002, 35, 279–284. [Google Scholar] [CrossRef]
- Piyasena, P.; Mohareb, E.; McKellar, R. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef]
- Vikram, V.; Ramesh, M.; Prapulla, S. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. J. Food Eng. 2005, 69, 31–40. [Google Scholar] [CrossRef]
- Hart, A.; Anumudu, C.; Onyeaka, H.; Miri, T. Application of supercritical fluid carbon dioxide in improving food shelf-life and safety by inactivating spores: A review. J. Food Sci. Technol. 2022, 59, 417–428. [Google Scholar] [CrossRef]
- Rao, L.; Wang, Y.; Chen, F.; Liao, X. The synergistic effect of high pressure CO2 and nisin on inactivation of Bacillus subtilis spores in aqueous solutions. Front. Microbiol. 2016, 7, 1507. [Google Scholar] [CrossRef]
- Liu, J.; Bi, J.; McClements, D.J.; Liu, X.; Yi, J.; Lyu, J.; Zhou, M.; Verkerk, R.; Dekker, M.; Wu, X.; et al. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review. Carbohydr. Polym. 2020, 250, 116890. [Google Scholar] [CrossRef]
- Barbhuiya, R.I.; Singha, P.; Singh, S.K. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res. Int. 2021, 149, 110647. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Nowacka, M.; Colussi, R.; Frasson, S.F.; Demirkesen, I.; Mert, B.; Singha, P.; Singh, S.K.; Falsafi, S.R. Impact of emerging non-thermal processing treatments on major food macromolecules: Starch, protein, and lipid. Trends Food Sci. Technol. 2023, 141, 104208. [Google Scholar] [CrossRef]
- Cullen, P.J. Chapter 3-Fluid Rheology in Novel Thermal and Non-Thermal Processes. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Cullen, P.J., Tiwari, B.K., Valdramidis, V.P., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 35–61. [Google Scholar]
- Tabilo-Munizaga, G.; Barbosa-Cánovas, G.V. Rheology for the food industry. J. Food Eng. 2005, 67, 147–156. [Google Scholar] [CrossRef]
- Dundar Kirit, B.; Akyıldız, A. Rheological properties of thermally or non-thermally treated juice/nectar/puree: A review. J. Food Process. Preserv. 2022, 46, e17075. [Google Scholar] [CrossRef]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Shamlooh, M.; Hussein, I.A.; Nasser, M.S.; Chaturvedi, K.R. Rheology of upstream complex fluids. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 21–39. [Google Scholar]
- Shanmugam, K. Food Rheology: An Introduction and Fundamentals Concepts. Sci. Soc. Res. 2024, 6, 6–20. [Google Scholar] [CrossRef]
- Joyner, H.S. Explaining food texture through rheology. Curr. Opin. Food Sci. 2018, 21, 7–14. [Google Scholar] [CrossRef]
- Santos, P.H.; Silva, L.H.M.d.; Rodrigues, A.M.d.C.; Souza, J.A.R.d. Influence of temperature, concentration and shear rate on the rheological behavior of malay apple (Syzygium malaccense) juice. Braz. J. Food Technol. 2016, 19, e2015009. [Google Scholar] [CrossRef]
- Michael, L. Food rheology—Texture and fundamental properties. In Food Process Engineering Principles and Data; Woodhead Publishing: Sawston, UK, 2023. [Google Scholar]
- Jebalia, I.; Della Valle, G.; Kristiawan, M. Extrusion of pea snack foods and control of biopolymer changes aided by rheology and simulation. Food Bioprod. Process. 2022, 135, 190–204. [Google Scholar] [CrossRef]
- World Health Organization. Taxes on Sugary Drinks: Why Do It?[Internet]; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Clemens, R.A.; Jones, J.M.; Kern, M.; Lee, S.Y.; Mayhew, E.J.; Slavin, J.L.; Zivanovic, S. Functionality of sugars in foods and health. Compr. Rev. Food Sci. Food Saf. 2016, 15, 433–470. [Google Scholar] [CrossRef]
- Van der Sman, R.; Renzetti, S. Understanding functionality of sucrose in biscuits for reformulation purposes. Crit. Rev. Food Sci. Nutr. 2019, 59, 2225–2239. [Google Scholar] [CrossRef]
- Renzetti, S.; Jurgens, A. Rheological and thermal behavior of food matrices during processing and storage: Relevance for textural and nutritional quality of food. Curr. Opin. Food Sci. 2016, 9, 117–125. [Google Scholar] [CrossRef]
- Mizukoshi, M. Model studies of cake baking. V. Cake shrinkage and shear modulus of cake batter during baking. Cereal Chem. 1985, 62, 242–246. [Google Scholar]
- Lambrecht, M.A.; Deleu, L.J.; Rombouts, I.; Delcour, J.A. Heat-induced network formation between proteins of different sources in model systems, wheat-based noodles and pound cakes. Food Hydrocoll. 2018, 79, 352–370. [Google Scholar] [CrossRef]
- Renzetti, S.; van der Sman, R.G. Food texture design in sugar reduced cakes: Predicting batters rheology and physical properties of cakes from physicochemical principles. Food Hydrocoll. 2022, 131, 107795. [Google Scholar] [CrossRef]
- Ahmed, J.; Ptaszek, P.; Basu, S. Food rheology: Scientific development and importance to food industry. In Advances in Food Rheology and Its Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–4. [Google Scholar]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Current and future prospects for the use of pulsed electric field in the meat industry. Crit. Rev. Food Sci. Nutr. 2019, 59, 1660–1674. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhang, R.; Zhang, M. Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. Int. J. Food Sci. Technol. 2017, 52, 3–12. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.; Dutta, S. Novel thermal and non-thermal processing of watermelon juice. Trends Food Sci. Technol. 2019, 93, 234–243. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Eissa, A.H.A. Pulsed electric fields for food processing technology. Struct. Funct. Food Eng. 2012, 11, 275–306. [Google Scholar]
- Puértolas, E.; Barba, F.J. Electrotechnologies applied to valorization of by-products from food industry: Main findings, energy and economic cost of their industrialization. Food Bioprod. Process. 2016, 100, 172–184. [Google Scholar] [CrossRef]
- Bahrami, A.; Baboli, Z.M.; Schimmel, K.; Jafari, S.M.; Williams, L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci. Technol. 2020, 96, 61–78. [Google Scholar] [CrossRef]
- Arroyo, C.; Cebrián, G.; Condón, S.; Pagán, R. Development of resistance in Cronobacter sakazakii ATCC 29544 to thermal and nonthermal processes after exposure to stressing environmental conditions. J. Appl. Microbiol. 2012, 112, 561–570. [Google Scholar] [CrossRef]
- Zhang, Q.; Barbosa-Cánovas, G.V.; Swanson, B.G. Engineering aspects of pulsed electric field pasteurization. J. Food Eng. 1995, 25, 261–281. [Google Scholar] [CrossRef]
- Pal, M. Pulsed electric field processing: An emerging technology for food preservation. J. Exp. Food Chem. 2017, 3, 2. [Google Scholar] [CrossRef]
- Sale, A.; Hamilton, W. Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1967, 148, 781–788. [Google Scholar] [CrossRef]
- Kumar, S.; Agarwal, N.; Raghav, P.K. Pulsed electric field processing of foods—A review. Int. J. Eng. Res. Mod. Educ. 2016, 1, 111–118. [Google Scholar]
- Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J.A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar] [CrossRef]
- Alirezalu, K.; Munekata, P.E.; Parniakov, O.; Barba, F.J.; Witt, J.; Toepfl, S.; Wiktor, A.; Lorenzo, J.M. Pulsed electric field and mild heating for milk processing: A review on recent advances. J. Sci. Food Agric. 2020, 100, 16–24. [Google Scholar] [CrossRef]
- Hoover, D. Minimally processed fruits and vegetables; Reducing microbial load by nonthermal physical treatments. Food Technol. 1997, 51, 66–71. [Google Scholar]
- Yeom, H.W.; Streaker, C.B.; Zhang, Q.H.; Min, D.B. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J. Agric. Food Chem. 2000, 48, 4597–4605. [Google Scholar] [CrossRef]
- Zhang, C.; Lyu, X.; Arshad, R.N.; Aadil, R.M.; Tong, Y.; Zhao, W.; Yang, R. Pulsed electric field as a promising technology for solid foods processing: A review. Food Chem. 2023, 403, 134367. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Morales-de la Peña, M.; Rojas-Graü, M.A.; Martín-Belloso, O. Microbial and enzymatic stability of fruit juice-milk beverages treated by high intensity pulsed electric fields or heat during refrigerated storage. Food Control 2011, 22, 1639–1646. [Google Scholar] [CrossRef]
- Peng, K.; Koubaa, M.; Bals, O.; Vorobiev, E. Effect of pulsed electric fields on the growth and acidification kinetics of Lactobacillus delbrueckii Subsp. bulgaricus. Foods 2020, 9, 1146. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The application of PEF technology in food processing and human nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef]
- Elez-Martínez, P.; Soliva-Fortuny, R.C.; Martín-Belloso, O. Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. Eur. Food Res. Technol. 2006, 222, 321–329. [Google Scholar] [CrossRef]
- Redondo, D.; Venturini, M.E.; Luengo, E.; Raso, J.; Arias, E. Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innov. Food Sci. Emerg. Technol. 2018, 45, 335–343. [Google Scholar] [CrossRef]
- Parniakov, O.; Barba, F.J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Res. Int. 2014, 65, 337–343. [Google Scholar] [CrossRef]
- Hossain, M.B.; Aguiló-Aguayo, I.; Lyng, J.G.; Brunton, N.P.; Rai, D.K. Effect of pulsed electric field and pulsed light pre-treatment on the extraction of steroidal alkaloids from potato peels. Innov. Food Sci. Emerg. Technol. 2015, 29, 9–14. [Google Scholar] [CrossRef]
- Pankiewicz, U.; Zielińska, E.; Sobota, A.; Wirkijowska, A. The Use of Saccharomyces cerevisiae Supplemented with Intracellular Magnesium Ions by Means of Pulsed Electric Field (PEF) in the Process of Bread Production. Foods 2022, 11, 3496. [Google Scholar] [CrossRef] [PubMed]
- Grgić, T.; Bleha, R.; Smrčkova, P.; Stulić, V.; Pavičić, T.V.; Synytsya, A.; Iveković, D.; Novotni, D. Pulsed Electric Field Treatment of Oat and Barley Flour: Influence on Enzymes, Non-starch Polysaccharides, Dough Rheological Properties, and Application in Flat Bread. Food Bioprocess Technol. 2024, 17, 4303–4324. [Google Scholar] [CrossRef]
- Xiang, B.Y.; Simpson, M.V.; Ngadi, M.O.; Simpson, B.K. Effect of pulsed electric field on the rheological and colour properties of soy milk. Int. J. Food Sci. Nutr. 2011, 62, 787–793. [Google Scholar] [CrossRef]
- Xiang, B.Y.; Simpson, M.V.; Ngadi, M.O.; Simpson, B.K. Flow behaviour and viscosity of reconstituted skimmed milk treated with pulsed electric field. Biosyst. Eng. 2011, 109, 228–234. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.-H.; Zhao, X.-D.; Zhang, L.; Li, Q.; Wu, C.; Ding, X.; Qian, J.-Y. Assessment of impact of pulsed electric field on functional, rheological and structural properties of vital wheat gluten. LWT 2021, 147, 111536. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Ahmad, N.; Aadil, R.M.; Rahaman, A.; Ahmed, Z.; Rehman, A.; Siddeeg, A.; Zeng, X.A.; Manzoor, A. Impact of pulsed electric field on rheological, structural, and physicochemical properties of almond milk. J. Food Process Eng. 2019, 42, e13299. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Boioli, P.; Barbosa-Cánovas, G.V. Assessment of the Effects of Ultrasonics and Pulsed Electric Fields on Nutritional and Rheological Properties of Raspberry and Blueberry Purees. Food Bioprocess Technol. 2016, 9, 520–531. [Google Scholar] [CrossRef]
- Nema, P.K.; Sehrawat, R.; Ravichandran, C.; Kaur, B.P.; Kumar, A.; Tarafdar, A. Inactivating Food Microbes by High-Pressure Processing and Combined Nonthermal and Thermal Treatment: A Review. J. Food Qual. 2022, 2022, 5797843. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barnaba, C.; Barbosa-Cánovas, G.V. Effects of high pressure processing on lipid oxidation: A review. Innov. Food Sci. Emerg. Technol. 2014, 22, 1–10. [Google Scholar] [CrossRef]
- Iqbal, A.; Murtaza, A.; Hu, W.; Ahmad, I.; Ahmed, A.; Xu, X. Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food Bioprod. Process. 2019, 117, 170–182. [Google Scholar] [CrossRef]
- Hiremath, N.D.; Ramaswamy, H.S. High-pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. J. Food Process. Preserv. 2012, 36, 113–125. [Google Scholar] [CrossRef]
- Pilavtepe-Çelik, M.; Buzrul, S.; Alpas, H.; Bozoğlu, F. Development of a new mathematical model for inactivation of Escherichia coli O157:H7 and Staphylococcus aureus by high hydrostatic pressure in carrot juice and peptone water. J. Food Eng. 2009, 90, 388–394. [Google Scholar] [CrossRef]
- Campus, M. High pressure processing of meat, meat products and seafood. Food Eng. Rev. 2010, 2, 256–273. [Google Scholar] [CrossRef]
- Patterson, M.F.; Kilpatrick, D.J. The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. J. Food Prot. 1998, 61, 432–436. [Google Scholar] [CrossRef]
- Pérez-Baltar, A.; Serrano, A.; Montiel, R.; Medina, M. Listeria monocytogenes inactivation in deboned dry-cured hams by high pressure processing. Meat Sci. 2020, 160, 107960. [Google Scholar] [CrossRef]
- Sousa, S.G.; Delgadillo, I.; Saraiva, J.A. Human milk composition and preservation: Evaluation of high-pressure processing as a nonthermal pasteurization technology. Crit. Rev. Food Sci. Nutr. 2016, 56, 1043–1060. [Google Scholar] [CrossRef]
- Yang, B.; Shi, Y.; Xia, X.; Xi, M.; Wang, X.; Ji, B.; Meng, J. Inactivation of foodborne pathogens in raw milk using high hydrostatic pressure. Food Control 2012, 28, 273–278. [Google Scholar] [CrossRef]
- Zhao, L.; Qin, X.; Wang, Y.; Ling, J.; Shi, W.; Pang, S.; Liao, X. CO2-assisted high pressure processing on inactivation of Escherichia coli and Staphylococcus aureus. J. CO2 Util. 2017, 22, 53–62. [Google Scholar] [CrossRef]
- Morris, C.; Brody, A.L.; Wicker, L. Non-thermal food processing/preservation technologies: A review with packaging implications. Packag. Technol. Sci. Int. J. 2007, 20, 275–286. [Google Scholar] [CrossRef]
- Ahmed, J.; Ramaswamy, H.S.; Hiremath, N. The effect of high pressure treatment on rheological characteristics and colour of mango pulp. Int. J. Food Sci. Technol. 2005, 40, 885–895. [Google Scholar] [CrossRef]
- Krebbers, B.; Matser, A.M.; Hoogerwerf, S.W.; Moezelaar, R.; Tomassen, M.M.; van den Berg, R.W. Combined high-pressure and thermal treatments for processing of tomato puree: Evaluation of microbial inactivation and quality parameters. Innov. Food Sci. Emerg. Technol. 2003, 4, 377–385. [Google Scholar] [CrossRef]
- Molina, E.; Álvarez, M.A.D.; Ramos, M.; Olano, A.N.; López-Fandiño, R. Use of high-pressure-treated milk for the production of reduced-fat cheese. Int. Dairy J. 2000, 10, 467–475. [Google Scholar] [CrossRef]
- Cadesky, L.; Walkling-Ribeiro, M.; Kriner, K.T.; Karwe, M.V.; Moraru, C.I. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates. J. Dairy Sci. 2017, 100, 7055–7070. [Google Scholar] [CrossRef]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. High pressure treatment of bovine milk: Effects on casein micelles and whey proteins. J. Dairy Res. 2004, 71, 97–106. [Google Scholar] [CrossRef]
- Ribeiro, L.R.; Júnior, B.R.d.C.L.; Cristianini, M. Effect of high-pressure processing on the characteristics of cheese made from ultrafiltered milk: Influence of the kind of rennet. Innov. Food Sci. Emerg. Technol. 2018, 50, 57–65. [Google Scholar] [CrossRef]
- Silva, F.V. Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication. J. Food Eng. 2017, 201, 9–16. [Google Scholar]
- Mainville, I.; Montpetit, D.; Durand, N.; Farnworth, E.R. Deactivating the bacteria and yeast in kefir using heat treatment, irradiation and high pressure. Int. Dairy J. 2001, 11, 45–49. [Google Scholar] [CrossRef]
- Black, E.P.; Kelly, A.L.; Fitzgerald, G.F. The combined effect of high pressure and nisin on inactivation of microorganisms in milk. Innov. Food Sci. Emerg. Technol. 2005, 6, 286–292. [Google Scholar] [CrossRef]
- Oey, I. Effects of high pressure on enzymes. In High Pressure Processing of Food: Principles, Technology and Applications; Springer: New York, NY, USA, 2016; pp. 391–431. [Google Scholar]
- Ravash, N.; Peighambardoust, S.H.; Soltanzadeh, M.; Pateiro, M.; Lorenzo, J.M. Impact of high-pressure treatment on casein micelles, whey proteins, fat globules and enzymes activity in dairy products: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2888–2908. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Carøe, C.; Qin, Z.; Munk, D.M.; Crafack, M.; Petersen, M.A.; Ahrné, L. Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. LWT 2020, 127, 109370. [Google Scholar] [CrossRef]
- Balakrishna, A.K.; Wazed, M.A.; Farid, M. A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules 2020, 25, 2369. [Google Scholar] [CrossRef] [PubMed]
- Munshi, M.; Sharma, M.; Deb, S. Viability of High-Pressure Technology in the Food Industry. In Handbook of Research on Food Processing and Preservation Technologies; Apple Academic Press: New York, NY, USA, 2021; pp. 51–86. [Google Scholar]
- Yang, H.; Khan, M.A.; Yu, X.; Zheng, H.; Han, M.; Xu, X.; Zhou, G. Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing. Meat Sci. 2016, 121, 79–87. [Google Scholar] [CrossRef]
- De Maria, S.; Ferrari, G.; Maresca, P. Rheological characterization and modelling of high pressure processed Bovine Serum Albumin. J. Food Eng. 2015, 153, 39–44. [Google Scholar] [CrossRef]
- Razi, S.M.; Motamedzadegan, A.; Matia-Merino, L.; Shahidi, S.-A.; Rashidinejad, A. The effect of pH and high-pressure processing (HPP) on the rheological properties of egg white albumin and basil seed gum mixtures. Food Hydrocoll. 2019, 94, 399–410. [Google Scholar] [CrossRef]
- Zhang, S.; Han, J.; Chen, L. Fabrication of pea protein gels with modulated rheological properties using high pressure processing. Food Hydrocoll. 2023, 144, 109002. [Google Scholar] [CrossRef]
- Giura, L.; Urtasun, L.; Ansorena, D.; Astiasaran, I. Comparison between the use of hydrocolloids (xanthan gum) and high-pressure processing to obtain a texture-modified puree for dysphagia. Food Res. Int. 2023, 170, 112975. [Google Scholar] [CrossRef]
- Devi, A.F.; Liu, L.H.; Hemar, Y.; Buckow, R.; Kasapis, S. Effect of high pressure processing on rheological and structural properties of milk–gelatin mixtures. Food Chem. 2013, 141, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.P. High-pressure processing research continues. Food Technol. 2006, 60, 63. [Google Scholar]
- Hernández-Andrés, A.; Guillén, C.G.; Montero, P.; Pérez-Mateos, M. Partial characterization of protease activity in squid (Todaropsis eblanae) mantle: Modification by high-pressure treatment. J. Food Sci. 2005, 70, C239–C245. [Google Scholar] [CrossRef]
- Huang, H.-W.; Wu, S.-J.; Lu, J.-K.; Shyu, Y.-T.; Wang, C.-Y. Current status and future trends of high-pressure processing in food industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Khouryieh, H.A. Novel and emerging technologies used by the US food processing industry. Innov. Food Sci. Emerg. Technol. 2021, 67, 102559. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Makkar, H.; Becker, K. The effect of ionising radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chem. 2002, 78, 187–205. [Google Scholar] [CrossRef]
- Bisht, B.; Bhatnagar, P.; Gururani, P.; Kumar, V.; Tomar, M.S.; Sinhmar, R.; Rathi, N.; Kumar, S. Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables—A review. Trends Food Sci. Technol. 2021, 114, 372–385. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, S.; Wang, D.; Chen, H.; Huang, M. Inhibitory effect of gamma irradiation on Penicillium digitatum and its application in the preservation of Ponkan fruit. Sci. Hortic. 2020, 272, 109598. [Google Scholar] [CrossRef]
- Zanardi, E.; Caligiani, A.; Novelli, E. New insights to detect irradiated food: An overview. Food Anal. Methods 2018, 11, 224–235. [Google Scholar] [CrossRef]
- Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of novel technologies on polyphenols during food processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. [Google Scholar] [CrossRef]
- Migdał, W.; Owczarczyk, H.; Kędzia, B.; Hołderna-Kędzia, E.; Madajczyk, D. Microbiological decontamination of natural honey by irradiation. Radiat. Phys. Chem. 2000, 57, 285–288. [Google Scholar] [CrossRef]
- Matsuda, A.; Sabato, S. Effect of irradiation on Brazilian honeys’ consistency and their acceptability. Radiat. Phys. Chem. 2004, 71, 109–112. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, D.-W.; Han, Z. Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview. Trends Food Sci. Technol. 2017, 64, 13–22. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, V. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides. Radiat. Phys. Chem. 2013, 92, 112–120. [Google Scholar] [CrossRef]
- Hazards, E.P.O.B. Scientific Opinion on the efficacy and microbiological safety of irradiation of food. EFSA J. 2011, 9, 2103. [Google Scholar]
- World Health Organization. High-Dose Irradiation: Wholesomeness of Food Irradiatied with Doses Above 10 kGy; World Health Organization: Geneva, Switzerland, 1999; Volume 890. [Google Scholar]
- Ravindran, R.; Jaiswal, A.K. Wholesomeness and safety aspects of irradiated foods. Food Chem. 2019, 285, 363–368. [Google Scholar] [CrossRef]
- Bhat, R.; Karim, A. Ultraviolet irradiation improves gel strength of fish gelatin. Food Chem. 2009, 113, 1160–1164. [Google Scholar] [CrossRef]
- Abbas Syed, Q.; Hassan, A.; Sharif, S.; Ishaq, A.; Saeed, F.; Afzaal, M.; Hussain, M.; Anjum, F.M. Structural and functional properties of milk proteins as affected by heating, high pressure, Gamma and ultraviolet irradiation: A review. Int. J. Food Prop. 2021, 24, 871–884. [Google Scholar] [CrossRef]
- Audette-Stuart, M.; Houée-Levin, C.; Potier, M. Radiation-induced protein fragmentation and inactivation in liquid and solid aqueous solutions. Role of OH and electrons. Radiat. Phys. Chem. 2005, 72, 301–306. [Google Scholar] [CrossRef]
- Kuan, Y.-H.; Bhat, R.; Patras, A.; Karim, A.A. Radiation processing of food proteins—A review on the recent developments. Trends Food Sci. Technol. 2013, 30, 105–120. [Google Scholar] [CrossRef]
- Dogan, M.; Kayacier, A.; Ic, E. Rheological characteristics of some food hydrocolloids processed with gamma irradiation. Food Hydrocoll. 2007, 21, 392–396. [Google Scholar] [CrossRef]
- Wang, X.; Majzoobi, M.; Farahnaky, A. Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review. Ultrason. Sonochem. 2020, 65, 105057. [Google Scholar] [CrossRef]
- Sabato, S.F. Rheology of irradiated honey from Parana region. Radiat. Phys. Chem. 2004, 71, 101–104. [Google Scholar] [CrossRef]
- Teixeira, B.S.; Inamura, P.Y.; Mastro, N.L.d. The influence of gamma irradiation on texture, color and viscosity properties of potato starch. In Proceedings of the 5 International Nuclear Atlantic Conferenc, São Paulo, Brazil, 4–9 October 2015. [Google Scholar]
- de Sá, A.P.N.; Nabeshima, E.H.; Villavicencio, A.L.C. Effects of ionizing radiation on rheological properties of seasoned flour degreased. In Proceedings of the Associação Brasileira de Energia nuclear–ABEN 2019 International Nuclear Atlantic Conference, Santos, SP, Brazil, 21–25 October 2019. [Google Scholar]
- Nunes de Sá, A.P.; Negrão, B.G.; Nabeshima, E.H.; Ramos Koike, A.C.; Villavicencio, A.L.C.H. Effect of ionizing radiation on traditional and bacon “farofa”. Radiat. Phys. Chem. 2021, 179, 109109. [Google Scholar] [CrossRef]
- Ferreira, L.F.S.; Del Mastro, N.L. Rheological changes in irradiated chicken eggs. Radiat. Phys. Chem. 1998, 52, 59–62. [Google Scholar] [CrossRef]
- Singh, H.; Bhardwaj, S.K.; Khatri, M.; Kim, K.-H.; Bhardwaj, N. UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chem. Eng. J. 2021, 417, 128084. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Crit. Rev. Food Sci. Nutr. 2017, 57, 501–523. [Google Scholar] [CrossRef]
- Mahendran, R.; Ramanan, K.R.; Barba, F.J.; Lorenzo, J.M.; López-Fernández, O.; Munekata, P.E.; Roohinejad, S.; Sant’Ana, A.S.; Tiwari, B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019, 88, 67–79. [Google Scholar] [CrossRef]
- Mandal, R.; Mohammadi, X.; Wiktor, A.; Singh, A.; Pratap Singh, A. Applications of pulsed light decontamination technology in food processing: An overview. Appl. Sci. 2020, 10, 3606. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed light treatments for food preservation. A review. Food Bioprocess Technol. 2010, 3, 13–23. [Google Scholar] [CrossRef]
- Marangoni Junior, L.; Cristianini, M.; Anjos, C.A.R. Packaging aspects for processing and quality of foods treated by pulsed light. J. Food Process. Preserv. 2020, 44, e14902. [Google Scholar] [CrossRef]
- Heinrich, V.; Zunabovic, M.; Varzakas, T.; Bergmair, J.; Kneifel, W. Pulsed light treatment of different food types with a special focus on meat: A critical review. Crit. Rev. Food Sci. Nutr. 2016, 56, 591–613. [Google Scholar] [CrossRef]
- Bhavya, M.; Umesh Hebbar, H. Pulsed light processing of foods for microbial safety. Food Qual. Saf. 2017, 1, 187–202. [Google Scholar] [CrossRef]
- Turtoi, M. Pulsed light treatment of fresh-cut fruits and vegetables. In Fresh-Cut Fruits and Vegetables; CRC Press: Boca Raton, FL, USA, 2016; pp. 47–100. [Google Scholar]
- Harsha, V.; Gupta, V. Decontamination of Meat, Fish, and Poultry Products Using Pulse Light Technology. In Non-Thermal Processing Technologies for the Meat, Fish, and Poultry Industries; CRC Press: Boca Raton, FL, USA, 2023; pp. 129–144. [Google Scholar]
- Waghmare, R.; Kumar, M.; Zhang, B.; Yadav, R.; Dukare, A.; Chandran, D.; Nayi, P.; Hasan, M.; Dhumal, S.; Dharmarao, T. Pulsed Light: Innovative Non-Thermal Technology for Preservation of Fruits and Vegetables. Food Phys. 2024, 1, 100022. [Google Scholar] [CrossRef]
- Lasagabaster, A.; De Marañón, I.M. Sensitivity to pulsed light technology of several spoilage and pathogenic bacteria isolated from fish products. J. Food Prot. 2012, 75, 2039–2044. [Google Scholar] [CrossRef]
- Karayannakidis, P.D.; Zotos, A. Fish processing by-products as a potential source of gelatin: A review. J. Aquat. Food Prod. Technol. 2016, 25, 65–92. [Google Scholar] [CrossRef]
- Hou, X.; Lin, L.; Li, K.; Jiang, F.; Qiao, D.; Zhang, B.; Xie, F. Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies. Adv. Colloid Interface Sci. 2024, 325, 103113. [Google Scholar] [CrossRef]
- Abdul Karim Shah, N.N.; Shamsudin, R.; Abdul Rahman, R.; Adzahan, N.M. Fruit juice production using ultraviolet pasteurization: A review. Beverages 2016, 2, 22. [Google Scholar] [CrossRef]
- Koutchma, T.; Popović, V.; Ros-Polski, V.; Popielarz, A. Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 844–867. [Google Scholar] [CrossRef]
- Orlowska, M.; Koutchma, T.; Grapperhaus, M.; Gallagher, J.; Schaefer, R.; Defelice, C. Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: Effects on quality of fructose solution, apple juice, and milk. Food Bioprocess Technol. 2013, 6, 1580–1592. [Google Scholar] [CrossRef]
- Sheraz, M.A.; Kazi, S.H.; Ahmed, S.; Anwar, Z.; Ahmad, I. Photo, thermal and chemical degradation of riboflavin. Beilstein J. Org. Chem. 2014, 10, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Aramwit, P.; Bang, N.; Srichana, T. The properties and stability of anthocyanins in mulberry fruits. Food Res. Int. 2010, 43, 1093–1097. [Google Scholar] [CrossRef]
- Zaharah, R.S.; Noranizan, M.; Son, R.; Roselina, K.; Yusof, N.; Koh, P.; Hasni, H.N. Microbiological and physical properties of pennywort (Centella asiatica) leaves using pulsed light technology. Int. Food Res. J. 2020, 27, 16–27. [Google Scholar]
- Varghese, S.A.; Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J. Natural polymers and the hydrogels prepared from them. In Hydrogels Based on Natural Polymers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–47. [Google Scholar]
- Kumar, Y.; Patel, K.K.; Kumar, V. Pulsed electric field processing in food technology. Int. J. Eng. Stud. Tech. Approach 2015, 1, 6–17. [Google Scholar]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Lee, Y.S. Oxygen scavenging films in food packaging. Environ. Chem. Lett. 2018, 16, 523–538. [Google Scholar] [CrossRef]
- Tripathi, S.; Kumar, L.; Deshmukh, R.K.; Gaikwad, K.K. Ultraviolet blocking films for food packaging applications. Food Bioprocess Technol. 2024, 17, 1563–1582. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Ezhilarasi, P.; Rajauria, G. Application of cold plasma on food matrices: A review on current and future prospects. J. Food Process. Preserv. 2021, 45, e15070. [Google Scholar] [CrossRef]
- Nehra, V.; Kumar, A.; Dwivedi, H. Atmospheric non-thermal plasma sources. Int. J. Eng. 2008, 2, 53–68. [Google Scholar]
- Muhammad, A.I.; Xiang, Q.; Liao, X.; Liu, D.; Ding, T. Understanding the impact of nonthermal plasma on food constituents and microstructure—A review. Food Bioprocess Technol. 2018, 11, 463–486. [Google Scholar] [CrossRef]
- Chakka, A.K.; Sriraksha, M.; Ravishankar, C. Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. LWT 2021, 151, 112140. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Cheng, J.-H.; Sun, D.-W. Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends Food Sci. Technol. 2020, 98, 129–139. [Google Scholar] [CrossRef]
- Surowsky, B.; Fischer, A.; Schlueter, O.; Knorr, D. Cold plasma effects on enzyme activity in a model food system. Innov. Food Sci. Emerg. Technol. 2013, 19, 146–152. [Google Scholar] [CrossRef]
- Misra, N.; Roopesh, M. Cold plasma for sustainable food production and processing. In Green Food Processing Techniques; Elsevier: Amsterdam, The Netherlands, 2019; pp. 431–453. [Google Scholar]
- Misra, N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Gavahian, M.; Peng, H.-J.; Chu, Y.-H. Efficacy of cold plasma in producing Salmonella-free duck eggs: Effects on physical characteristics, lipid oxidation, and fatty acid profile. J. Food Sci. Technol. 2019, 56, 5271–5281. [Google Scholar] [CrossRef]
- Mahnot, N.K.; Siyu, L.-P.; Wan, Z.; Keener, K.M.; Misra, N. In-package cold plasma decontamination of fresh-cut carrots: Microbial and quality aspects. J. Phys. D Appl. Phys. 2020, 53, 154002. [Google Scholar] [CrossRef]
- Pankaj, S.; Misra, N.; Cullen, P. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov. Food Sci. Emerg. Technol. 2013, 19, 153–157. [Google Scholar] [CrossRef]
- Patange, A.; Boehm, D.; Giltrap, M.; Lu, P.; Cullen, P.; Bourke, P. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Sci. Total Environ. 2018, 631, 298–307. [Google Scholar] [CrossRef]
- Kaavya, R.; Pandiselvam, R.; Gavahian, M.; Tamanna, R.; Jain, S.; Dakshayani, R.; Khanashyam, A.C.; Shrestha, P.; Kothakota, A.; Arun Prasath, V. Cold plasma: A promising technology for improving the rheological characteristics of food. Crit. Rev. Food Sci. Nutr. 2023, 63, 11370–11384. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kadam, D.; Annapure, U. Cold plasma: An alternative technology for the starch modification. Food Biophys. 2017, 12, 129–139. [Google Scholar] [CrossRef]
- Jaddu, S.; Sonkar, S.; Seth, D.; Dwivedi, M.; Pradhan, R.C.; Goksen, G.; Sarangi, P.K.; Jambrak, A.R. Cold plasma: Unveiling its impact on hydration, rheology, nutritional, and anti-nutritional properties in food materials—An overview. Food Chem. X 2024, 22, 101266. [Google Scholar] [CrossRef]
- Bie, P.; Pu, H.; Zhang, B.; Su, J.; Chen, L.; Li, X. Structural characteristics and rheological properties of plasma-treated starch. Innov. Food Sci. Emerg. Technol. 2016, 34, 196–204. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.K. Effect of atmospheric cold plasma treatment on acid gelation properties of skim milk: Rheology and textural studies. Food Res. Int. 2023, 172, 113212. [Google Scholar] [CrossRef] [PubMed]
- Amirabadi, S.; Milani, J.M.; Sohbatzadeh, F. Effects of cold atmospheric-pressure plasma on the rheological properties of gum Arabic. Food Hydrocoll. 2021, 117, 106724. [Google Scholar] [CrossRef]
- Basak, S.; Annapure, U.S. Impact of atmospheric pressure cold plasma on the rheological and gelling properties of high methoxyl apple pectin. Food Hydrocoll. 2022, 129, 107639. [Google Scholar] [CrossRef]
- Zielinska, S.; Cybulska, J.; Pieczywek, P.; Zdunek, A.; Kurzyna-Szklarek, M.; Staniszewska, I.; Liu, Z.-L.; Pan, Z.; Xiao, H.-W.; Zielinska, M. Structural morphology and rheological properties of pectin fractions extracted from okra pods subjected to cold plasma treatment. Food Bioprocess Technol. 2022, 15, 1168–1181. [Google Scholar] [CrossRef]
- Sarkar, A.; Niranjan, T.; Patel, G.; Kheto, A.; Tiwari, B.K.; Dwivedi, M. Impact of cold plasma treatment on nutritional, antinutritional, functional, thermal, rheological, and structural properties of pearl millet flour. J. Food Process Eng. 2023, 46, e14317. [Google Scholar] [CrossRef]
- Coutinho, N.M.; Silveira, M.R.; Fernandes, L.M.; Moraes, J.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.; Ranadheera, C.S.; Borges, F.O. Processing chocolate milk drink by low-pressure cold plasma technology. Food Chem. 2019, 278, 276–283. [Google Scholar] [CrossRef]
- Chawla, R.; Patil, G.R.; Singh, A.K. High hydrostatic pressure technology in dairy processing: A review. J. Food Sci. Technol. 2011, 48, 260–268. [Google Scholar] [CrossRef]
- Indiarto, R.; Qonit, M.A.H. A review of irradiation technologies on food and agricultural products. Int. J. Sci. Technol. Res. 2020, 9, 4411–4414. [Google Scholar]
- Jung, S.; Tonello-Samson, C. High Hydrostatic Pressure Food Processing: Potential and Limitations. In Alternatives to Conventional Food Processing; Green Chemistry Series; Royal Society of Chemistry: London, UK, 2018; pp. 251–315. [Google Scholar] [CrossRef]
- Boye, J.I.; Arcand, Y. Current trends in green technologies in food production and processing. Food Eng. Rev. 2013, 5, 1–17. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, O.; Buckow, R.; Koutchma, T.; Balasubramaniam, V. Energy requirements for alternative food processing technologies—Principles, assumptions, and evaluation of efficiency. Compr. Rev. Food Sci. Food Saf. 2015, 14, 536–554. [Google Scholar] [CrossRef]
- Cacace, F.; Bottani, E.; Rizzi, A.; Vignali, G. Evaluation of the economic and environmental sustainability of high pressure processing of foods. Innov. Food Sci. Emerg. Technol. 2020, 60, 102281. [Google Scholar] [CrossRef]
- Júnior, L.M.; Cristianini, M.; Padula, M.; Anjos, C.A.R. Effect of high-pressure processing on characteristics of flexible packaging for foods and beverages. Food Res. Int. 2019, 119, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, U.M.; Sruthi, P.; Rastogi, N.K.; Naidu, M.M. Application of irradiation in the food industry. In Non-Thermal Food Processing Operations; Elsevier: Amsterdam, The Netherlands, 2023; pp. 221–253. [Google Scholar]
- Ostrem Loss, E.; Thompson, J.; Cheung, P.L.K.; Qian, Y.; Venturelli, O.S. Carbohydrate complexity limits microbial growth and reduces the sensitivity of human gut communities to perturbations. Nat. Ecol. Evol. 2023, 7, 127–142. [Google Scholar] [CrossRef]
- Hijnen, W.; Beerendonk, E.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: A review. Water Res. 2006, 40, 3–22. [Google Scholar] [CrossRef]
- Dong, Q.; Manns, D.C.; Feng, G.; Yue, T.; Churey, J.J.; Worobo, R.W. Reduction of patulin in apple cider by UV radiation. J. Food Prot. 2010, 73, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Yang, W.; Krishnamurthy, K. Effects of pulsed UV-light on peanut allergens in extracts and liquid peanut butter. J. Food Sci. 2008, 73, C400–C404. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Koutchma, T.; Linden, K. Ultraviolet and pulsed light processing of fluid foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Elsevier: Amsterdam, The Netherlands, 2012; pp. 185–223. [Google Scholar]
- Abera, G. Review on high-pressure processing of foods. Cogent Food Agric. 2019, 5, 1568725. [Google Scholar] [CrossRef]
- Kadam, P.; Jadhav, B.; Salve, R.; Machewad, G. Review on the High Pressure Technology (HPT) for Food Preservation; OMICS Publishing Group: Hyderabad, India, 2012. [Google Scholar]
- Sotelo, K.A.; Hamid, N.; Oey, I.; Pook, C.; Gutierrez-Maddox, N.; Ma, Q.; Leong, S.Y.; Lu, J. Red cherries (Prunus avium var. Stella) processed by pulsed electric field–Physical, chemical and microbiological analyses. Food Chem. 2018, 240, 926–934. [Google Scholar] [CrossRef]
- Li, S.-Q.; Zhang, H.Q.; Jin, T.Z.; Turek, E.J.; Lau, M.H. Elimination of Lactobacillus plantarum and achievement of shelf stable model salad dressing by pilot scale pulsed electric fields combined with mild heat. Innov. Food Sci. Emerg. Technol. 2005, 6, 125–133. [Google Scholar] [CrossRef]
- Rico, C.W.; Kim, G.-R.; Ahn, J.-J.; Kim, H.-K.; Furuta, M.; Kwon, J.-H. The comparative effect of steaming and irradiation on the physicochemical and microbiological properties of dried red pepper (Capsicum annum L.). Food Chem. 2010, 119, 1012–1016. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Ojha, S.; Rustad, T.; Tiwari, B. Influence of high-pressure processing on quality attributes of haddock and mackerel minces during frozen storage, and fishcakes prepared thereof. Innov. Food Sci. Emerg. Technol. 2020, 59, 102236. [Google Scholar] [CrossRef]
- Bleoanca, I.; Patrașcu, L.; Borda, D. Quality and Stability Equivalence of High Pressure and/or Thermal Treatments in Peach–Strawberry Puree. A Multicriteria Study. Foods 2021, 10, 2580. [Google Scholar] [CrossRef]
- Kaur, B.P.; Kaushik, N.; Rao, P.S.; Chauhan, O. Effect of high-pressure processing on physical, biochemical, and microbiological characteristics of black tiger shrimp (Penaeus monodon) high-pressure processing of shrimp. Food Bioprocess Technol. 2013, 6, 1390–1400. [Google Scholar] [CrossRef]
- Castrica, M.; Pavlovic, R.; Balzaretti, C.M.; Curone, G.; Brecchia, G.; Copelotti, E.; Panseri, S.; Pessina, D.; Arnoldi, C.; Chiesa, L.M. Effect of high-pressure processing on physico-chemical, microbiological and sensory traits in fresh fish fillets (Salmo salar and Pleuronectes platessa). Foods 2021, 10, 1775. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wu, C. The impact of pulsed light on decontamination, quality, and bacterial attachment of fresh raspberries. Food Microbiol. 2016, 57, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Valdivia-Nájar, C.G.; Martín-Belloso, O.; Giner-Seguí, J.; Soliva-Fortuny, R. Modeling the inactivation of Listeria innocua and Escherichia coli in fresh-cut tomato treated with pulsed light. Food Bioprocess Technol. 2017, 10, 266–274. [Google Scholar] [CrossRef]
- Tao, T.; Ding, C.; Han, N.; Cui, Y.; Liu, X.; Zhang, C. Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: Effects on quality attributes during storage. Food Packag. Shelf Life 2019, 21, 100358. [Google Scholar] [CrossRef]
- Koch, F.; Wiacek, C.; Braun, P.G. Pulsed light treatment for the reduction of Salmonella Typhimurium and Yersinia enterocolitica on pork skin and pork loin. Int. J. Food Microbiol. 2019, 292, 64–71. [Google Scholar] [CrossRef]
- Feng, M.; Ghafoor, K.; Seo, B.; Yang, K.; Park, J. Effects of ultraviolet-C treatment in Teflon®-coil on microbial populations and physico-chemical characteristics of watermelon juice. Innov. Food Sci. Emerg. Technol. 2013, 19, 133–139. [Google Scholar] [CrossRef]
- Degala, H.L.; Mahapatra, A.K.; Demirci, A.; Kannan, G. Evaluation of non-thermal hurdle technology for ultraviolet-light to inactivate Escherichia coli K12 on goat meat surfaces. Food Control 2018, 90, 113–120. [Google Scholar] [CrossRef]
- Carrillo, M.G.; Ferrario, M.; Guerrero, S. Effectiveness of UV-C light assisted by mild heat on Saccharomyces cerevisiae KE 162 inactivation in carrot-orange juice blend studied by flow cytometry and transmission electron microscopy. Food Microbiol. 2018, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Robichaud, V.; Bagheri, L.; Aguilar-Uscanga, B.R.; Millette, M.; Lacroix, M. Effect of ɣ-irradiation on the microbial inactivation, nutritional value, and antioxidant activities of infant formula. LWT 2020, 125, 109211. [Google Scholar] [CrossRef]
- Ismaiel, L.; Nartea, A.; Fanesi, B.; Lucci, P.; Pacetti, D.; Jaeger, H.; Schottroff, F. Effect of High-Pressure Processing on Color, Texture and Volatile Profile During Sardine Refrigeration. Foods 2025, 14, 329. [Google Scholar] [CrossRef]
- Foligni, R.; Mannozzi, C.; Ismaiel, L.; Capelli, F.; Laurita, R.; Tappi, S.; Dalla Rosa, M.; Mozzon, M. Impact of cold atmospheric plasma (CAP) treatments on the oxidation of pistachio kernel lipids. Foods 2022, 11, 419. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Wang, L.-H.; Yan, J.-K.; Aadil, R.M. Innovative Non-Thermal Technologies for the Extraction and Modification of Bioactive Compounds from Food Processing by-Products; Frontiers Media SA: Lausanne, Switzerland, 2023; p. 1161957. [Google Scholar]
- Pinto, C.A.; Moreira, S.A.; Fidalgo, L.G.; Inácio, R.S.; Barba, F.J.; Saraiva, J.A. Effects of high-pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 553–573. [Google Scholar] [CrossRef]
- Qiu, X.; Chang, J.; Jin, Y.; Wu, W.J. Pulsed Electric Field Treatments with Nonlethal Field Strength Alter the Properties of Bacterial Spores. J. Food Prot. 2022, 85, 1053–1060. [Google Scholar] [CrossRef]
- Liu, Y.F.; Oey, I.; Bremer, P.; Carne, A.; Silcock, P. Modifying the functional properties of egg proteins using novel processing techniques: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 986–1002. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Pendenza, P.; Díaz Navarro, M.; Valderrama García, E.; Di Monaco, R.; Giacalone, D. European consumers’ perceptions and attitudes towards non-thermally processed fruit and vegetable products. Foods 2020, 9, 1732. [Google Scholar] [CrossRef]
- Olsen, N.V.; Grunert, K.G.; Sonne, A.-M. Consumer acceptance of high-pressure processing and pulsed-electric field: A review. Trends Food Sci. Technol. 2010, 21, 464–472. [Google Scholar] [CrossRef]
- Cardello, A.V. Consumer concerns and expectations about novel food processing technologies: Effects on product liking☆. Appetite 2003, 40, 217–233. [Google Scholar] [CrossRef]
- Eustice, R.F.; Bruhn, C.M. Consumer acceptance and marketing of irradiated foods. In Food Irradiation Research and Technology; Blackwell Publishing: Ames, IA, USA; Oxford, UK, 2012; pp. 173–195. [Google Scholar] [CrossRef]
- Belpomme, D.; Hardell, L.; Belyaev, I.; Burgio, E.; Carpenter, D.O. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environ. Pollut. 2018, 242, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-thermal technologies for food processing. Front. Nutr. 2021, 8, 657090. [Google Scholar] [CrossRef] [PubMed]
- Allai, F.M.; Azad, Z.A.A.; Mir, N.A.; Gul, K. Recent advances in non-thermal processing technologies for enhancing shelf life and improving food safety. Appl. Food Res. 2023, 3, 100258. [Google Scholar] [CrossRef]
- Putnik, P.; Pavlić, B.; Šojić, B.; Zavadlav, S.; Žuntar, I.; Kao, L.; Kitonić, D.; Kovačević, D.B. Innovative hurdle technologies for the preservation of functional fruit juices. Foods 2020, 9, 699. [Google Scholar] [CrossRef]
Food Type | Technology Used | Observation | Quality and Rheological Effects | Parameters | References |
---|---|---|---|---|---|
Red cherries (Prumus avium var. Stella) | Pulsed electric field | No effect on probiotic bacteria growth. Observable decrease in the concentration of rutin and isorhamnetin rutinoside after storage. | No reported effect on texture; slight degradation of phenolic compounds affecting antioxidant properties. | Pulse frequency: 100 Hz Pulse width: 20 µs Electric field strength: 0.3 and 2.5 kV/cm | [201] |
Salad dressing | Pulsed electric field | <7.0 log CFU/mL reduction in L. plantarum and extension of shelf life after treatment when stored at refrigerated conditions. No significant change in pH and electric conductivity. | Minimal impact on viscosity; retained emulsion stability; no significant change in electric conductivity before and after PEF treatment. | Electric field strength: 34 kV/cm Pulse width: 45.7 µs Temperature: 18 °C Exposure time: <3 s | [202] |
Dried red pepper (Capsicum annum L.) | Ionising radiation | 5.0 log CFU/g reduction and reduced effect on physicochemical properties except for low levels of capsanthin. | Capsanthin levels slightly reduced, affecting colour intensity. Slight change in odour. | Gamma radiation dose: 10 kGy | [203] |
Mackerel (Scomber scombrus) and Haddock (Melanogrammus aeglefinus) | High-pressure processing | 1.7 log CFU/g and >1.0 log CFU/g reduction in microbial load, respectively, for both food samples. Decrease in firmness along with an increase in pressure. | Fish minces become slightly lighter and softer depicting enhanced sensory properties. | Pressure: 300 MPa Exposure time: 5 min | [204] |
Peach–Strawberry puree | High-pressure processing | 2.0 log CFU/g bacterial reduction. Mould and yeast were below detection. | Lowest browning index compared to thermal treatment; HPP-treated sample had the most appreciated sensorial profile. | Pressure: 600 MPa Exposure time: 10 min Temperature: 20 °C | [205] |
Black tiger shrimp (Penaeus monodon) | High-pressure processing | 0.4–1.5 log CFU/g and 0.3–1.0 log CFU/g reduction for target microorganisms, 15-day shelf-life extension. Significant (p < 0.05) increase in moisture content and parallel reduction in protein content was observed. Pressure treatment of 435 MPa was more effective. | Pressure-induced hardening of texture; retained freshness and appearance; improved moisture content and microbial quality. | Pressure: 100–435 MPa Exposure time: 5 min Temperature: 25 °C | [206] |
Seafood | High-pressure processing | Significant (p ≤ 0.05) reduced microbial growth for each investigated microorganism; a significant effect (p = 0.01) was observed on the colourimetric index; treated samples appeared more compact and opaque than controls. Preserved organoleptic and functional properties. | Texture and appearance attributes were significantly affected; pressure-induced change in colour; no observable change in odour. | Pressure: 500 MPa Exposure time: 2 min Temperature: 4 °C | [207] |
Raspberry | Pulsed light | 4.5 log CFU/mL, 3.9 log CFU/mL, 1.5 log CFU/mL, and 1.6 log CFU/mL reduction, respectively, for target microorganisms. However, it failed to retain minimal microbial load during storage. Severe damage to cell membrane on smooth surface, but surface roughness provided protection for pathogenic bacteria. Negative changes colour and texture. Treatment with fluence of 5.0 J/cm maintains safety. | Colour and texture of raspberries changed negatively after storage. Microbial inactivation advantage was not maintained during storage. | Fluence: 2.8.2 J/cm2 Peak power: 1.27 J/cm2/pulse Distance from lamp: 13 cm Exposure time: 30 s | [208] |
Fresh-cut tomato (Lycopersicon esculentum Mill., cv. Daniela) | Pulsed light | 0.9 and 1.4 log CFU/mL reduction. Extended shelf life by 12 days. | Slight changes in texture and moisture; chemical composition of sample was preserved; slight change in natural appearance. | Fluence: 4, 6 and 8 J/cm2 Peak power: 0.4 J/cm2 Distance from lamp: 8.5 cm Storage: 25 °C/4 days | [209] |
Blueberries | Pulsed field | 5.40, 5.08, 6.56, and 4.00 log CFU/mL log reduction, respectively, for target microorganisms. | Retained firmness and colour; slight loss of volatile aroma compounds. | Fluence: 416.8 J/cm2 Peak power: 0.33 J/cm2/pulse Pulse width: 300 µs Distance from lamp: 9 cm Storage: 40 °C/8 days | [210] |
Pork skin | Pulsed light | 1.73–3.16 and 1.48–4.37 log CFU/mL reduction. Treatment using ≥9.66 J/cm2 altered colour parameters of pork skin, rendering it less red. | Increased firmness; reduced red hue which affected appearance. | Fluence: 19.11 J/cm2 Peak power: 1.27 J/cm2/pulse Pulse width: 300 µs Distance from lamp: 8.5 cm Storage: 4 °C/20 days | [211] |
Watermelon juice | Ultraviolet light | Complete inactivation of coliform bacteria; 1.47 CFU/mL (50%) and 0.99 CFU/mL (30%) reduction in the total aerobic and yeast/mould, respectively, at 37.5 J/mL. | Insignificant effect on colour and viscosity. | UV dose: 2.7–37.5 J/ml | [212] |
Goat meat | Ultraviolet light | A significant log reduction of 1.18 log CFU/mL was reported. Alteration in oxidative stability on samples treated with essential oil. | No significant effect on the texture; slight alteration in colour and oxidative stability. | Factory unit: 254 nm Intensities: 100 and 200 µWcm−2 Treatment time: 2–10 min Energy dosage: 0.2–2.4 mJcm−2 | [213] |
Carrot–orange juice | Ultraviolet -light | 2.6–3.3 log CFU/mL reduction with evidence of sub-lethal damage and compromised membrane and metabolic activity. | Maintained viscosity and natural orange colour. | UV dose: 10.6 KJ/M2 | [214] |
Liquid infant formular | Ionising radiation | All target microorganisms were reported as sensitive to treatment with a decimal reduction dose of 0.28–2.37, except L. monocytogenes and Salmonella typhmurium, with no effect on lactose and protein content; however, a significant effect was shown on the vitamin C and antioxidant properties. | Minor texture changes; loss of vitamin C which affected nutritional value. | Gamma irradiation dose: 10 kGy | [215] |
Carrot and Lettuce | Ionising radiation | Total viable count was reduced to below the upper limit for food safety after treatment. Lower irradiation doses were more effective in the treatment of lettuce. Irradiation reduced count but failed to maintain advantage during storage for 15 days at variable rates. | No major texture changes; slight colour fading in lettuce. | Irradiation dose: 2.0 kGy | [213] |
Sardine | High-pressure processing | Treatment resulted in a lowering of ketone levels in treated samples from 25.3% to 33.6% at 400 MPa and 600 MPa. | Significantly impacted in the volatile profile of treated samples | Pressure: 400–600 MPa Exposure time: 1–10 min | [216] |
Pistachio kernel lipids | Cold Atmospheric Plasma | There was no significant effect on the total fatty acid composition and unsaponifiable matter constituents of extracted oils including 4-desmethylsterols, 4,4-dimethylsterols, and 4-methylsterols following plasma treatment. | Potential onset of oxidative degradation of food lipid with negative impact on the feel, sensory, and nutritional properties. | Sinusoidal high-voltage signals with peak voltage maintained at 6.6 kv and frequency of 23 kHz. | [217] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sharify, Z.T.; Al-Najjar, S.Z.; Anumudu, C.K.; Hart, A.; Miri, T.; Onyeaka, H. Non-Thermal Technologies in Food Processing: Implications for Food Quality and Rheology. Appl. Sci. 2025, 15, 3049. https://doi.org/10.3390/app15063049
Al-Sharify ZT, Al-Najjar SZ, Anumudu CK, Hart A, Miri T, Onyeaka H. Non-Thermal Technologies in Food Processing: Implications for Food Quality and Rheology. Applied Sciences. 2025; 15(6):3049. https://doi.org/10.3390/app15063049
Chicago/Turabian StyleAl-Sharify, Zainab T., Shahad Z. Al-Najjar, Christian Kosisochukwu Anumudu, Abarasi Hart, Taghi Miri, and Helen Onyeaka. 2025. "Non-Thermal Technologies in Food Processing: Implications for Food Quality and Rheology" Applied Sciences 15, no. 6: 3049. https://doi.org/10.3390/app15063049
APA StyleAl-Sharify, Z. T., Al-Najjar, S. Z., Anumudu, C. K., Hart, A., Miri, T., & Onyeaka, H. (2025). Non-Thermal Technologies in Food Processing: Implications for Food Quality and Rheology. Applied Sciences, 15(6), 3049. https://doi.org/10.3390/app15063049