Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = non-uniform metal foam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 12075 KiB  
Article
Offset Temperature and Amplitude–Frequency Effect on Convection Heat Transfer in Partially Gradient Porous Cavity with Different Outlet Port Locations
by Luma F. Ali and Amjad J. Humaidi
Processes 2025, 13(7), 2279; https://doi.org/10.3390/pr13072279 - 17 Jul 2025
Viewed by 321
Abstract
Based on admirable porous media performance and the popularity of additive manufacturing technology, gradient porous media are progressively being applied in increasing fields. In this study, convection heat transfer within a square vented cavity, partially occupied by two copper metal foam layers of [...] Read more.
Based on admirable porous media performance and the popularity of additive manufacturing technology, gradient porous media are progressively being applied in increasing fields. In this study, convection heat transfer within a square vented cavity, partially occupied by two copper metal foam layers of 10 and 20 PPI saturated with nanofluid, was assessed numerically. The left wall was heated uniformly and non-uniformly by applying multi-frequency spatial heating following a sinusoidal function. Governing equations, including continuity, the Darcy–Brinkmann–Forchheimer model, and local thermal non-equilibrium energy equations, were adopted and solved by employing the finite volume method. The influences of relevant parameters, including nanoparticle concentrations 0%φ10%, Reynolds number (1Re100), inlet and outlet port aspect ratios 0.1D/H0.4, three outlet vent opening locations (So=0 left, (So=H/2D/2) middle, and (So=HD) right), sinusoidal offset temperature (θo=0.5, 1), frequency (f=1, 3, 5), and amplitude (A=01), were examined. The results demonstrate that flow and heat transfer fields are impacted mainly by these parameters. Streamlines are more intensified at the upper-left corner when the outlet opening vent is shifted towards the right-corner upper wall. Fluid- and solid-phase Nusselt number increases Re, D/H, θo, A, and f are raised, specifically when A0.3. The Nusselt number remains constant when the frequency is raised from 3 to 5, definitely when D/H0.25. In uniform and non-uniform heating cases, the Nusselt number of both phases remains constant as the outlet port is shifted right for Re10 and slightly for higher Re as the outlet vent location is translated from left to right. Full article
Show Figures

Figure 1

16 pages, 4306 KiB  
Article
Fabrication of Uniform and Rounded Closed-Cell Aluminum Foams Using Novel Foamable Precursor Particles (FPPs)
by Angela Mudge and K. Morsi
Metals 2024, 14(1), 120; https://doi.org/10.3390/met14010120 - 19 Jan 2024
Cited by 2 | Viewed by 7986
Abstract
The powder metallurgy (PM) route for the production of closed-cell metallic foams has recently received a significant amount of attention. One of the major issues is the non-uniform and non-spherical nature of the cells produced, which can negatively affect the mechanical behavior. The [...] Read more.
The powder metallurgy (PM) route for the production of closed-cell metallic foams has recently received a significant amount of attention. One of the major issues is the non-uniform and non-spherical nature of the cells produced, which can negatively affect the mechanical behavior. The current paper uses the PM route to process metallic foams for the first time using novel Al-TiH2 foamable precursor “particles” (FPPs). The effect of FPP content (0–10 wt.%) on the developed foam structure of aluminum and its mechanical properties is investigated. An increase in FPP content results in a decline in product density by forming uniform and near-spherical cells. The main advantage of the FPPs is the localization of the blowing agent TiH2 particle content within Al-TiH2 composite particles (i.e., giving rise to a higher local TiH2 content), which has led to the production of pores with relatively high circularities even at very low overall TiH2 contents. The foams produced displayed energy absorption capacities of 10–25 MJ/m3 at 50% strain, and maximum energy absorption efficiencies ranging from 0.6–0.7 (for 40–60% closed cell content) Full article
Show Figures

Figure 1

26 pages, 8663 KiB  
Article
Computational Modeling of Latent Heat Thermal Energy Storage in a Shell-Tube Unit: Using Neural Networks and Anisotropic Metal Foam
by Jana Shafi, Mehdi Ghalambaz, Mehdi Fteiti, Muneer Ismael and Mohammad Ghalambaz
Mathematics 2022, 10(24), 4774; https://doi.org/10.3390/math10244774 - 15 Dec 2022
Cited by 16 | Viewed by 2732
Abstract
Latent heat storage in a shell-tube is a promising method to store excessive solar heat for later use. The shell-tube unit is filled with a phase change material PCM combined with a high porosity anisotropic copper metal foam (FM) of high thermal conductivity. [...] Read more.
Latent heat storage in a shell-tube is a promising method to store excessive solar heat for later use. The shell-tube unit is filled with a phase change material PCM combined with a high porosity anisotropic copper metal foam (FM) of high thermal conductivity. The PCM-MF composite was modeled as an anisotropic porous medium. Then, a two-heat equation mathematical model, a local thermal non-equilibrium approach LTNE, was adopted to consider the effects of the difference between the thermal conductivities of the PCM and the copper foam. The Darcy–Brinkman–Forchheimer formulation was employed to model the natural convection circulations in the molten PCM region. The thermal conductivity and the permeability of the porous medium were a function of an anisotropic angle. The finite element method was employed to integrate the governing equations. A neural network model was successfully applied to learn the transient physical behavior of the storage unit. The neural network was trained using 4998 sample data. Then, the trained neural network was utilized to map the relationship between control parameters and melting behavior to optimize the storage design. The impact of the anisotropic angle and the inlet pressure of heat transfer fluid (HTF) was addressed on the thermal energy storage of the storage unit. Moreover, an artificial neural network was successfully utilized to learn the transient behavior of the thermal storage unit for various combinations of control parameters and map the storage behavior. The results showed that the anisotropy angle significantly affects the energy storage time. The melting volume fraction MVF was maximum for a zero anisotropic angle where the local thermal conductivity was maximum perpendicular to the heated tube. An optimum storage rate could be obtained for an anisotropic angle smaller than 45°. Compared to a uniform MF, utilizing an optimum anisotropic angle could reduce the melting time by about 7% without impacting the unit’s thermal energy storage capacity or adding weight. Full article
Show Figures

Figure 1

16 pages, 2300 KiB  
Article
Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam
by Gang Liu, Yuanji Li, Pan Wei, Tian Xiao, Xiangzhao Meng and Xiaohu Yang
Energies 2022, 15(19), 7213; https://doi.org/10.3390/en15197213 - 30 Sep 2022
Cited by 12 | Viewed by 2336
Abstract
To save and better deploy waste heat, the use of a mobilized heat storage system (MHSS) with phase change enhancement means is developed. In this paper, three kinds of gradient structures (positive gradient, negative gradient, and non-gradient) are designed in the MHSS system. [...] Read more.
To save and better deploy waste heat, the use of a mobilized heat storage system (MHSS) with phase change enhancement means is developed. In this paper, three kinds of gradient structures (positive gradient, negative gradient, and non-gradient) are designed in the MHSS system. The uniform porosity is 94% in the non-gradient structure, and the gradient porosities are 86%, 93%, and 98% in the gradient structure, respectively. Numerical models are developed to explore the contribution of the graded metal foam structure to the heat storage and release process. An economic analysis and comparison of MHSS systems with different heat transfer models are carried out. The results show that the positive gradient case can promote the thermal cycle of the melting and solidification process, while the negative gradient case inhibits the thermal cycle. The positive gradient case can reduce the melting time by 9.7% and the solidification time by 4.4%, while the negative gradient can prolong the melting time by 31.4% and the solidification time by 35.9%. Although graded metal foam increases the initial investment by 76.09%, the 1 KW·h heat cost of graded metal foam is reduced by 10.63% compared to pure phase change material (PCM). It is cost-effective in the long run of thermal cycles. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

18 pages, 2925 KiB  
Article
Free Vibration Analysis of Spinning Sandwich Annular Plates with Functionally Graded Graphene Nanoplatelet Reinforced Porous Core
by Tianhao Huang, Yu Ma, Tianyu Zhao, Jie Yang and Xin Wang
Materials 2022, 15(4), 1328; https://doi.org/10.3390/ma15041328 - 11 Feb 2022
Cited by 9 | Viewed by 2583
Abstract
This paper conducted the free vibration analysis of a sandwich annular thin plate with whirl motion. The upper and lower faces of the annular plate are made of uniform solid metal, while its core is porous foamed metal reinforced by graphene nanoplatelets (GPLs). [...] Read more.
This paper conducted the free vibration analysis of a sandwich annular thin plate with whirl motion. The upper and lower faces of the annular plate are made of uniform solid metal, while its core is porous foamed metal reinforced by graphene nanoplatelets (GPLs). Both uniform and non-uniform distributions of GPLs and porosity along the direction of plate thickness which leads to a functionally graded (FG) core are taken into account. The effective material properties including Young’s modulus, Poisson’s ratio and mass density are calculated by employing the Halpin–Tsai model and the rule of mixture, respectively. Based on the Kirchhoff plate theory, the differential equations of motion are derived by applying the Lagrange’s equation. Then, the assumed mode method is utilized to obtain free vibration behaviors of the sandwich annular plate. The finite element method is adopted to verify the present model and vibration analysis. The effects of porosity coefficient, porosity distribution, graphene nanoplatelet (GPL) distribution, graphene nanoplatelet (GPL) weight fraction, graphene nanoplatelet length-to-thickness ratio (GPL-LTR), graphene nanoplatelet length-to-width ratio (GPL-LWR), spinning speed, outer radius-to-thickness ratio and inner radius-to-thickness ratio of the plate, are examined in detail. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

20 pages, 6317 KiB  
Article
Simulation of a Fast-Charging Porous Thermal Energy Storage System Saturated with a Nano-Enhanced Phase Change Material
by Mohammad Ghalambaz, S.A.M. Mehryan, Hassan Shirivand, Farshid Shalbafi, Obai Younis, Kiao Inthavong, Goodarz Ahmadi and Pouyan Talebizadehsardari
Energies 2021, 14(6), 1575; https://doi.org/10.3390/en14061575 - 12 Mar 2021
Cited by 6 | Viewed by 2528
Abstract
The melting of a coconut oil–CuO phase change material (PCM) embedded in an engineered nonuniform copper foam was theoretically analyzed to reduce the charging time of a thermal energy storage unit. A nonuniform metal foam could improve the effective thermal conductivity of a [...] Read more.
The melting of a coconut oil–CuO phase change material (PCM) embedded in an engineered nonuniform copper foam was theoretically analyzed to reduce the charging time of a thermal energy storage unit. A nonuniform metal foam could improve the effective thermal conductivity of a porous medium at regions with dominant conduction heat transfer by increasing local porosity. Moreover, the increase in porosity contributes to flow circulation in the natural convection-dominant regimes and adds a positive impact to the heat transfer rate, but it reduces the conduction heat transfer and overall heat transfer. The Taguchi optimization method was used to minimize the charging time of a shell-and-tube thermal energy storage (TES) unit by optimizing the porosity gradient, volume fractions of nanoparticles, average porosity, and porous pore sizes. The results showed that porosity is the most significant factor and lower porosity has a faster charging rate. A nonuniform porosity reduces the charging time of TES. The size of porous pores induces a negligible impact on the charging time. Lastly, the increase in volume fractions of nanoparticles reduces the charging time, but it has a minimal impact on the TES unit’s charging power. Full article
(This article belongs to the Special Issue Computational Heat Transfer and Fluid Mechanics)
Show Figures

Figure 1

20 pages, 29694 KiB  
Article
Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam
by Mohammad Ghalambaz, Seyed Abdollah Mansouri Mehryan, Kasra Ayoubi Ayoubloo, Ahmad Hajjar, Mohamad El Kadri, Obai Younis, Mohsen Saffari Pour and Christopher Hulme-Smith
Molecules 2021, 26(5), 1491; https://doi.org/10.3390/molecules26051491 - 9 Mar 2021
Cited by 20 | Viewed by 4769
Abstract
Thermal energy storage units conventionally have the drawback of slow charging response. Thus, heat transfer enhancement techniques are required to reduce charging time. Using nanoadditives is a promising approach to enhance the heat transfer and energy storage response time of materials that store [...] Read more.
Thermal energy storage units conventionally have the drawback of slow charging response. Thus, heat transfer enhancement techniques are required to reduce charging time. Using nanoadditives is a promising approach to enhance the heat transfer and energy storage response time of materials that store heat by undergoing a reversible phase change, so-called phase change materials. In the present study, a combination of such materials enhanced with the addition of nanometer-scale graphene oxide particles (called nano-enhanced phase change materials) and a layer of a copper foam is proposed to improve the thermal performance of a shell-and-tube latent heat thermal energy storage (LHTES) unit filled with capric acid. Both graphene oxide and copper nanoparticles were tested as the nanometer-scale additives. A geometrically nonuniform layer of copper foam was placed over the hot tube inside the unit. The metal foam layer can improve heat transfer with an increase of the composite thermal conductivity. However, it suppressed the natural convection flows and could reduce heat transfer in the molten regions. Thus, a metal foam layer with a nonuniform shape can maximize thermal conductivity in conduction-dominant regions and minimize its adverse impacts on natural convection flows. The heat transfer was modeled using partial differential equations for conservations of momentum and heat. The finite element method was used to solve the partial differential equations. A backward differential formula was used to control the accuracy and convergence of the solution automatically. Mesh adaptation was applied to increase the mesh resolution at the interface between phases and improve the quality and stability of the solution. The impact of the eccentricity and porosity of the metal foam layer and the volume fraction of nanoparticles on the energy storage and the thermal performance of the LHTES unit was addressed. The layer of the metal foam notably improves the response time of the LHTES unit, and a 10% eccentricity of the porous layer toward the bottom improved the response time of the LHTES unit by 50%. The presence of nanoadditives could reduce the response time (melting time) of the LHTES unit by 12%, and copper nanoparticles were slightly better than graphene oxide particles in terms of heat transfer enhancement. The design parameters of the eccentricity, porosity, and volume fraction of nanoparticles had minimal impact on the thermal energy storage capacity of the LHTES unit, while their impact on the melting time (response time) was significant. Thus, a combination of the enhancement method could practically reduce the thermal charging time of an LHTES unit without a significant increase in its size. Full article
(This article belongs to the Special Issue Phase Change Materials 2.0)
Show Figures

Figure 1

25 pages, 10882 KiB  
Article
Latent Heat Thermal Storage in Non-Uniform Metal Foam Filled with Nano-Enhanced Phase Change Material
by Mohammad Ghalambaz, S. A. M. Mehryan, Ahmad Hajjar, Mehdi A. Fteiti, Obai Younis, Pouyan Talebizadeh Sardari and Wahiba Yaïci
Sustainability 2021, 13(4), 2401; https://doi.org/10.3390/su13042401 - 23 Feb 2021
Cited by 6 | Viewed by 3154
Abstract
The melting heat transfer of CuO—coconut oil embedded in a non-uniform copper metal foam—was addressed. Copper foam is placed in a channel-shaped Thermal Energy Storage (TES) unit heated from one side. The foam is non-uniform with a linear porosity gradient in a direction [...] Read more.
The melting heat transfer of CuO—coconut oil embedded in a non-uniform copper metal foam—was addressed. Copper foam is placed in a channel-shaped Thermal Energy Storage (TES) unit heated from one side. The foam is non-uniform with a linear porosity gradient in a direction perpendicular to the heated surface. The finite element method was applied to simulate natural convection flow and phase change heat transfer in the TES unit. The results showed that the porosity gradient could significantly boost the melting rate and stored energy rate in the TES unit. The best non-uniform porosity corresponds to a case in which the maximum porosity is next to a heated surface. The variation of the unit placement’s inclination angle is only important in the final stage of charging, where there is a dominant natural convection flow. The variation of porous pore size induces minimal impact on the phase change rate, except in the case of a large pore size of 30 pore density (PPI). The presence of nanoparticles could increase or decrease the charging time. However, using a 4% volume fraction of nanoparticles could mainly reduce the charging time. Full article
(This article belongs to the Special Issue Green Deal in Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop