Evaluation of Adequate Type of Non-Thermal Plasma for Treating Oily Sludge to Produce Refined Fuel
Abstract
1. Introduction
2. Experimental Details
2.1. Pre-Treatment Process Design for Oily Sludge
2.2. Construction of Non-Thermal Plasma Treatments Refining Oily Sludge into Fuel Oil
2.3. Utilizing Non-Thermal Equilibrium Plasma to Refine Oily Sludge into Fuel Oil
2.4. Fuel Analysis of the Fuel Oil Refined by a Non-Thermal Equilibrium Plasma Reactor
2.5. Limitations of This Study and Opportunities for Future Study
3. Results and Discussion
3.1. Pre-Treatment Process of Oily Sludge and Properties of Oil Products After Pre-Treatment
3.2. Comparison Among Different Types of Plasma Reactors for Treating Oily Sludge
3.3. Elemental Analysis
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teng, Q.; Zhang, D.; Yang, C. A review of the application of different treatment processes for oily sludge. Evironment. Sci. Pollut. Res. 2021, 28, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Zhu, L.; Wang, C.Y.; Yang, Z.Y.; Zhang, Y.N.; Qi, M.R. Experimental study and process parameters optimzation for oily sludge treatment by chemical cleaning. Chin. J. Environ. Eng. 2019, 13, 1202–1208. [Google Scholar]
- Hu, G.; Feng, H.; He, P.; Li, J.; Hewage, K.; Sadiq, R. Comparative life-cycle assessment of traditional and emerging oily sludge treatment approaches. J. Clean. Prod. 2020, 251, 119594. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, Z.; Wang, Z.; Li, X.; Chu, Z. Application and development of pyrolysis technology in petroleum oily sludge treatment. Environ. Eng. Res. 2020, 26, 190460. [Google Scholar] [CrossRef]
- Hamidi, Y.; Ataei, S.A.; Sarrafi, A. A simple, fast and low-cost method for the efficient separation of hydrocarbons from oily sludge. J. Hazard. Mater. 2021, 413, 125328. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Guan, B.; Sun, J.; Liao, G. Review on oily sludge treatment technology. Energy Environ. Sci. 2020, 467, 012173. [Google Scholar] [CrossRef]
- Borgheipour, H.; Moghaddas, Z.; Abbassi, M.; Abbaszadeh Tehrani, N. Application of DEA technique in SWOT analysis of oily sludge management using fuzzy data. Glob. J. Environ. Sci. Manag. 2018, 4, 183–194. [Google Scholar]
- Gao, N.; Jia, X.; Gao, G.; Ma, Z.; Quan, C.; Naqvi, S.R. Modeling and simulation of coupled pyrolysis and gasification of oily sludge in a rotary kiln. Fuel 2020, 279, 118152. [Google Scholar] [CrossRef]
- Jasmine, J.; Mukherji, S. Impact of bioremediation strategies on slurry phase treatment of aged oily sludge from a refinery. J. Environ. Manag. 2019, 246, 625–635. [Google Scholar] [CrossRef]
- Shahzad, A.; Bano, A.; Siddiqui, S. Effect of bacterial consortium on alfalfa (Medicago sativa L.) plant nutrient uptake and antioxidant enzymes at different levels of oily sludge. Isr. J. Plant Sci. 2020, 67, 158–170. [Google Scholar] [CrossRef]
- Environmental Protection Administration; Executive Yuan. Establishment of a Management Mechanism and Strategy for the Recycling and Treatment of Waste Lubricating Oil, First Progress Report; Taiwan Industrial Service Foundation: Taipei, Taiwan, 2020. [Google Scholar]
- Wu, X.F.; Qin, H.B.; Zheng, Y.X.; Zhang, Y.; Chen, W.; Zuo, J.Y.; Chen, G.J. A novel method for recovering oil from oily sludge via water-enhanced CO2 extraction. J. CO2 Util. 2019, 33, 513–520. [Google Scholar] [CrossRef]
- Hippler, R.; Kersten, H.; Schmidt, M.; Schoenbach, K.H. Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Osorio-Tejada, J.; van’t Veer, K.; Long, N.V.D.; Tran, N.N.; Fulcheri, L.; Patil, B.S.; Hessel, V. Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes. Energy Convers. Manag. 2022, 269, 116095. [Google Scholar] [CrossRef]
- Cocean, A.; Cocean, G.; Postolachi, C.; Garofalide, S.; Pricop, D.A.; Munteanu, B.S.; Gurlui, S. High Energy Pulsed Laser Beam to Produce a Thin Layer of Crystalline Silver without Heating the Deposition Substrate and Its Catalytic Effects. Quantum Beam Sci. 2024, 8, 16. [Google Scholar] [CrossRef]
- Acciarri, M.D.; Moore, C.; Baalrud, S.D. Strong Coulomb coupling influences ion and neutral temperatures in atmospheric pressure plasmas. Plasma Sources Sci. Technol. 2022, 31, 125005. [Google Scholar] [CrossRef]
- von Woedtke, T.; Laroussi, M.; Gherardi, M. Foundations of plasmas for medical applications. Plasma Sources Sci. Technol. 2022, 31, 054002. [Google Scholar] [CrossRef]
- Du, J.S. Complex Nanoparticle Systems: Structures, Structure–Property Relationships, and Dynamics. Ph.D. Dissertation, Northwestern University, Evanston, IL, USA, 2021. [Google Scholar]
- Appleton, T.J.; Colder, R.I.; Kingman, S.; Lowndes, I.S.; Read, A.G. Microwave technology for energy-efficient processing of waste. Appl. Energ. 2005, 81, 85–113. [Google Scholar] [CrossRef]
- Li, J.; Song, X.; Hu, G.; Thring, R.W. Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils. J. Environ. Sci. Health Part A 2013, 8, 1378–1389. [Google Scholar] [CrossRef]
- Ali, A.M.; Abu Hassan, M.A.; Ibrahim, R.R.K.; Jalil, A.A.; Mat Nayan, N.H.; Abdulkarim, B.I.; Sabeen, A.H. Analysis of solid residue and flue gas from thermal plasma treatment of petroleum sludge. J. Environ. Chem. Eng. 2019, 7, 103207. [Google Scholar] [CrossRef]
- Mazzoni, L.; Janajreh, I.; Elagroudy, S.; Ghenai, C. Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge. Energy 2020, 196, 117001. [Google Scholar] [CrossRef]
- Saifutdinov, A.I. Numerical study of various scenarios for the formation of atmospheric pressure DC discharge char acteristics in argon: From glow to arc discharge. Plasma Sources Sci. Technol. 2022, 31, 094008. [Google Scholar] [CrossRef]
- Timerkaev, B.A.; Gevorgyan, R.K.; Zalyalieva, A.A. Plasma-Chemical Synthesis of Nanodiamonds on the Surface of a Microarc Discharge Cathode. J. Eng. Phys. Thermophy 2022, 95, 1201–1206. [Google Scholar] [CrossRef]
- Nakano, A.; Nishida, H. The effect of the voltage waveform on performance of dielectric barrier discharge plasma actuator. J. Appl. Phys. 2019, 126, 173303. [Google Scholar] [CrossRef]
- Cai, X.; Wei, X.; Du, C. Thermal plasma treatment and co-processing of sludge for utilization of energy and material. Energy Fuels 2020, 34, 7775–7805. [Google Scholar] [CrossRef]
- Giwa, A.S.; Maurice, N.J.; Luoyan, A.; Liu, X.; Yunlong, Y.; Hong, Z. Advances in sewage sludge application and treatment: Process integration of plasma pyrolysis and anaerobic digestion with the resource recovery. Heliyon 2023, 9, e19765. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Jiang, Z.; Song, Y.; Zhang, T.; Siyal, A.A.; Fang, J. Microwave pyrolysis of oily sludge under different control modes. J. Hazard. Mater. 2021, 416, 125887. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, X.; Dai, Y.; Yan, T.; Zhang, X.; He, H.; He, P. Effect of Metal Dispersion in Rh-Based Zeolite and SiO2 Catalysts on the Hydroformylation of Olefin Mixtures from Fischer–Tropsch Synthesis. Catalysts 2025, 15, 212. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zheng, J.; Du, M.; Wu, X.; Song, J.; Yang, W. Non-thermal plasma-assisted ammonia production: A review. Energy Convers. Manag. 2023, 293, 117482. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, S.; Jiang, Y.; Fan, S.; Wen, T.; Wang, S.I.; Ding, L. Effect of biomass adsorbent on non-thermal plasma activated treatment of oil-based drilling cutting: Residual toxicity assessment. Sep. Purif. Technol. 2024, 332, 125784. [Google Scholar] [CrossRef]
- Starikovskaia, S.; Lacoste, D.A.; Colonna, G. Non-equilibrium plasma for ignition and combustion enhancement. Eur. Phys. J. D 2021, 75, 231. [Google Scholar] [CrossRef]
- Fan, Z.; Sun, H.; Dou, L.; Zhang, S.; Han, W.; Zhang, C.; Shao, T. One-step high-value conversion of heavy oil into H2, C2H2 and carbon nanomaterials by non-thermal plasma. Chem. Eng. J. 2023, 461, 141860. [Google Scholar] [CrossRef]
- Miao, Y.; Yokochi, A.; Jovanovic, G.; Zhang, S.; von Jouanne, A. Application- oriented non-thermal plasma in chemical reaction engineering: A review. Green Energy Resour. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Bhatsada, A.; Patumsawad, S.; Towprayoon, S.; Chiemchaisri, C.; Wangyao, K. Development of multivariable model for pre dicting heating value of bio-dried refuse-derived fuel from municipal solid waste. Biomass Bioenergy 2025, 197, 107795. [Google Scholar] [CrossRef]
- Gan, Z.; Zhao, C.; Li, Y.; Chen, G.; Song, Z.; Zhang, Z.; Ran, W. Experimental investigation on smoldering combustion for oil sludge treatment: Influence of key parameters and product analysis. Fuel 2022, 316, 123354. [Google Scholar] [CrossRef]
- Li, T.; Fan, Y.; Li, H.; Ren, Z.; Kou, L.; Guo, X.; Zhu, L. Excess sludge disintegration by discharge plasma oxidation: Efficiency and underlying mechanisms. Sci. Total Environ. 2021, 774, 145127. [Google Scholar] [CrossRef]
- Chang, C.Y.; Shie, J.L.; Lin, J.P.; Wu, C.H.; Lee, D.J.; Chang, C.F. Major products obtained from the pyrolysis of oil sludge. Energy Fuels 2000, 14, 1176–1183. [Google Scholar] [CrossRef]
- Kwao-Boateng, E.; Ankudey, E.G.; Darkwah, L.; Danquah, K.O. Assessment of diesel fuel quality. Heliyon 2024, 10, e24733. [Google Scholar] [CrossRef]
- ISO 8217:2024; Products from Petroleum, Synthetic and Renewable Sources—Fuels (Class F)—Specifications of Marine Fuels. ISO: Geneva, Switzerland, 2024.
Batch No. of the Mixture of Refined Oil and Catalyst | Heating Value (cal/g) | Carbon Residue (wt.%) |
---|---|---|
1 | 10,523.4 ± 159.95 | 3.77 ± 0.076 |
2 | 10,573.4 ± 160.71 | 2.20 ± 0.045 |
3 | 10,523.1 ± 159.95 | 5.58 ± 0.113 |
4 | 10,598.0 ± 161.09 | 1.49 ± 0.030 |
5 | 10,594.9 ± 161.04 | 3.48 ± 0.071 |
6 | 10,433.6 ± 158.59 | 1.64 ± 0.033 |
7 | 10,490.1 ± 159.45 | 3.60 ± 0.073 |
Processing Time (min) | C | H | O | S | N |
---|---|---|---|---|---|
Pre-treatment | 83.15 | 13.12 | 2.96 | 0.25 | 0.24 |
0.5 | 83.34 | 13.35 | 1.78 | 1.10 | 0.21 |
1 | 83.75 | 13.56 | 1.23 | 0.64 | 0.26 |
2 | 83.82 | 13.70 | 1.36 | 0.75 | 0.31 |
4 | 83.32 | 13.08 | 2.39 | 0.38 | 0.24 |
5 | 83.74 | 13.67 | 2.04 | 0.19 | 0.27 |
8 | 83.37 | 13.11 | 2.61 | 0.19 | 0.29 |
Diesel | 85.33 | 11.62 | 1.23 | 0.19 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y. Evaluation of Adequate Type of Non-Thermal Plasma for Treating Oily Sludge to Produce Refined Fuel. Processes 2025, 13, 1822. https://doi.org/10.3390/pr13061822
Lin C-Y. Evaluation of Adequate Type of Non-Thermal Plasma for Treating Oily Sludge to Produce Refined Fuel. Processes. 2025; 13(6):1822. https://doi.org/10.3390/pr13061822
Chicago/Turabian StyleLin, Cherng-Yuan. 2025. "Evaluation of Adequate Type of Non-Thermal Plasma for Treating Oily Sludge to Produce Refined Fuel" Processes 13, no. 6: 1822. https://doi.org/10.3390/pr13061822
APA StyleLin, C.-Y. (2025). Evaluation of Adequate Type of Non-Thermal Plasma for Treating Oily Sludge to Produce Refined Fuel. Processes, 13(6), 1822. https://doi.org/10.3390/pr13061822