Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = nonstationary excitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2830 KiB  
Article
BCINetV1: Integrating Temporal and Spectral Focus Through a Novel Convolutional Attention Architecture for MI EEG Decoding
by Muhammad Zulkifal Aziz, Xiaojun Yu, Xinran Guo, Xinming He, Binwen Huang and Zeming Fan
Sensors 2025, 25(15), 4657; https://doi.org/10.3390/s25154657 - 27 Jul 2025
Viewed by 373
Abstract
Motor imagery (MI) electroencephalograms (EEGs) are pivotal cortical potentials reflecting cortical activity during imagined motor actions, widely leveraged for brain-computer interface (BCI) system development. However, effectively decoding these MI EEG signals is often overshadowed by flawed methods in signal processing, deep learning methods [...] Read more.
Motor imagery (MI) electroencephalograms (EEGs) are pivotal cortical potentials reflecting cortical activity during imagined motor actions, widely leveraged for brain-computer interface (BCI) system development. However, effectively decoding these MI EEG signals is often overshadowed by flawed methods in signal processing, deep learning methods that are clinically unexplained, and highly inconsistent performance across different datasets. We propose BCINetV1, a new framework for MI EEG decoding to address the aforementioned challenges. The BCINetV1 utilizes three innovative components: a temporal convolution-based attention block (T-CAB) and a spectral convolution-based attention block (S-CAB), both driven by a new convolutional self-attention (ConvSAT) mechanism to identify key non-stationary temporal and spectral patterns in the EEG signals. Lastly, a squeeze-and-excitation block (SEB) intelligently combines those identified tempo-spectral features for accurate, stable, and contextually aware MI EEG classification. Evaluated upon four diverse datasets containing 69 participants, BCINetV1 consistently achieved the highest average accuracies of 98.6% (Dataset 1), 96.6% (Dataset 2), 96.9% (Dataset 3), and 98.4% (Dataset 4). This research demonstrates that BCINetV1 is computationally efficient, extracts clinically vital markers, effectively handles the non-stationarity of EEG data, and shows a clear advantage over existing methods, marking a significant step forward for practical BCI applications. Full article
(This article belongs to the Special Issue Advanced Biomedical Imaging and Signal Processing)
Show Figures

Figure 1

19 pages, 2969 KiB  
Article
Damage Detection for Offshore Wind Turbines Subjected to Non-Stationary Ambient Excitations: A Noise-Robust Algorithm Using Partial Measurements
by Ning Yang, Peng Huang, Hongning Ye, Wuhua Zeng, Yusen Liu, Juhuan Zheng and En Lin
Energies 2025, 18(14), 3644; https://doi.org/10.3390/en18143644 - 10 Jul 2025
Viewed by 254
Abstract
Reliable damage detection in operational offshore wind turbines (OWTs) remains challenging due to the inherent non-stationarity of environmental excitations and signal degradation from noise-contaminated partial measurements. To address these limitations, this study proposes a robust damage detection method for OWTs under non-stationary ambient [...] Read more.
Reliable damage detection in operational offshore wind turbines (OWTs) remains challenging due to the inherent non-stationarity of environmental excitations and signal degradation from noise-contaminated partial measurements. To address these limitations, this study proposes a robust damage detection method for OWTs under non-stationary ambient excitations using partial measurements with strong noise resistance. The method is first developed for a scenario with known non-stationary ambient excitations. By reformulating the time-domain equation of motion in terms of non-stationary cross-correlation functions, structural stiffness parameters are estimated using partially measured acceleration responses through the extended Kalman filter (EKF). To account for the more common case of unknown excitations, the method is enhanced via the extended Kalman filter under unknown input (EKF-UI). This improved approach enables the simultaneous identification of the physical parameters of OWTs and unknown non-stationary ambient excitations through the data fusion of partial acceleration and displacement responses. The proposed method is validated through two numerical cases: a frame structure subjected to known non-stationary ground excitation, followed by an OWT tower under unknown non-stationary wind and wave excitations using limited measurements. The numerical results confirm the method’s capability to accurately identify structural damage even under significant noise contamination, demonstrating its practical potential for OWTs’ damage detection applications. Full article
Show Figures

Figure 1

15 pages, 4855 KiB  
Article
A Semi-Active Control Method for Trains Based on Fuzzy Rules of Non-Stationary Wind Fields
by Gaoyang Meng, Jianjun Meng, Defang Lv, Yanni Shen and Zhicheng Wang
World Electr. Veh. J. 2025, 16(7), 367; https://doi.org/10.3390/wevj16070367 - 2 Jul 2025
Viewed by 193
Abstract
The stochastic fluctuation characteristics of wind speed can significantly affect the control performance of train suspension systems. To enhance the running quality of trains in non-stationary wind fields, this paper proposes a semi-active control method for trains based on fuzzy rules of non-stationary [...] Read more.
The stochastic fluctuation characteristics of wind speed can significantly affect the control performance of train suspension systems. To enhance the running quality of trains in non-stationary wind fields, this paper proposes a semi-active control method for trains based on fuzzy rules of non-stationary wind fields. Firstly, a dynamic model of the train and suspension system was established based on the CRH2 (China Railway High-Speed 2) high-speed train and magnetorheological dampers. Then, using frequency–time transformation technology, the non-stationary wind load excitation and train response patterns under 36 common operating conditions were calculated. Finally, by analyzing the response patterns of the train under different operating conditions, a comprehensive control rule table for the semi-active suspension system of the train under non-stationary wind fields was established, and a fuzzy controller suitable for non-stationary wind fields was designed. To verify the effectiveness of the proposed method, the running smoothness of the train was analyzed using a train-semi-active suspension system co-simulation model based on real wind speed data from the Lanzhou–Xinjiang railway line. The results demonstrate that the proposed method significantly improves the running quality of the train. Specifically, when the wind speed reaches 20 m/s and the train speed reaches 200 km/h, the lateral Sperling index is increased by 46.4% compared to the optimal standard index, and the vertical Sperling index is increased by 71.6% compared to the optimal standard index. Full article
Show Figures

Graphical abstract

18 pages, 2731 KiB  
Article
Prediction of Dissolved Gas in Transformer Oil Based on Variational Mode Decomposition Integrated with Long Short-Term Memory
by Guoping Chen, Jianhong Li, Yong Li, Xinming Hu, Jian Wang and Tao Li
Processes 2025, 13(5), 1446; https://doi.org/10.3390/pr13051446 - 9 May 2025
Viewed by 501
Abstract
To address the nonlinear and non-stationary characteristics of dissolved gas concentration data in transformer oil, this paper proposes a hybrid prediction model (VMD-SSA-LSTM-SE) that integrates Variational Mode Decomposition (VMD), the Whale Optimization Algorithm (WOA), the Sparrow Search Algorithm (SSA), Long Short-Term Memory (LSTM), [...] Read more.
To address the nonlinear and non-stationary characteristics of dissolved gas concentration data in transformer oil, this paper proposes a hybrid prediction model (VMD-SSA-LSTM-SE) that integrates Variational Mode Decomposition (VMD), the Whale Optimization Algorithm (WOA), the Sparrow Search Algorithm (SSA), Long Short-Term Memory (LSTM), and the Squeeze-and-Excitation (SE) attention mechanism. First, WOA dynamically optimizes VMD parameters (mode number k and penalty factor α to effectively separate noise and valid signals, avoiding modal aliasing). Then, SSA globally searches for optimal LSTM hyperparameters (hidden layer nodes, learning rate, etc.) to enhance feature mining for non-continuous data. The SE attention mechanism recalibrates channel-wise feature weights to capture critical time-series patterns. Experimental validation using real transformer oil data demonstrates that the model outperforms existing methods in prediction accuracy and computational efficiency. For instance, the CH4 test set achieves a Mean Absolute Error (MAE) of 0.17996 μL/L, a Mean Absolute Percentage Error (MAPE) of 1.4423%, and an average runtime of 82.7 s, making it significantly faster than CEEMDAN-based models. These results provide robust technical support for transformer fault prediction and condition-based maintenance, highlighting the model’s effectiveness in handling non-stationary time-series data. Full article
Show Figures

Figure 1

15 pages, 637 KiB  
Article
Grey Model Prediction Enhancement via Bernoulli Equation with Dynamic Polynomial Terms
by Linyu Pan and Yuanpeng Zhu
Symmetry 2025, 17(5), 713; https://doi.org/10.3390/sym17050713 - 7 May 2025
Viewed by 415
Abstract
The grey prediction model is designed to characterize systems comprising both partially known information (referred to as white) and partially unknown dynamics (referred to as black). However, traditional GM(1,1) models are based on linear differential equations, which limits their capacity to capture nonlinear [...] Read more.
The grey prediction model is designed to characterize systems comprising both partially known information (referred to as white) and partially unknown dynamics (referred to as black). However, traditional GM(1,1) models are based on linear differential equations, which limits their capacity to capture nonlinear and non-stationary behaviors. To address this issue, this paper develops a generalized grey differential prediction approach based on the Bernoulli equation framework. We incorporate the Bernoulli mechanism with a nonlinear exponent n and a dynamic polynomial-driven term. In this work, we propose a new model designated as BPGM(1,1). Another key innovation of this work is the adoption of a nonlinear least squares direct parameter identification strategy to calculate the exponent and polynomial parameters in the Bernoulli equation, which achieves a higher degree of freedom in parameter selection and effectively circumvents the model distortion issues caused by traditional background value estimation. Furthermore, the Euler discretization method is utilized for numerical solving, reducing the reliance on traditional analytical solutions for linear structures. Numerical experiments indicate that BPGM(1,1) surpasses GM(1,1), NFBM(1,1), and their improved versions. By leveraging the synergistic mechanism between Bernoulli-type nonlinear regulation and polynomial-driven external excitation, this framework significantly enhances prediction accuracy for systems characterized by non-stationary behaviors and multi-scale trends. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

18 pages, 931 KiB  
Article
Dynamic Analysis and Resonance Control of a Tunable Pendulum Energy Harvester Using Cone-Based Continuously Variable Transmission
by Chattarika Uttachee, Surat Punyakaew, Nghia Thi Mai, Md Abdus Samad Kamal, Iwanori Murakami and Kou Yamada
Machines 2025, 13(5), 365; https://doi.org/10.3390/machines13050365 - 29 Apr 2025
Viewed by 2490
Abstract
This paper investigates the design and performance of a tunable pendulum energy harvester (TPEH) integrated with cone continuously variable transmission (CVT) to enhance energy harvesting efficiency in broadband and non-stationary vibrational environments. The cone CVT mechanism enables the tunability of the harvester’s natural [...] Read more.
This paper investigates the design and performance of a tunable pendulum energy harvester (TPEH) integrated with cone continuously variable transmission (CVT) to enhance energy harvesting efficiency in broadband and non-stationary vibrational environments. The cone CVT mechanism enables the tunability of the harvester’s natural frequency, allowing it to dynamically adapt and maintain resonance across varying excitation frequencies. A specific focus is placed on the system’s behavior under chirp signal base excitation, which simulates a time-varying frequency environment. Experimental and analytical approaches are employed to evaluate the system’s dynamic response, energy output, and frequency adaptation capabilities. The results demonstrate that the proposed TPEH system achieves significant energy harvesting performance improvements by leveraging the cone CVT to optimize power generation under resonance conditions. The system is also shown to be effective in maintaining stable operation over a wide range of frequencies, demonstrating its versatility for real-world vibrational energy harvesting applications. This research highlights the importance of tunability in energy harvesting systems and the role of mechanical transmission mechanisms in improving adaptability. The proposed design has strong potential for applications in environments with non-stationary vibrations, such as transportation systems, industrial machinery, and infrastructure monitoring. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

16 pages, 328 KiB  
Review
Dynamical Casimir Effect: 55 Years Later
by Viktor V. Dodonov
Physics 2025, 7(2), 10; https://doi.org/10.3390/physics7020010 - 29 Mar 2025
Viewed by 5564
Abstract
The paper represents a brief review of the publications in 2020 to 2024 related to the phenomena combined under the name of dynamical Casimir effect. Full article
24 pages, 5937 KiB  
Article
Nonstationary Stochastic Responses of Transmission Tower-Line System with Viscoelastic Material Dampers Under Seismic Excitations
by Mingjing Chang, Bo Chen, Xiang Xiao and Yanzhou Chen
Materials 2025, 18(5), 1138; https://doi.org/10.3390/ma18051138 - 3 Mar 2025
Cited by 1 | Viewed by 761
Abstract
The excessive vibration or collapse of a transmission tower-line (TTL) system under seismic excitation can result in significant losses. Viscoelastic material dampers (VMDs) have been recognized as an effective method for structural vibration mitigation. Most existing studies have focused solely on the dynamic [...] Read more.
The excessive vibration or collapse of a transmission tower-line (TTL) system under seismic excitation can result in significant losses. Viscoelastic material dampers (VMDs) have been recognized as an effective method for structural vibration mitigation. Most existing studies have focused solely on the dynamic analysis of TTL systems with control devices under deterministic seismic excitations. Studies focusing on the nonstationary stochastic control of TTL systems with VMDs have not been reported. To this end, this study proposes a comprehensive analytical framework for the nonstationary stochastic responses of TTL systems with VMDs under stochastic seismic excitations. The analytical model of the TTL system is formulated using the Lagrange equation. The six-parameter model of VMDs and the vibration control method are established. Following this, the pseudo-excitation method (PEM) is applied to compute the stochastic response of the controlled TTL system under nonstationary seismic excitations, and a probabilistic framework for analyzing extreme value responses is developed. A real TTL system in China is selected to verify the validity of the proposed method. The accuracy of the proposed framework is validated based on the Monte Carlo method (MCM). A detailed parametric investigation is conducted to determine the optimal damper installation scheme and examine the effects of the service temperature and site type on stochastic seismic responses. VMDs can effectively suppress the structural dynamic responses, with particularly stable control over displacement. The temperature and site type have a notable influence on the stochastic seismic responses of the TTL system. The research findings provide important references for improving the seismic performance of VMDs in TTL systems. Full article
(This article belongs to the Special Issue From Materials to Applications: High-Performance Steel Structures)
Show Figures

Figure 1

15 pages, 6241 KiB  
Article
Modal Parameter Identification of the Improved Random Decrement Technique-Stochastic Subspace Identification Method Under Non-Stationary Excitation
by Jinzhi Wu, Jie Hu, Ming Ma, Chengfei Zhang, Zenan Ma, Chunjuan Zhou and Guojun Sun
Appl. Sci. 2025, 15(3), 1398; https://doi.org/10.3390/app15031398 - 29 Jan 2025
Viewed by 770
Abstract
Commonly used methods for identifying modal parameters under environmental excitations assume that the unknown environmental input is a stationary white noise sequence. For large-scale civil structures, actual environmental excitations, such as wind gusts and impact loads, cannot usually meet this condition, and exhibit [...] Read more.
Commonly used methods for identifying modal parameters under environmental excitations assume that the unknown environmental input is a stationary white noise sequence. For large-scale civil structures, actual environmental excitations, such as wind gusts and impact loads, cannot usually meet this condition, and exhibit obvious non-stationary and non-white-noise characteristics. The theoretical basis of the stochastic subspace method is the state-space equation in the time domain, while the state-space equation of the system is only applicable to linear systems. Therefore, under non-smooth excitation, this paper proposes a stochastic subspace method based on RDT. Firstly, this paper uses the random decrement technique of non-stationary excitation to obtain the free attenuation response of the response signal, and then uses the stochastic subspace identification (SSI) method to identify the modal parameters. This not only improves the signal-to-noise ratio of the signal, but also improves the computational efficiency significantly. A non-stationary excitation is applied to the spatial grid structure model, and the RDT-SSI method is used to identify the modal parameters. The identification results show that the proposed method can solve the problem of identifying structural modal parameters under non-stationary excitation. This method is applied to the actual health monitoring of stadium grids, and can also obtain better identification results in frequency, damping ratio, and vibration mode, while also significantly improving computational efficiency. Full article
Show Figures

Figure 1

15 pages, 6487 KiB  
Article
Seismic Response Analysis of Hydraulic Tunnels Under the Combined Effects of Fault Dislocation and Non-Uniform Seismic Excitation
by Hao Liu, Wenyu Yan, Yingbo Chen, Jingyi Feng and Dexin Li
Water 2024, 16(21), 3060; https://doi.org/10.3390/w16213060 - 25 Oct 2024
Viewed by 1248
Abstract
Hydraulic tunnels are prone to pass through faults and high-intensity earthquake areas, which will cause serious damage under fault dislocation and earthquake action. Fault dislocation and seismic excitation are often considered separately in previous studies. For tectonic earthquakes with higher frequency in seismic [...] Read more.
Hydraulic tunnels are prone to pass through faults and high-intensity earthquake areas, which will cause serious damage under fault dislocation and earthquake action. Fault dislocation and seismic excitation are often considered separately in previous studies. For tectonic earthquakes with higher frequency in seismic phenomena, fault dislocation and ground motion are often associated, and fault dislocation is usually the cause of earthquake occurrence, so it is limiting to consider the two separately. Moreover, strong earthquake records show that there will be significant differences in the mainland vibration within 50 m. The uniform ground motion inputs in previous studies are not suitable for long hydraulic tunnels. This paper begins with the simulation of non-uniform stochastic seismic excitations that consider spatial correlation. Based on stochastic vibration theory, multiple multi-point acceleration time-history curves that can reflect traveling wave effects, coherence effects, attenuation effects, and non-stationary characteristics are synthesized. Furthermore, a fault velocity function is introduced to account for the velocity effect of fault dislocation. Finally, numerical analyses of the response patterns of the tunnel lining under four different conditions are conducted based on an actual engineering project. The results indicate the following: (a) the maximum lining response values occur under the combined effects of fault dislocation and non-uniform seismic excitation, indicating its importance in the seismic resistance of the tunnel. (b) Compared to uniform seismic excitation, the peak displacement of the tunnel under non-uniform seismic excitation increases by up to 6.42%, and the peak maximum principal stress increases by up to 28%. Additionally, longer tunnels exhibit a noticeable delay effect in axial deformation during an earthquake. (c) Under non-uniform seismic excitation, the larger the fault dislocation magnitude, the greater the peak displacement and peak maximum principal stress at the monitoring points of the lining. The simulation results show that the extreme response values primarily occur at the crown and haunches of the tunnel, which require special attention. The research can provide valuable references for the seismic design of cross-fault tunnels. Full article
(This article belongs to the Special Issue Water Engineering Safety and Management)
Show Figures

Figure 1

22 pages, 9204 KiB  
Article
Analysis of the Nonlinear Complex Response of Cracked Blades at Variable Rotational Speeds
by Bo Shao, Chenguang Fan, Shunguo Fu and Jin Zeng
Machines 2024, 12(10), 725; https://doi.org/10.3390/machines12100725 - 14 Oct 2024
Viewed by 1219
Abstract
The operation of an aero-engine involves various non-stationary processes of acceleration and deceleration, with rotational speed varying in response to changing working conditions to meet different power requirements. To investigate the nonlinear dynamic behaviour of cracked blades under variable rotational speed conditions, this [...] Read more.
The operation of an aero-engine involves various non-stationary processes of acceleration and deceleration, with rotational speed varying in response to changing working conditions to meet different power requirements. To investigate the nonlinear dynamic behaviour of cracked blades under variable rotational speed conditions, this study constructed a rotating blade model with edge-penetrating cracks and proposes a component modal synthesis method that accounts for time-varying rotational speed. The nonlinear response behaviours of cracked blades were examined under three distinct operating conditions: spinless, steady speed, and non-constant speed. The findings indicated a competitive relationship between the effects of rotational speed fluctuations and unbalanced excitation on crack nonlinearity. Variations in rotational speed dominated when rotational speed perturbation was minimal; conversely, aerodynamic forces dominated when the effects of rotational speed were pronounced. An increase in rotational speed perturbation enhanced the super-harmonic nonlinearity induced by cracks, elevated the nonlinear damage index (NDI), and accentuated the crack breathing effect. As the perturbation coefficient increased, the super-harmonic nonlinearity of the crack intensified, resulting in a more complex vibration form and phase diagram. Full article
(This article belongs to the Special Issue Nonlinear Dynamics of Mechanical Systems and Machines)
Show Figures

Figure 1

19 pages, 5688 KiB  
Article
Dynamic Instability Investigation of the Automotive Driveshaft’s Forced Torsional Vibration Using the Asymptotic Method
by Mihai Bugaru and Ovidiu Vasile
Appl. Sci. 2024, 14(17), 7681; https://doi.org/10.3390/app14177681 - 30 Aug 2024
Viewed by 997
Abstract
This paper aims to investigate using FOAM to analyze the dynamic instability in the APPR for ADFTV based on a dynamic model (DMADFTV). The DMADFTV considers the following aspects: AD kinematic nonuniformity (ADKN), AD geometric nonuniformity (ADGN) of inertial characteristics for the spinning [...] Read more.
This paper aims to investigate using FOAM to analyze the dynamic instability in the APPR for ADFTV based on a dynamic model (DMADFTV). The DMADFTV considers the following aspects: AD kinematic nonuniformity (ADKN), AD geometric nonuniformity (ADGN) of inertial characteristics for the spinning movements (ICSM) of the AD elements (ADE), and the excitations induced by the gearbox–internal combustion engine modulations. The DMADFTV is considered the already-designed dynamic model developed by the first author of the ADFTV in a previous publication. This DMADFTV was used to compute the stationary frontiers of instability and the nonstationary spectral velocity amplitude (NSVA) versus nonstationary spectral amplitude (NSA) in the configuration space in transition through APPR, using the FOAM. The use of FOAM is much more versatile, from the analytical point of view, than the method of multiple scales and allows the computation of the NSA and the NSVA in the APPR. In contrast, these computations cannot be performed using the harmonic balance method. MATLAB Software R 2017 was developed based on DMADFTV and used the FOAM to compute the stationary frontiers of instability and the NSVA versus the NSA in transition through APPR for the ADFTV. The numerical results were compared with the experimental and numerical data published in the literature, finding agreements. The computation of the NSVA versus NSA in the configuration space using FOAM represents a method of detection of the chaotic manifestation of ADFTV. Full article
Show Figures

Figure 1

20 pages, 5530 KiB  
Article
Influence of Ground Motion Non-Gaussianity on Seismic Performance of Buildings
by Xingliang Ma and Zhen Liu
Buildings 2024, 14(8), 2364; https://doi.org/10.3390/buildings14082364 - 31 Jul 2024
Cited by 1 | Viewed by 1051
Abstract
The non-Gaussian feature of seismic ground motion has been reported in some works. However, there remains a lack of research on the influence of the ground motion non-Gaussianity on the seismic performance of buildings, which motivates this study. By employing a non-Gaussian non-stationary [...] Read more.
The non-Gaussian feature of seismic ground motion has been reported in some works. However, there remains a lack of research on the influence of the ground motion non-Gaussianity on the seismic performance of buildings, which motivates this study. By employing a non-Gaussian non-stationary random process simulation method previously proposed by the authors, 40,000 ground motion acceleration signals are efficiently generated, including 20,000 Gaussian and 20,000 non-Gaussian records. As computational examples, a four-story frame building and a three-tower super-tall building are selected. The generated acceleration signals serve as external excitations for the two buildings, allowing for a comparison of the differences in seismic structural responses caused by the Gaussian and non-Gaussian earthquake groups. Probability analysis is performed using top-layer displacement and maximum inter-story drift ratio as damage indicators. The results show that the structural responses induced by both Gaussian and non-Gaussian earthquake groups have identical first- and second-order moments but different higher-order moments. The responses from non-Gaussian earthquakes display distinct non-Gaussian traits, with their distribution of extreme values exhibiting a longer tail compared to the Gaussian counterparts. This leads to a notably larger value of non-Gaussian responses under high crossing probabilities, with an amplification that can surpass 18%. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 5364 KiB  
Article
Application of Generalized S-Transform in the Measurement of Dynamic Elastic Modulus
by Lei Wang, Yang Gao, Hongguang Liu, Guoping Fu and Dunqiang Lu
Appl. Sci. 2024, 14(14), 5995; https://doi.org/10.3390/app14145995 - 9 Jul 2024
Viewed by 1003
Abstract
Resonance is commonly used for in situ measurement of the dynamic elastic modulus to evaluate the strength of concrete samples. Many researchers are also exploring the application of this convenient measurement technology for safety monitoring. Nevertheless, the presence of cracks and variations in [...] Read more.
Resonance is commonly used for in situ measurement of the dynamic elastic modulus to evaluate the strength of concrete samples. Many researchers are also exploring the application of this convenient measurement technology for safety monitoring. Nevertheless, the presence of cracks and variations in curing conditions within samples can impact the resonance frequency range, potentially leading to potential inaccuracies in measurements. In order to improve the measurement accuracy of resonance frequency, this study introduces the Generalized S-Transform (GST) algorithm for measuring the dynamic elastic modulus, which utilizes its high time-frequency resolution to scan the power peak-point in non-stationary and transient excitation signals to determine the resonance frequency. For concrete materials with lower consistency, the experimental results verify the high accuracy of this algorithm in measuring resonance frequency compared with Fast Fourier Transform (FFT). This provides a reference for using the algorithm to measure the dynamic elastic modulus in civil engineering applications, such as buildings and bridges. Full article
(This article belongs to the Special Issue Risk Control and Performance Design of Bridge Structures)
Show Figures

Figure 1

29 pages, 1891 KiB  
Review
Decoding the Nature of Coherent Radio Emission in Pulsars I: Observational Constraints
by Dipanjan Mitra, Rahul Basu and George I. Melikidze
Universe 2024, 10(6), 248; https://doi.org/10.3390/universe10060248 - 3 Jun 2024
Cited by 5 | Viewed by 2125
Abstract
Radio observations from normal pulsars indicate that the coherent radio emission is excited by curvature radiation from charge bunches. In this review, we provide a systematic description of the various observational constraints on the radio emission mechanism. We have discussed the presence of [...] Read more.
Radio observations from normal pulsars indicate that the coherent radio emission is excited by curvature radiation from charge bunches. In this review, we provide a systematic description of the various observational constraints on the radio emission mechanism. We have discussed the presence of highly polarized time samples where the polarization position angle follow two orthogonal well-defined tracks across the profile that closely match the rotating vector model in an identical manner. The observations also show the presence of circular polarization, with both the right and left handed circular polarization seen across the profile. Other constraints on the emission mechanism are provided by the detailed measurements of the spectral index variation across the profile window, where the central part of the profile, corresponding to the core component, has a steeper spectrum than the surrounding cones. Finally, the detailed measurements of the subpulse drifting behaviour can be explained by considering the presence of non-dipolar field on the stellar surface and the formation of the partially screened gap (PSG) above the polar cap region. The PSG gives rise to a non-stationary plasma flow that has a multi-component nature, consisting of highly energetic primary particles, secondary pair plasma, and iron ions discharged from the surface, with large fragmentation resulting in dense plasma clouds and lower-density inter-cloud regions. The physical properties of the outflowing plasma and the observational constraints lead us to consider coherent curvature radiation as the most viable explanation for the emission mechanism in normal pulsars, where propagation effects due to adiabatic walking and refraction are largely inconsequential. Full article
(This article belongs to the Special Issue A New Horizon of Pulsar and Neutron Star: The 55-Year Anniversary)
Show Figures

Figure 1

Back to TopTop