Dynamic Analysis and Resonance Control of a Tunable Pendulum Energy Harvester Using Cone-Based Continuously Variable Transmission
Abstract
1. Introduction
- Adaptive resonance tuning in response to time-varying vibration frequencies;
- Enhanced energy harvesting efficiency across a broad and dynamic frequency range;
- Precise control enabled by feedback-driven PID regulation;
- Greater flexibility and robustness for real-world applications with unpredictable vibrational environments.
2. Related Papers
3. Material and Methods
3.1. Working Principle of Cone CVT
3.2. Methodology
3.3. Control System Description
4. Mathematical Modeling
4.1. Harmonic Excitation
4.2. Chirp Signal Excitation
- (1)
- In this case, is less than or equal to , so this case is “out of the tuning range”. The natural frequency of the system is set to , and the time in this case is .
- (2)
- In this case, is “in the tuning range”, and we assume that the natural frequency will be in real time. Then, we can set the excitation frequency () = natural frequency () (13) , and the time in this case is .
- (3)
- In this case, is greater than or equal to . This case is “out of the tuning range”. Then, we set the natural frequency of the system to , and the time in this case is . From the equation for the frequency tuning algorithm (non-resonance control), we set and , and the time in this case is .
5. Numerical Simulation
5.1. Harmonic Excitation
5.2. Chirp Signal Base Excitation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.; Mahmud, A.; Rahman, M.M.; Khan, M.F.; Saidur, R. A review on the integration of radiative cooling and solar energy harvesting. Mater. Today Energy 2021, 21, 100776. [Google Scholar] [CrossRef]
- Vullers, R.J.M.; Van Schaijk, R.; Doms, I.; Van Hoof, C.; Mertens, R. Micropower energy harvesting. Solid-State Electron. 2009, 53, 684–693. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystem applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef]
- Marszal, M.; Witkowski, B.; Jankowski, K.; Perlikowski, P.; Kapitaniak, T. Energy harvesting from pendulum oscillations. Int. J. Non-Linear Mech. 2017, 94, 251–256. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C.; Zhang, W.; Wu, L. Pendulum energy harvesters: A review. Energies 2022, 15, 8674. [Google Scholar] [CrossRef]
- Lenci, S.; Brocchini, M.; Lorenzoni, C. Experimental rotations of a pendulum on water waves. J. Appl. Mech. 2012, 79, 011007. [Google Scholar] [CrossRef]
- Wang, T. Pendulum-Based Vibration Energy Harvesting: Mechanisms, Transducer Integration, and Applications. Energy Convers. Manag. 2023, 276, 116469. [Google Scholar] [CrossRef]
- Jiang, W.; Han, X.; Chen, L.; Bi, Q. Improving Energy Harvesting by Internal Resonance in a Spring-Pendulum System. Acta Mech. Sin. 2020, 36, 618–623. [Google Scholar] [CrossRef]
- Abohamer, M.K.; Awrejcewicz, J.; Starosta, R.; Amer, T.S.; Bek, M.A. Influence of the Motion of a Spring Pendulum on Energy-Harvesting Devices. Appl. Sci. 2021, 11, 8658. [Google Scholar] [CrossRef]
- He, C.H.; Amer, T.S.; Tian, D.; Abolila, A.F.; Galal, A.A. Controlling the Kinematics of a Spring-Pendulum System Using an Energy Harvesting Device. J. Low Freq. Noise Vib. Act. Control 2022, 41, 1234–1257. [Google Scholar] [CrossRef]
- Pham, P.T.; Nguyen, Q.C. Dynamic model of a three-dimensional flexible cantilever beam attached to a moving hub. In Proceedings of the 2017 11th Asian Control Conference (ASCC), Gold Coast, QLD, Australia, 17–20 December 2017; IEEE: Tokyo, Japan, 2017; pp. 2744–2749. [Google Scholar] [CrossRef]
- Covaci, C.; Gontean, A. Piezoelectric energy harvesting solutions: A review. Sensors 2020, 20, 3512. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, C.; Lai, S.K.; Chen, Z.; Chen, L. Frequency-dependent equivalent impedance analysis for optimizing vehicle inertial suspensions. Nonlinear Dyn. 2025, 113, 9373–9398. [Google Scholar] [CrossRef]
- Punyakaew, S. Adaptively tuned vibration absorber using cone-based continuously variable transmission. Cogent Eng. 2022, 9, 2102044. [Google Scholar] [CrossRef]
- Shi, B.; Dai, W.; Yang, J. Performance enhancement of vehicle suspension system with geometrically nonlinear inerters. Arch. Appl. Mech. 2024, 94, 39–55. [Google Scholar] [CrossRef]
- Punyakaew, S.; Parnichkun, M. Vibration energy harvesting for low frequency using auto-tuning parametric rolling pendulum under exogenous multi-frequency excitations. Theor. Appl. Mech. Lett. 2020, 10, 448–455. [Google Scholar] [CrossRef]
- Brzeski, P.; Kapitaniak, T.; Perlikowski, P. Novel type of tuned mass damper with inerter which enables changes of inertance. J. Sound Vib. 2015, 349, 56–66. [Google Scholar] [CrossRef]
- Wang, F.C.; Wu, S.Y. Vibration control of an optical table employing mechatronic inerter networks. J. Vib. Control 2016, 22, 224–234. [Google Scholar] [CrossRef]
- Sun, J.Q.; Jolly, M.A.; Norris, M.T. Passive, adaptive and active tuned vibration absorbers—A survey. J. Sound Vib. 1995, 186, 475–489. [Google Scholar] [CrossRef]
- Hrovat, D.; Barak, P.; Rabins, M. Semi-active versus passive or active tuned mass dampers for structural control. J. Eng. Mech. 1983, 109, 691–705. [Google Scholar] [CrossRef]
- Rahimi, F.; Aghayari, R.; Samali, B. Application of tuned mass dampers for structural vibration control: A state-of-the-art review. Civ. Eng. J. 2020, 6, 1622–1651. [Google Scholar] [CrossRef]
- Renno, J.M.; Daqaq, M.F.; Inman, D.J. On the Optimal Energy Harvesting from a Vibration Source. J. Sound Vib. 2009, 320, 386–405. [Google Scholar] [CrossRef]
- Kadjie, A.N.; Woafo, P. Effects of Springs on a Pendulum Electromechanical Energy Harvester. Theor. Appl. Mech. Lett. 2014, 4, 063001. [Google Scholar] [CrossRef]
- Graves, J.; Kuang, Y.; Zhu, M. Pendulum Energy Harvester with Torsion Spring Mechanical Energy Storage Regulator. Sens. Actuators A Phys. 2022, 339, 113505. [Google Scholar] [CrossRef]
- Wu, Y.; Qiu, J.; Kojima, F.; Ji, H.; Xie, W.; Zhou, S. Design Methodology of a Frequency Up-Converting Energy Harvester Based on Dual-Cantilever and Pendulum Structures. AIP Adv. 2019, 9, 045114. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, S. Analysis and Experiments of a Pendulum Vibration Energy Harvester with a Magnetic Multi-Stable Mechanism. IEEE Trans. Magn. 2022, 58, 8002507. [Google Scholar] [CrossRef]
- Zhang, A.; Sorokin, V.; Li, H. Energy Harvesting Using a Novel Autoparametric Pendulum Absorber-Harvester. J. Sound Vib. 2021, 499, 116014. [Google Scholar] [CrossRef]
- Li, M.; Deng, H.; Zhang, Y.; Li, K.; Huang, S.; Liu, X. Ultra-low frequency eccentric pendulum-based electromagnetic vibrational energy harvester. Micromachines 2020, 11, 1009. [Google Scholar] [CrossRef]
- Uttachee, C.; Punyakaew, S.; Mai, N.T.; Hashikura, K.; Kamal, M.A.S.; Murakami, I.; Yamada, K. Tunable Pendulum Energy Harvester Using Cone Continuously Variable Transmission. In Proceedings of the 2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Khon Kaen, Thailand, 27–30 May 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Sarker, M.R.; Julai, S.; Sabri, M.F.; Said, S.M.; Islam, M.M.; Tahir, M. Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sens. Actuators A Phys. 2019, 300, 111634. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, S.; Fang, S.; Qin, W.; Inman, D.J. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Appl. Phys. Rev. 2021, 8, 031317. [Google Scholar] [CrossRef]
- Dotti, F.E.; Reguera, F.; Machado, S.P. Rotations of the parametric pendulum excited by a reciprocating motion with a view on energy harvesting. In International Symposium on Dynamic Problems of Mechanics; Springer International Publishing: Cham, Switzerland, 2017; pp. 385–397. [Google Scholar] [CrossRef]
- Lee, B.C.; Chung, G.S. Design and fabrication of low-frequency driven energy harvester using electromagnetic conversion. Trans. Electr. Electron. Mater. 2013, 14, 143–147. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Beeby et al. [3] (microscale systems) | More scalable for MEMS applications | Limited adaptability and low output in dynamic environments |
Shi et al. [15] (system classification) | Offers a broad theoretical framework | No practical tuning or real-time adaptability |
Punyakaew et al. [16] (passive auto-tuning) | Simpler and energy-efficient, no active control required | Cannot adapt to rapidly changing or wide-range inputs |
Yang et al. [31] (nonlinear systems) | Broader bandwidth and multifunctionality | Harder to control precisely, less stable in real time |
Dotti et al. [32] (parametric pendulum) | Useful in identifying stable excitation zones | No real-time response or control flexibility |
Proposed (active CVT + PID) | real-time tuning, wide adaptability, precise resonance tracking, multifunctional use | PID control may face challenges under rapidly changing or nonlinear vibration conditions |
Symbols | Values | Unit |
---|---|---|
0.00475 | ||
0.00475 | ||
0.005 | ||
0.0266 | ||
200 | ||
2 | ||
c | 0.028 | |
0.2 | ||
0.2 | ||
0.7 | ||
0.5 | ||
0.5 | ||
D | 0.22665 | |
d | 0.04 | |
0.074 | ||
2 | ||
2 |
Performance Index | Tuned | Untuned |
---|---|---|
RMS voltage | 2.0109 | 0.6756 |
MAXIMUM voltage | 5.3722 | 1.7260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uttachee, C.; Punyakaew, S.; Mai, N.T.; Kamal, M.A.S.; Murakami, I.; Yamada, K. Dynamic Analysis and Resonance Control of a Tunable Pendulum Energy Harvester Using Cone-Based Continuously Variable Transmission. Machines 2025, 13, 365. https://doi.org/10.3390/machines13050365
Uttachee C, Punyakaew S, Mai NT, Kamal MAS, Murakami I, Yamada K. Dynamic Analysis and Resonance Control of a Tunable Pendulum Energy Harvester Using Cone-Based Continuously Variable Transmission. Machines. 2025; 13(5):365. https://doi.org/10.3390/machines13050365
Chicago/Turabian StyleUttachee, Chattarika, Surat Punyakaew, Nghia Thi Mai, Md Abdus Samad Kamal, Iwanori Murakami, and Kou Yamada. 2025. "Dynamic Analysis and Resonance Control of a Tunable Pendulum Energy Harvester Using Cone-Based Continuously Variable Transmission" Machines 13, no. 5: 365. https://doi.org/10.3390/machines13050365
APA StyleUttachee, C., Punyakaew, S., Mai, N. T., Kamal, M. A. S., Murakami, I., & Yamada, K. (2025). Dynamic Analysis and Resonance Control of a Tunable Pendulum Energy Harvester Using Cone-Based Continuously Variable Transmission. Machines, 13(5), 365. https://doi.org/10.3390/machines13050365