Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (995)

Search Parameters:
Keywords = non-woven

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2657 KB  
Article
Nanocellulose Coatings for Surgical Face Masks
by Divya Rajah, Sandya Athukoralalage, Ramanathan Yegappan and Nasim Amiralian
Nanomaterials 2026, 16(2), 112; https://doi.org/10.3390/nano16020112 - 15 Jan 2026
Abstract
Polypropylene (PP) nonwovens are widely used as filtration layers in surgical face masks, but their hydrophobic, inert surfaces limit their ability to attach functional coatings that adjust pore size and improve mechanical filtration. Herein, we exploit cellulose derived from sugarcane debris to construct [...] Read more.
Polypropylene (PP) nonwovens are widely used as filtration layers in surgical face masks, but their hydrophobic, inert surfaces limit their ability to attach functional coatings that adjust pore size and improve mechanical filtration. Herein, we exploit cellulose derived from sugarcane debris to construct nanocellulose coatings that modify the surface properties of PP mask nonwovens without altering the underlying fibre architecture. Cellulose pulp was fibrillated to cellulose nanofibres (CNFs) and functionalised to yield TEMPO-oxidised nanofibres (TCNFs) and cationic nanofibres (CCNFs). All these nanofibres retain a cellulose I structure with a thermal stability of well above an 80–100 °C drying window. The three nanocelluloses exhibit distinct combinations of surface charge and wettability (ζ ≈ −9, −73, and +76 mV), with various hydrophobicity. Dip coating produces nanocellulose coating layers on PP, with uniform coverage at 1 wt% for TCNF and CCNF. CCNF inverts the negative surface charge of PP and maintains the positive charge at 86% relative humidity. Ethanol pretreatment of PP increases CCNF coating adhesion and preserves a continuous nanoporous CCNF film on the PP surface under humid conditions. Cytotoxicity assays indicate no detectable cytotoxicity for coated or uncoated nonwovens. This work establishes sugarcane-derived nanocellulose, particularly CCNF and TCNF, as a potential biocompatible surface coating for PP mask nonwovens. Full article
(This article belongs to the Special Issue Nanofiber and Nanomaterial Composites: Energy, Healthcare and Beyond)
Show Figures

Graphical abstract

24 pages, 11128 KB  
Article
Fibrous Polycaprolactone-Based Composite Materials with the Addition of Hardystonite: Haemostatic Potential, Antioxidant Activity, and Biocompatibility Assessment
by Anna Kaczmarek, Marcin H. Kudzin, Michał Juszczak, Katarzyna Woźniak, Paulina Król, César I. Hernández Vázquez, Zdzisława Mrozińska and Jerzy J. Chruściel
Macromol 2026, 6(1), 5; https://doi.org/10.3390/macromol6010005 - 13 Jan 2026
Viewed by 44
Abstract
Fibrous polycaprolactone-based composite materials with the addition of hardystonite (1, 3, and 5 wt.%) were developed using the electrospinning method. The obtained PCL and PCL-HT nonwovens were evaluated in terms of their physiochemical properties (SEM, EDS, BET, and zeta potential). Furthermore, the antioxidant [...] Read more.
Fibrous polycaprolactone-based composite materials with the addition of hardystonite (1, 3, and 5 wt.%) were developed using the electrospinning method. The obtained PCL and PCL-HT nonwovens were evaluated in terms of their physiochemical properties (SEM, EDS, BET, and zeta potential). Furthermore, the antioxidant potential [measured by thiobarbituric acid reactive substance (TBARS) levels], blood plasma coagulation parameters, and cyto- and genotoxicity towards PBM and Hs68 cells were assessed to determine the biochemical activity of the composites. The conducted experiments confirmed that hardystonite was successfully incorporated into the PCL matrix. No substantial changes in the fibres’ surface morphology and the structure of the composites were observed. Similarly, the specific surface area, total pore volume, and average pore size did not change significantly. The addition of hardystonite to the polymer solution resulted in a shift in zeta potential toward less negative values. With regard to plasma coagulation parameters, no significant changes were observed in the aPTT, PT, or TT, likely due to the counterbalancing effect of Zn2+ and Ca2+ ions. Furthermore, the PCL-HT composites exhibited a lowered TBARS level, suggesting antioxidant properties, which could be attributed to the presence of zinc in hardystonite. The PCL and PCL-HT composites demonstrated no cytotoxic or genotoxic effects on the tested blood or skin cell types, suggesting their safety. Full article
Show Figures

Figure 1

16 pages, 1881 KB  
Article
Sustainable Lavender Extract-Mediated Synthesis of Silver Nanoparticles and Their Use in Fabricating Antibacterial Polymer Nanocomposites
by Lívia Mačák, Oksana Velgosová, Erika Múdra, Marek Vojtko and Silvia Ondrašovičová
Nanomaterials 2026, 16(2), 98; https://doi.org/10.3390/nano16020098 - 12 Jan 2026
Viewed by 131
Abstract
This study focuses on the development of antibacterial polymer nanocomposites based on biologically synthesized silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA) as the polymer matrix. Silver nanoparticles were produced using an aqueous extract from dried Lavandula angustifolia (lavender) leaves, which proved to be [...] Read more.
This study focuses on the development of antibacterial polymer nanocomposites based on biologically synthesized silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA) as the polymer matrix. Silver nanoparticles were produced using an aqueous extract from dried Lavandula angustifolia (lavender) leaves, which proved to be highly effective in reducing silver ions and stabilizing the resulting nanoparticles. The synthesized AgNPs were characterized by FTIR, UV-Vis, TEM, SEM, and DLS analyses. The nanoparticles were predominantly spherical, with more than 70% having diameters below 20 nm. Subsequently, AgNPs were incorporated into the PVA matrix via an ex situ approach to fabricate nanocomposite fibers and thin films. SEM analysis confirmed successful incorporation and uniform distribution of AgNPs within the polymer structures. The nanocomposites exhibited pronounced antibacterial activity against both Gram-positive (Staphylococcus aureus, Staphylococcus haemolyticus, Streptococcus uberis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, with nanofibers demonstrating superior performance compared to thin films. These findings highlight the potential of lavender-extract-mediated AgNPs as sustainable functional fillers for the fabrication of eco-friendly antibacterial materials applicable in biomedical and food packaging fields. Full article
(This article belongs to the Special Issue Fabrication and Application of Polymer-Based Nanomaterials)
Show Figures

Graphical abstract

22 pages, 13102 KB  
Article
Enhancing Drafter Performance in Spunbonding of Polymeric Fibers via Airflow Simulation
by Behrang Mohajer, Mohamad Kheradmandkeysomi, Chul B. Park and Markus Bussmann
Polymers 2026, 18(2), 187; https://doi.org/10.3390/polym18020187 - 9 Jan 2026
Viewed by 148
Abstract
Spunbonding drafters play a decisive role in determining fiber attenuation, morphology, and final nonwoven quality; however, their internal airflow behavior remains poorly characterized due to limited physical accessibility and historically empirical design practices. This work employs high-fidelity computational fluid dynamics (CFD) to systematically [...] Read more.
Spunbonding drafters play a decisive role in determining fiber attenuation, morphology, and final nonwoven quality; however, their internal airflow behavior remains poorly characterized due to limited physical accessibility and historically empirical design practices. This work employs high-fidelity computational fluid dynamics (CFD) to systematically resolve the airflow field inside a laboratory-scale drafter and to quantify the impact of geometry on fiber drawing conditions. The simulations reveal a previously unreported “braking effect,” where adverse flow structures reduce effective shear drag, limit drawability, and increase the likelihood of fiber breakage. Parametric virtual experimentation across seven geometric variables demonstrates that the drafter configuration strongly governs shear distribution, flow uniformity, and energy consumption. Using a performance-oriented optimization framework, three key processing objectives were targeted: (i) maximizing shear drag to promote stable fiber attenuation, (ii) improving axial drawing uniformity, and (iii) minimizing pressurized-air demand. CFD-guided design modifications—including controlled widening, tailored wall divergence and convergence, and an extensible lower section—were implemented and subsequently validated using a newly constructed prototype. Experimental measurements on polypropylene (PP) and high-density polyethylene (HDPE) fibers confirm substantial reductions in fiber breakage and improvements in drawing stability, thereby demonstrating the effectiveness of simulation-driven process optimization in spunbonding equipment design. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

16 pages, 2937 KB  
Article
Sustainable Shear Wave Elastography Medical Phantoms: Waste-Based Fibrous Structures for Medical Applications
by Ana Z. Santos, Sofia Rocha, Nuno A. T. C. Fernandes, Diana I. Alves, Diana P. Ferreira, Sofia M. Costa, Jorge Padrão and Óscar Carvalho
Textiles 2026, 6(1), 6; https://doi.org/10.3390/textiles6010006 - 7 Jan 2026
Viewed by 144
Abstract
Tissue-mimicking phantoms that accurately replicate human tissue are crucial for validating and optimizing elastography systems and developing new treatment methods. The use of waste-based fibrous structures has the dual benefits of waste reduction and economic viability, mitigating the environmental consequences associated with the [...] Read more.
Tissue-mimicking phantoms that accurately replicate human tissue are crucial for validating and optimizing elastography systems and developing new treatment methods. The use of waste-based fibrous structures has the dual benefits of waste reduction and economic viability, mitigating the environmental consequences associated with the textile industry and, thus, posing a particularly interesting avenue of research in today’s ever-more environmentally conscious society. This work explores the development of elastography phantoms through the use of textile waste for sustainable valorization. Two cotton-short fiber-based and two polyester-nonwoven-based phantoms were produced by impregnating these textile structures with animal-origin gelatin. These materials were characterized by scanning electron microscopy (SEM), revealing that the diameter of the waste-based fibers (15.28 ± 6.18–22.40 ± 5.78 μm) falls within the typical size range of scatterers used in acoustic phantoms. It was observed that these fibers provided phantoms with intrinsic acoustic scattering properties, resulting in ultrasound images similar to those obtained in biological tissues. Shear wave elastography (SWE) was used to assess the stiffness of the phantoms, which produced realistic ultrasound images with shear wave speed (SWS) values ranging from 1.87 m s−1 to 8.39 m s−1, closely resembling those in different anatomical structures. This research presents an innovative methodology for producing low-cost and sustainable tissue-mimicking materials, underscoring the potential of textile industry waste for phantom production. Full article
Show Figures

Graphical abstract

23 pages, 7328 KB  
Article
Assessing the Influence Zone and Drainage Efficiency of Geotextiles with Enhanced Lateral Drainage Abilities in Unsaturated Soil Systems
by Shakeel Abid Mohammed and Jorge G. Zornberg
Geosciences 2026, 16(1), 22; https://doi.org/10.3390/geosciences16010022 - 1 Jan 2026
Viewed by 218
Abstract
The hydraulic performance of woven geotextiles is frequently overlooked in roadway design, despite their extensive use for reinforcement applications. Woven geotextiles are typically manufactured from hydrophobic polymers such as polypropylene or polyester and can act as capillary barriers under unsaturated conditions. This results [...] Read more.
The hydraulic performance of woven geotextiles is frequently overlooked in roadway design, despite their extensive use for reinforcement applications. Woven geotextiles are typically manufactured from hydrophobic polymers such as polypropylene or polyester and can act as capillary barriers under unsaturated conditions. This results in moisture accumulation at the soil–geotextile interface, adversely impacting long-term pavement performance. Such problems can be effectively mitigated using geotextiles with enhanced lateral drainage (ELD) capabilities, which are engineered with hydrophilic fibers to facilitate capillary-driven lateral water movement under unsaturated conditions. This functionality facilitates the redistribution of moisture away from the interface, mitigating moisture retention and enhancing drainage performance. The hydraulic performance of geotextiles with enhanced lateral drainage capabilities under unsaturated conditions remains insufficiently understood, particularly in terms of their influence zone and drainage efficiency. For this reason, the present study evaluates the lateral drainage behavior of an ELD geotextile using a soil column test, compared against a control setup without a geotextile and with a non-woven geotextile. Two moisture migration scenarios, namely capillary rise and vertical infiltration, were simulated, with the water table varied at multiple depths. Moisture sensors were embedded along the column depth to monitor real-time water content variations. Results show that the ELD geotextile facilitated efficient lateral drainage, with a consistent influence zone extending up to 2 inches below the fabric. Under infiltration, the ELD geotextile reduced moisture accumulation by 30% around the geotextile, highlighting its superior drainage behavior. These findings encourage practicing engineers to adopt rational, performance-based designs that leverage ELD geotextiles to enhance subgrade drainage and moisture control in pavement and geotechnical applications. Full article
Show Figures

Figure 1

24 pages, 7551 KB  
Article
Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection
by Radmila Žižková, Baturalp Yalcinkaya, Eva Filová, Fatma Yalcinkaya and Matej Buzgo
Textiles 2026, 6(1), 2; https://doi.org/10.3390/textiles6010002 - 29 Dec 2025
Viewed by 218
Abstract
Electrospinning has advanced from a lab technique to an industrial method, enabling modern filters that are high-performing, sustainable, recyclable, and non-toxic. This study produced recycled PA6 nanofibers using green solvents and incorporated non-toxic CuO nanoparticles via industrial free-surface electrospinning. Polymer solutions with concentrations [...] Read more.
Electrospinning has advanced from a lab technique to an industrial method, enabling modern filters that are high-performing, sustainable, recyclable, and non-toxic. This study produced recycled PA6 nanofibers using green solvents and incorporated non-toxic CuO nanoparticles via industrial free-surface electrospinning. Polymer solutions with concentrations of 12.5, 15.0 and 17.5 (w/v)% were electrospun directly onto recyclable polypropylene spunbond/meltblown nonwoven substrates to produce nanofibers with average fiber sizes of 80–250 nm. Electrospinning parameter optimization revealed that the 12.5 wt.% PA6 solution and the 2–3 mm·s−1 winding speed had the optimal performance, attaining 98.06% filtering efficiency and a 142 Pa pressure drop. The addition of 5 wt.% CuO nanoparticles increased the membrane density and reduced the pressure drop to 162 Pa, thereby improving the filtration efficiency to 98.23%. Bacterial and viral filtration studies have demonstrated pathogen retention above 99%. Moreover, antibacterial and antiviral testing has demonstrated that membranes trap and inactivate microorganisms, resulting in a 2.0 log (≈approximately 99%) reduction in viral titer. This study shows that recycled PA6 can be converted into high-performance membranes using green, industrial electrospinning, introducing innovations such as non-toxic CuO functionalization and ultra-fine fibers on recyclable substrates, yielding sustainable filters with strong antimicrobial and filtration performance, which are suitable for personal protective equipment and medical filtration. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

21 pages, 8040 KB  
Article
Functionalization of Microfiltration Media Towards Catalytic Hydrogenation of Selected Halo-Organics from Water
by Subrajit Bosu, Samuel S. Thompson, Doo Young Kim, Noah D. Meeks and Dibakar Bhattacharyya
Nanomaterials 2026, 16(1), 14; https://doi.org/10.3390/nano16010014 - 22 Dec 2025
Viewed by 348
Abstract
Contaminated water detoxification remains difficult due to the presence of persistent halo-organic contaminants, such as perfluorooctanoic acid (PFOA) and chlorophenols, which are chemically stable and resist conventional purification methods. Functionalized membrane-based separation and decontamination have garnered immense attention in recent years. Commercially available [...] Read more.
Contaminated water detoxification remains difficult due to the presence of persistent halo-organic contaminants, such as perfluorooctanoic acid (PFOA) and chlorophenols, which are chemically stable and resist conventional purification methods. Functionalized membrane-based separation and decontamination have garnered immense attention in recent years. Commercially available microfiltration membrane (PVDF) and polymeric non-woven fiber filters (glass and composite) are functionalized with poly(methacrylic acid) (PMAA) that shows outstanding pH-responsive performance and tunable water permeability under ambient conditions perfect for environmental applications. Polymer loading based on weight gain measurements on PMAA–microglass composite fibers (137%) and microglass fibers (116%) confirmed their extent of functionalization, which was significantly greater than that of PVDF (25%) due to its widely effective pore diameter. Presence of chemically active hydrogel within PVDF matrix was validated by FTIR (hydroxyl/carbonyl) stretch peak, substantial decrease in contact angle (68.8° ± 0.5° to 30.8° ± 1.9°), and decrease in pure water flux from 509 to 148 LMH/bar. Nanoparticles are generated both in solution and within PVDF using simple redox reactions. This strategy is extended to PVDF-PMAA membranes, which are loaded with Fe/Pd nanoparticles for catalytic conversion of 4-chlorophenol and PFOA, forming Fe/Pd-PVDF-PMAA systems. A total of 0.25 mg/L Fe/Pd nanoparticles synthesized in solution displayed alloy-type structures and demonstrated a strong catalytic performance, achieving complete hydrogenation of 4-chlorophenol to phenol and 67% hydrogenation of PFOA to its reduced form at 22–23 °C with ultrapure hydrogen gas supply at pH 5.7. These results underscore the potential of hybrid polymer–nanoparticle systems as a novel remediation strategy, integrating tunable separation with catalytic degradation to overcome the limitations of conventional water treatment methods. Full article
(This article belongs to the Special Issue Advances in Nanotechnology for Pollutant Degradation)
Show Figures

Graphical abstract

23 pages, 3934 KB  
Article
Non-Invasive Analysis of Bulk and Surface Remodeling of Non-Woven PLLA and Fiber-Sponge PLLA/Chitosan Scaffolds in Cell Culture Environment
by Elena Khramtsova, Yulia Petronyuk, Christina Antipova, Roman Sharikov, Alexey Bogachenkov, Sergey Malakhov, Daria Bednik, Petr Dmitryakov and Timofei Grigoriev
Molecules 2025, 30(23), 4657; https://doi.org/10.3390/molecules30234657 - 4 Dec 2025
Viewed by 288
Abstract
The expanding application of three-dimensional matrices with complex surface topographies in regenerative medicine requires new methods to visualize and analyze the evolving elastic properties of tissue-engineered constructs (TECs) during maturation. In this study, scanning impulse acoustic microscopy (SIAM) was employed for the non-invasive [...] Read more.
The expanding application of three-dimensional matrices with complex surface topographies in regenerative medicine requires new methods to visualize and analyze the evolving elastic properties of tissue-engineered constructs (TECs) during maturation. In this study, scanning impulse acoustic microscopy (SIAM) was employed for the non-invasive investigation of non-woven matrices based on PLLA and its composites with chitosan. This technique was used to determine the speed of sound, integral attenuation, and spectral characteristics within the samples. The data obtained through acoustic microscopy were compared with the results from tensile testing, gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, and CCK-8 assays. The findings demonstrate that SIAM exhibits high sensitivity to alterations in the TEC’s composition, including the presence of functionalizing additives, embedded cells, and the subsequent processes of cell proliferation and extracellular matrix synthesis, as well as to changes in its geometric structure. Consequently, this methodology can be recommended as a powerful and non-destructive tool for the comprehensive monitoring of TECs throughout their in vitro maturation period. Full article
(This article belongs to the Special Issue Physicochemical Research on Material Surfaces, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1222 KB  
Article
The ReSpool Fiber Research (RFR) Model: A Protocol for the Evaluation of Mechanically Recycled Textile Materials Towards “Second Life” Product Applications
by Kelly Cobb, Huantian Cao, Michelle Yatvitskiy, Kendall Ludwig and Sophia Gupman
Sustainability 2025, 17(23), 10753; https://doi.org/10.3390/su172310753 - 1 Dec 2025
Viewed by 444
Abstract
Textile recycling promotes a circular economy, a system seeking to minimize waste and maximize the value of textiles by reusing them. Currently, mechanical recycling produces short, weak, and low-quality fibers that diminish the value of the textiles, resulting in downcycled products and loss [...] Read more.
Textile recycling promotes a circular economy, a system seeking to minimize waste and maximize the value of textiles by reusing them. Currently, mechanical recycling produces short, weak, and low-quality fibers that diminish the value of the textiles, resulting in downcycled products and loss of value. The Respool Fiber Research (RFR) model was developed from an examination of current practices, relevant literature, and apparel design and material selection models. Demonstrating the capabilities of mechanically recycled textiles in material development, the RFR model is intended for educators, research laboratories and design studios, product developers, and designers. The RFR model ventures beyond current models of textile recycling through its fiber-oriented approach to material development. To demonstrate the application of the RFR model as part of the development process, mechanically recycled cotton fibers and polyester fibers were used to develop yarns and nonwoven fabrics. The application of the RFR model demonstrated that the RFR model is valuable for selecting which recycled fibers are appropriate for different types of products. Full article
Show Figures

Figure 1

32 pages, 15792 KB  
Article
Novel Ropes from Textile Waste and Polypropylene Nonwoven for Dual-Function Use in Slope Erosion Control and Retaining Structures
by Giang Nguyen, Joanna Grzybowska-Pietras, Tomasz Turczak and Filip Gago
Appl. Sci. 2025, 15(23), 12712; https://doi.org/10.3390/app152312712 - 1 Dec 2025
Viewed by 276
Abstract
The use of waste textiles and the search for alternative materials for landslide and erosion control are currently subjects of great importance. This paper presents and evaluates a novel application of waste wool and waste textile ropes arranged in a rhomboid pattern on [...] Read more.
The use of waste textiles and the search for alternative materials for landslide and erosion control are currently subjects of great importance. This paper presents and evaluates a novel application of waste wool and waste textile ropes arranged in a rhomboid pattern on a slope, and polypropylene nonwoven ropes threaded through iron rods to form a layered retaining wall at the slope toe. Together, these measures provide dual functionality in erosion control and the retaining wall. Monitoring results, material property evaluations, and qualitative and quantitative erosion assessments using the Universal Soil Loss Equation model indicate that the proposed measures are effective, with both the slope and the retaining wall performing well several years after installation. Furthermore, variations in the rainfall erosivity factor as calculated using different equations can lead to notable differences in estimated soil loss, highlighting the need for careful determination of this factor. This case demonstrates a new approach to using polypropylene nonwoven material, and potentially also waste textiles, as a layered retaining structure that is cost-effective and time-efficient and contributes to sustainability and the circular economy. Similar layered retaining structures could be applied in various fields of civil and environmental engineering. Full article
(This article belongs to the Special Issue Technical Advances in Geosynthetics)
Show Figures

Figure 1

23 pages, 6876 KB  
Article
Novel Electrohydraulic Technique of Cellulose Fiber Production from Industrial Hemp
by Undrakh Mishigdorzhiyn, Oksana Ayurova, Shunqi Mei, Belikto Tsydenov, Nikolay Ulakhanov, Kirill Demin, Yuri Grigoriev, Oyuna Tsybikova and Marina Namsaraeva
Polymers 2025, 17(23), 3178; https://doi.org/10.3390/polym17233178 - 29 Nov 2025
Viewed by 544
Abstract
The key stage of processing high-cellulose hemp raw materials is delignification—the removal of lignin and hemicelluloses to obtain strong cellulose fibers. This study experimentally demonstrated the effectiveness of using the electrohydraulic effect (EHE) to delignify high-cellulose hemp raw material, which can then be [...] Read more.
The key stage of processing high-cellulose hemp raw materials is delignification—the removal of lignin and hemicelluloses to obtain strong cellulose fibers. This study experimentally demonstrated the effectiveness of using the electrohydraulic effect (EHE) to delignify high-cellulose hemp raw material, which can then be used as a base for composite materials. Hemp raw material, in the form of 50 mm-long straws, was placed in a water-filled chamber and exposed to a shock wave generated in the water by an electric discharge with an energy of 1.6 kJ at a voltage of 50 kV. The tensile strength of the treated fibers after combined processing (NaOH/EHE) and after EHE reached 262 MPa and 201 MPa, correspondingly, which are 5% and 37% higher than after chemical delignification in a NaOH medium (191 MPa). Cellulose materials obtained from cellulose fiber after EHE exhibit higher strength properties compared to materials based on cellulose obtained by delignification in a NaOH medium. Thus, the tensile strength (σ) of materials made from fibers after EHE was 4.37 MPa, after combined NaOH/EHE treatment 1.94 MPa, and after alkaline treatment 3.95 MPa. EHE reduced delignification time by 2–20 times compared to NaOH treatment and eliminates the need for an additional fiber separation procedure. The use of EHE is proposed as a highly cost-effective, technologically and environmentally sound solution for producing hemp fiber for use in biocomposites, woven, and non-woven materials. Full article
Show Figures

Figure 1

29 pages, 7648 KB  
Article
Tailoring the Release of Paclitaxel from Electrospun Nonwovens
by Bartosz Jaroszewski, Monika Musiał-Kulik, Ryszard Smolarczyk, Tomasz Cichoń, Alina Drzyzga, Ewelina Pilny, Mateusz Stojko, Jakub Włodarczyk, Joanna Jaworska, Anna Kaps, Piotr Paduszyński, Marzena Jaworska-Kik, Małgorzata Pastusiak, Paweł Chaber, Arkadiusz Orchel, Katarzyna Jelonek and Janusz Kasperczyk
Int. J. Mol. Sci. 2025, 26(23), 11540; https://doi.org/10.3390/ijms262311540 - 28 Nov 2025
Viewed by 486
Abstract
Implantable drug delivery devices may enhance therapeutic efficacy by allowing localized drug release, and they may overcome the drawbacks of conventional systemic treatment. Electrospun nanofibers are promising drug delivery systems due to their high surface-to-volume ratio, porosity, and easy drug encapsulation. However, controlled [...] Read more.
Implantable drug delivery devices may enhance therapeutic efficacy by allowing localized drug release, and they may overcome the drawbacks of conventional systemic treatment. Electrospun nanofibers are promising drug delivery systems due to their high surface-to-volume ratio, porosity, and easy drug encapsulation. However, controlled and sustained drug release is required to improve therapeutic efficacy and reduce toxicity. Also, the ability to tailor the release drug dose would be a useful tool for providing an optimal and individualized approach for the treatment. Therefore, the aim of the study was to analyze the possibility to tailor the release of paclitaxel (PTX) from poly(D,L-lactide-co-glycolide) (PDLGA) electrospun nonwovens by modifying the comonomer molar ratio. For this purpose, three kinds of polymers were compared with lactidyl-to-glycolidyl comonomer ratios of 86:14, 70:30, and 48:52. Also, nonwovens obtained from a blend of PDLGA and PVA were used to analyze the effect of the addition of the hydrophilic polymer on degradation and, thus, the release rate. The comprehensive analysis of the developed nonwovens was conducted through an evaluation of the morphology, in vitro degradation, and drug release process, as well as cytotoxicity. It has been observed that all kinds of the developed PDLGA nonwovens provide an extended-release profile but with different release rates, which depend on the comonomer unit ratio and molar mass of the copolymer. Moreover, the increase in hydrophilicity caused by PVA sufficiently accelerates PTX release. The biological activity of released PTX was confirmed under in vitro and in vivo conditions against 4T1 mouse mammary carcinoma. The results of the study enabled us to gain insight into the influence of polymer choice on PTX release from PDLGA ES implants, which may be helpful in their easier translation into the clinic and for better adjustment of the PTX dose for individual treatment. Full article
(This article belongs to the Special Issue Design, Synthesis, Application and Mechanism of Functional Polymers)
Show Figures

Figure 1

19 pages, 3194 KB  
Article
Hybrid Nylon-6/Pumice Nonwoven Composites as Nature-Based Adsorbents for Methylene Blue Dye-Contaminated Wastewater: Insights into Monolayer and Multilayer Adsorption Mechanisms
by Carlos Alberto Ávila-Orta, Germán Alvarado-Tenorio, Erick Ricardo Ramírez-López, Gregorio Cadenas-Pliego, Víctor Javier Cruz-Delgado, María de Lourdes Hernández-Rodríguez, Lucía Fabiola Cano-Salazar, Yesenia Pérez-García, Fernando Pérez-Flores, Karla Itzel Sevilla-Vargas and Gustavo Soria-Argüello
Water 2025, 17(23), 3382; https://doi.org/10.3390/w17233382 - 26 Nov 2025
Viewed by 621
Abstract
The contamination of water bodies by dye effluents from micro-scale in-house denim laundries remains a significant environmental concern in central México, particularly in the Atoyac River, where conventional treatment methods are not economically viable. This study develops and evaluates Nylon-6/pumice powder (PPw) nonwoven [...] Read more.
The contamination of water bodies by dye effluents from micro-scale in-house denim laundries remains a significant environmental concern in central México, particularly in the Atoyac River, where conventional treatment methods are not economically viable. This study develops and evaluates Nylon-6/pumice powder (PPw) nonwoven composites as hybrid adsorptive membranes for the removal of methylene blue (MB) from aqueous solutions. Pumice, a locally abundant siliceous mineral, was incorporated into Nylon-6 through melt-compounding and melt-blown fiber processing at 1 wt% and 5 wt% loadings. SEM, XRD, and TGA confirmed even filler distribution, structural stability, and the development of a porous, layered structure. Batch adsorption tests revealed a rapid initial dye adsorption, followed by a slower diffusion-controlled phase, with equilibrium achieved within 15 min for PPw and within 30 min for the composites. The data fitted both Langmuir and Freundlich isotherms, indicating that MB adsorption involved a combined mechanism: monolayer adsorption on uniform silanol/aluminol sites and multilayer physical adsorption at the polymer–mineral interfaces. Higher PPw content increased adsorption capacity (qmax = 1.1460 mg/g) and surface uniformity, resulting in favorable Freundlich exponents (n = 2). Finally, it was found that adsorption proceeds via chemisorption, where the pumice powder provides reactive sites. These findings demonstrate that Nylon-6/PPw nonwoven composites combine the strength of a synthetic material with the surface reactivity of a natural mineral, providing an effective and scalable Nature-Based Solution for decentralized dye removal, aligned with Sustainable Development Goals 6 and 12. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

30 pages, 5072 KB  
Review
A Review of Energy and Sustainability Management in the Fibre-Based Process Industry
by Florian Pohlmeyer, Rosario Othen, Christian Möbitz and Thomas Gries
Businesses 2025, 5(4), 55; https://doi.org/10.3390/businesses5040055 - 26 Nov 2025
Viewed by 1191
Abstract
This systematic literature review critically examines sustainability challenges and opportunities within fibre-based process industries (e.g., paper and nonwoven), pivotal energy-intensive sectors in the EU. Using an adapted PRISMA guideline, it analyses the evolution of sustainability concepts, key regulatory frameworks (e.g., European Green Deal, [...] Read more.
This systematic literature review critically examines sustainability challenges and opportunities within fibre-based process industries (e.g., paper and nonwoven), pivotal energy-intensive sectors in the EU. Using an adapted PRISMA guideline, it analyses the evolution of sustainability concepts, key regulatory frameworks (e.g., European Green Deal, Corporate Sustainability Reporting Directive), and established management tools (e.g., ISO 50001, life cycle assessment). The review uncovers critical gaps, including a persistent lack of integrated approaches across environmental, economic, and social dimensions, alongside superficial strategic embedding of sustainability. Furthermore, regulatory fragmentation significantly hinders effective implementation. The study also highlights uneven technology adoption and practical obstacles for circular economy models, largely because sustainability often remains a parallel function rather than a core business driver. Ultimately, transformative sustainability demands integrated, sector-specific strategies, robust data, and strong leadership. This necessitates streamlined regulations, accelerated technology uptake, and enhanced multi-stakeholder collaboration, embedding sustainability into core business models beyond mere compliance. Full article
Show Figures

Figure 1

Back to TopTop