Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = non-sinusoidal motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1419 KB  
Review
How the Vestibular Labyrinth Encodes Air-Conducted Sound: From Pressure Waves to Jerk-Sensitive Afferent Pathways
by Leonardo Manzari
J. Otorhinolaryngol. Hear. Balance Med. 2026, 7(1), 5; https://doi.org/10.3390/ohbm7010005 - 14 Jan 2026
Viewed by 460
Abstract
Background/Objectives: The vestibular labyrinth is classically viewed as a sensor of low-frequency head motion—linear acceleration for the otoliths and angular velocity/acceleration for the semicircular canals. However, there is now substantial evidence that air-conducted sound (ACS) can also activate vestibular receptors and afferents in [...] Read more.
Background/Objectives: The vestibular labyrinth is classically viewed as a sensor of low-frequency head motion—linear acceleration for the otoliths and angular velocity/acceleration for the semicircular canals. However, there is now substantial evidence that air-conducted sound (ACS) can also activate vestibular receptors and afferents in mammals and other vertebrates. This sound sensitivity underlies sound-evoked vestibular-evoked myogenic potentials (VEMPs), sound-induced eye movements, and several clinical phenomena in third-window pathologies. The cellular and biophysical mechanisms by which a pressure wave in the cochlear fluids is transformed into a vestibular neural signal remain incompletely integrated into a single framework. This study aimed to provide a narrative synthesis of how ACS activates the vestibular labyrinth, with emphasis on (1) the anatomical and biophysical specializations of the maculae and cristae, (2) the dual-channel organization of vestibular hair cells and afferents, and (3) the encoding of fast, jerk-rich acoustic transients by irregular, striolar/central afferents. Methods: We integrate experimental evidence from single-unit recordings in animals, in vitro hair cell and calyx physiology, anatomical studies of macular structure, and human clinical data on sound-evoked VEMPs and sound-induced eye movements. Key concepts from vestibular cellular neurophysiology and from the physics of sinusoidal motion (displacement, velocity, acceleration, jerk) are combined into a unified interpretative scheme. Results: ACS transmitted through the middle ear generates pressure waves in the perilymph and endolymph not only in the cochlea but also in vestibular compartments. These waves produce local fluid particle motions and pressure gradients that can deflect hair bundles in selected regions of the otolith maculae and canal cristae. Irregular afferents innervating type I hair cells in the striola (maculae) and central zones (cristae) exhibit phase locking to ACS up to at least 1–2 kHz, with much lower thresholds than regular afferents. Cellular and synaptic specializations—transducer adaptation, low-voltage-activated K+ conductances (KLV), fast quantal and non-quantal transmission, and afferent spike-generator properties—implement effective high-pass filtering and phase lead, making these pathways particularly sensitive to rapid changes in acceleration, i.e., mechanical jerk, rather than to slowly varying displacement or acceleration. Clinically, short-rise-time ACS stimuli (clicks and brief tone bursts) elicit robust cervical and ocular VEMPs with clear thresholds and input–output relationships, reflecting the recruitment of these jerk-sensitive utricular and saccular pathways. Sound-induced eye movements and nystagmus in third-window syndromes similarly reflect abnormally enhanced access of ACS-generated pressure waves to canal and otolith receptors. Conclusions: The vestibular labyrinth does not merely “tolerate” air-conducted sound as a spill-over from cochlear mechanics; it contains a dedicated high-frequency, transient-sensitive channel—dominated by type I hair cells and irregular afferents—that is well suited to encoding jerk-rich acoustic events. We propose that ACS-evoked vestibular responses, including VEMPs, are best interpreted within a dual-channel framework in which (1) regular, extrastriolar/peripheral pathways encode sustained head motion and low-frequency acceleration, while (2) irregular, striolar/central pathways encode fast, sound-driven transients distinguished by high jerk, steep onset, and precise spike timing. Full article
(This article belongs to the Section Otology and Neurotology)
Show Figures

Figure 1

25 pages, 16756 KB  
Article
Research on the Influence of Hydrofoil Propulsive Parameters on Propulsion Efficiency
by Meng Cui, Zhihao Liu, Fei Lu, Jiaye Gong and Zheng Fu
J. Mar. Sci. Eng. 2025, 13(8), 1431; https://doi.org/10.3390/jmse13081431 - 27 Jul 2025
Cited by 1 | Viewed by 759
Abstract
Oscillating hydrofoils can be used to simplify the study of the swinging caudal fin propulsive mode of fish, where the motion parameters have a direct impact on the hydrodynamic performance and propulsive efficiency. In this study, numerical calculations were carried out on two-dimensional [...] Read more.
Oscillating hydrofoils can be used to simplify the study of the swinging caudal fin propulsive mode of fish, where the motion parameters have a direct impact on the hydrodynamic performance and propulsive efficiency. In this study, numerical calculations were carried out on two-dimensional hydrofoils for sinusoidal and non-sinusoidal heave oscillation, and the numerical results of sinusoidal hydrofoils were compared with the experimental values, which were in good agreement. An analysis of how different motion parameters of the sinusoidal hydrofoil affect the hydrodynamic performance was conducted, and the recommended operating condition range was given in combination with the flow field analysis. A unique non-sinusoidal curve was defined, which can enable the motion to enter the crest and trough earlier or later. The parameters for controlling the degree of non-sinusoidal were also defined. A detailed discussion was carried out on how the non-sinusoidal parameters affect the hydrodynamic performance and the change in the flow field. The corresponding recommended working conditions and application scope were given. Further studies can reveal the propulsive mechanism of the swinging caudal fin and provide a reference for the engineering and design of the next generation of bionic fish. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 2329 KB  
Article
Surface EEG Evidence for Cerebellar Control of Distal Upper Limbs in Humans
by Anna Latorre, Kais Humaidan, Mauro Sanna, Maria Lucrezia Lavena, Sara Pittalis, Clio Raimondi, Elias Paolo Casula and Lorenzo Rocchi
Brain Sci. 2025, 15(5), 440; https://doi.org/10.3390/brainsci15050440 - 24 Apr 2025
Cited by 2 | Viewed by 1182
Abstract
Background/Objectives: The cerebellum plays a crucial role in motor control, but its direct electrophysiological investigation in humans is challenging. Electrocerebellograms (ECeGs), recorded via surface electrodes below the inion, have been proposed as a non-invasive method to assess cerebellar activity. However, its interpretation [...] Read more.
Background/Objectives: The cerebellum plays a crucial role in motor control, but its direct electrophysiological investigation in humans is challenging. Electrocerebellograms (ECeGs), recorded via surface electrodes below the inion, have been proposed as a non-invasive method to assess cerebellar activity. However, its interpretation is complicated by potential interference from occipital alpha rhythms and neck muscle signals. This study aimed to investigate whether ECeG signals genuinely reflect cerebellar involvement during upper limb movement and to explore possible confounding influences. Methods: We recorded electroencephalograms (EEGs) from occipital (Oz) and cerebellar electrodes (Cb1 and Cb2), alongside EMGs from forearm muscles in healthy individuals performing sinusoidal (~1 Hz) and tremor-like (~4 Hz) wrist movements. To assess occipital contamination, recordings were obtained under both eyes-open and eyes-closed conditions. Results: Occipital alpha power was present in Cb1 and Cb2 but was less affected by eye-opening than at Oz, suggesting a partially distinct neural source. During the tremor condition, movement-frequency power increased at Cb2 and C3 (corresponding to the ipsilateral cerebellar hemisphere and contralateral motor cortex), indicating authentic cerebellar activity. No significant movement-related EEG changes were observed during sinusoidal movements, likely due to weaker neuronal synchronization. Conclusions: These findings suggest that ECeGs can detect cerebellar signals linked to movement, especially during faster and rhythmic motions, and are only moderately affected by occipital contamination. This supports the feasibility of non-invasive cerebellar electrophysiology and underscores the need for further methodological refinement to enhance signal specificity. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
Show Figures

Figure 1

16 pages, 6815 KB  
Article
Investigating the Power Extraction of Applying Hybrid Pitching Motion on a Wing with Leading and Trailing Flaps
by Suleiman Saleh and Chang-Hyun Sohn
Actuators 2025, 14(2), 62; https://doi.org/10.3390/act14020062 - 27 Jan 2025
Cited by 2 | Viewed by 1309
Abstract
This research utilized a hybrid trajectory on a wing incorporating a dual flap with the goal of enhancing performance. The hybrid profiles initiate with a non-sinusoidal pattern during the interval 0.0 ≤ t/T ≤ 0.25, evolving toward a sinusoidal pattern within the range [...] Read more.
This research utilized a hybrid trajectory on a wing incorporating a dual flap with the goal of enhancing performance. The hybrid profiles initiate with a non-sinusoidal pattern during the interval 0.0 ≤ t/T ≤ 0.25, evolving toward a sinusoidal pattern within the range 0.25 < t/T ≤ 0.5. Similarly, the hybrid motion follows a non-sinusoidal pattern in the range 0.5 < t/T ≤ 0.75, before shifting back to a sinusoidal pattern within the range 0.75 < t/T ≤ 1.0. The effectiveness of using a hybrid trajectory on a wing with leading and trailing flaps in enhancing the energy harvesting performance is examined through numerical simulations. The results demonstrate that hybrid trajectories applied to a two-flap wing configuration outperform a single flat plate and a wing with leading and trailing flaps both operating under a sinusoidal trajectory. The wing length spans from 45% to 55%, with the leading flap length ranging from 25% to 35%. The trailing flap lengths adjust accordingly to ensure the combined total matches the flat plate’s full length, which is 100%. The wing pitch angle was fixed at 85° while the leading flap’s pitch angle varied between 40° and 55° and the pitch angle of the trailing flap ranged from 0° to 20°. The findings reveal that utilizing hybrid motion on a wing fitted with leading and trailing flaps notably improves power output in comparison to configurations with either one plate or three plates. The power output is achieved at particular dimensions: a leading flap length of 30%, a wing length of 55%, and a trailing flap length of 15%. The corresponding pitch angles are 50° for the leading flap, 85° for the wing, and 10° for the trailing flap. The aforementioned configuration results in a 34.06% increase in output power in comparison to one plate. The maximum efficiency for this setup reaches 44.21%. This underscores the superior performance of hybrid trajectories over sinusoidal trajectories in enhancing energy extraction performance. Full article
Show Figures

Figure 1

16 pages, 6579 KB  
Article
Enhanced Power Extraction via Hybrid Pitching Motion in an Oscillating Wing Energy Harvester with Leading Flap
by Suleiman Saleh and Chang-Hyun Sohn
Energies 2024, 17(23), 6108; https://doi.org/10.3390/en17236108 - 4 Dec 2024
Cited by 2 | Viewed by 1190
Abstract
This study applied a hybrid pitching motion for an oscillating wing with a leading flap aimed at enhancing energy extraction efficiency. In the first half of the cycle, the hybrid pitching motion begins with a non-sinusoidal pitching motion for 0.0 ≤ t/T ≤ [...] Read more.
This study applied a hybrid pitching motion for an oscillating wing with a leading flap aimed at enhancing energy extraction efficiency. In the first half of the cycle, the hybrid pitching motion begins with a non-sinusoidal pitching motion for 0.0 ≤ t/T ≤ 0.25, transitioning to a sinusoidal pitching motion for 0.25 < t/T ≤ 0.50. The latter half of the motion mirrors the first one but moves toward the reverse direction. Hybrid motions combine the benefits of non-sinusoidal and sinusoidal pitching motions, enhancing the optimization of pitch angle variation. The findings show that hybrid motions for the wing fitted with an attached leading flap outperform both the single plate and the wing with an attached flap using sinusoidal pitching motion. The simulation was conducted with flap lengths ranging from 30% to 45% of the chord length and examined maximum pitching angles of the wing and the attached leading flap between 80° to 95° and 25° to 60°, respectively. By setting the pitch angles of the wing and leading flap to 85° and 45°, respectively, with the wing comprising 65% of the total length and the leading flap 35%, the proposed hybrid pitching motion with the leading flap generates a maximum power output of 1.276 that surpasses that of a sinusoidal pitching motion of 0.963 on an oscillating flat plate by 32.50%. This combination of hybrid pitching motion and a wing flap configuration is effective in improving the performance. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

17 pages, 5491 KB  
Article
Power Extraction Performance by a Hybrid Non-Sinusoidal Pitching Motion of an Oscillating Energy Harvester
by Suleiman Saleh and Chang-Hyun Sohn
Energies 2024, 17(11), 2451; https://doi.org/10.3390/en17112451 - 21 May 2024
Cited by 4 | Viewed by 1430
Abstract
This study proposes a hybrid pitching motion for oscillating flat plates aimed at augmenting the energy extraction efficiency of an energy harvester. The proposed hybrid pitching motion, within the first half cycle, integrates a non-sinusoidal movement starting at t/T = 0 and progressing [...] Read more.
This study proposes a hybrid pitching motion for oscillating flat plates aimed at augmenting the energy extraction efficiency of an energy harvester. The proposed hybrid pitching motion, within the first half cycle, integrates a non-sinusoidal movement starting at t/T = 0 and progressing to t/T = 0.25, with a sinusoidal movement initiating after t/T > 0.25 and continuing to t/T = 0.5. The second half of the cycle is symmetric to the first half but in the opposite direction. The calculated results show that the proposed hybrid pitching motion outperforms both the sinusoidal and the non-sinusoidal motions. The hybrid pitching motion merges the merits of both the sinusoidal and non-sinusoidal motions to optimize pitch angle variation. This integration is pivotal for enhancing the overall power output performance of an oscillating energy harvester characterized by momentum change that enhances the orientation of the heaving movement, smoother motion transitions, and consistent energy harvesting. The power generation is obtained at wing pitch angles of 55°, 65°, 70°, 75°, and 80° during a hybrid pitching motion. The proposed hybrid pitching motion, set at a pitch angle of 70°, achieves a maximum power output that exceeds the oscillating flat plate using a sinusoidal pitching motion by 16.0% at the same angle. Full article
Show Figures

Figure 1

20 pages, 7311 KB  
Article
Human Respiration Rate Measurement with High-Speed Digital Fringe Projection Technique
by Anna Lena Lorenz and Song Zhang
Sensors 2023, 23(21), 9000; https://doi.org/10.3390/s23219000 - 6 Nov 2023
Cited by 2 | Viewed by 3573
Abstract
This paper proposes a non-contact continuous respiration monitoring method based on Fringe Projection Profilometry (FPP). This method aims to overcome the limitations of traditional intrusive techniques by providing continuous monitoring without interfering with normal breathing. The FPP sensor captures three-dimensional (3D) respiratory motion [...] Read more.
This paper proposes a non-contact continuous respiration monitoring method based on Fringe Projection Profilometry (FPP). This method aims to overcome the limitations of traditional intrusive techniques by providing continuous monitoring without interfering with normal breathing. The FPP sensor captures three-dimensional (3D) respiratory motion from the chest wall and abdomen, and the analysis algorithms extract respiratory parameters. The system achieved a high Signal-to-Noise Ratio (SNR) of 37 dB with an ideal sinusoidal respiration signal. Experimental results demonstrated that a mean correlation of 0.95 and a mean Root-Mean-Square Error (RMSE) of 0.11 breaths per minute (bpm) were achieved when comparing to a reference signal obtained from a spirometer. Full article
(This article belongs to the Special Issue Optical Instruments and Sensors and Their Applications)
Show Figures

Figure 1

17 pages, 17725 KB  
Article
Comparison of Forced Convective Heat-Transfer Enhancement of Conventional and Thin Plate-Fin Heat Sinks under Sinusoidal Vibration
by Ambagaha Hewage Dona Kalpani Rasangika, Mohammad Shakir Nasif and Rafat Al-Waked
Appl. Sci. 2023, 13(21), 11909; https://doi.org/10.3390/app132111909 - 31 Oct 2023
Cited by 4 | Viewed by 2123
Abstract
Applying sinusoidal vibration to heat sinks has proven to be a promising technique for improving heat transfer by disrupting the thermal boundary layer. However, applying sinusoidal vibration to the base of thin plate-fin heat sinks can cause a flapping motion within the fins, [...] Read more.
Applying sinusoidal vibration to heat sinks has proven to be a promising technique for improving heat transfer by disrupting the thermal boundary layer. However, applying sinusoidal vibration to the base of thin plate-fin heat sinks can cause a flapping motion within the fins, further enhancing heat transfer. Therefore, the current study numerically investigates and compares the effects of sinusoidal vibrations on the thermal performance of conventional and thin plate-fin heat sinks. The study concludes that increased vibrational amplitude and frequency (f ˃ 30 Hz) increases the vibration-assisted thermal performance. It was found that the thin plate-fin heat sink provides higher thermal performance compared to the conventional heat sink at every level of vibrational characteristics. The study found that the application of vibration enhances the Nusselt number up to a maximum of 20% and 15% in thin plate-fin and conventional heat sinks, respectively. Furthermore, the Reynolds number is reduced by 33.3% and 28% with thin plate-fin and conventional heat sinks compared with non-vibrating heat sinks, indicating a potential reduction of the size of the cooling system or fin size. Full article
Show Figures

Figure 1

17 pages, 2948 KB  
Article
Enhancing Muscle Intracellular Ca2+ Homeostasis and Glucose Uptake: Passive Pulsatile Shear Stress Treatment in Type 2 Diabetes
by Arkady Uryash, Jordan Umlas, Alfredo Mijares, Jose A. Adams and Jose R. Lopez
Biomedicines 2023, 11(10), 2596; https://doi.org/10.3390/biomedicines11102596 - 22 Sep 2023
Cited by 4 | Viewed by 2084
Abstract
Type 2 diabetes mellitus (T2D) is a significant global public health problem that has seen a substantial increase in the number of affected individuals in recent decades. In a murine model of T2D (db/db), we found several abnormalities, including aberrant intracellular calcium concentration [...] Read more.
Type 2 diabetes mellitus (T2D) is a significant global public health problem that has seen a substantial increase in the number of affected individuals in recent decades. In a murine model of T2D (db/db), we found several abnormalities, including aberrant intracellular calcium concentration ([Ca2+]i), decreased glucose transport, increased production of reactive oxygen species (ROS), elevated levels of pro-inflammatory interleukins and creatine phosphokinase (CK), and muscle weakness. Previously, we demonstrated that passive pulsatile shear stress, generated by sinusoidal (headward–forward) motion, using a motion platform that provides periodic acceleration of the whole body in the Z plane (pGz), induces the synthesis of nitric oxide (NO) mediated by constitutive nitric oxide synthase (eNOS and nNOS). We investigated the effect of pGz on db/db a rodent model of T2D. The treatment of db/db mice with pGz resulted in several beneficial effects. It reduced [Ca2+]i overload; enhanced muscle glucose transport; and decreased ROS levels, interleukins, and CK. Furthermore, pGz treatment increased the expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and neuronal nitric oxide synthase (nNOS); reduced inducible nitric oxide synthase (iNOS); and improved muscle strength. The cytoprotective effects of pGz appear to be mediated by NO, since pretreatment with L-NAME, a nonspecific NOS inhibitor, abolished the effects of pGz on [Ca2+]i and ROS production. Our findings suggest that a non-pharmacological strategy such as pGz has therapeutic potential as an adjunct treatment to T2D. Full article
(This article belongs to the Special Issue Advances in Endothelial Signaling and Function in Diabetes)
Show Figures

Graphical abstract

25 pages, 719 KB  
Article
On the Numerical Modeling of Friction Hysteresis of Conformal Rough Contacts
by Kristof Driesen, Sylvie Castagne, Bert Lauwers and Dieter Fauconnier
Lubricants 2023, 11(8), 326; https://doi.org/10.3390/lubricants11080326 - 1 Aug 2023
Cited by 2 | Viewed by 2452
Abstract
In this work, a numerical model simulating friction hysteresis for lubricated rough and textured surfaces in contact is presented. Friction hysteresis occurs in sliding contacts that are subjected to a non-constant (e.g., sinusoidal) motion. It refers to the phenomenon where the observed friction [...] Read more.
In this work, a numerical model simulating friction hysteresis for lubricated rough and textured surfaces in contact is presented. Friction hysteresis occurs in sliding contacts that are subjected to a non-constant (e.g., sinusoidal) motion. It refers to the phenomenon where the observed friction force during acceleration differs from that during deceleration. Besides the dynamics of the sliding system, a classic mixed friction model is adopted, in which the transient Reynolds equation for the description of the thin lubricant film is combined with a statistical Greenwood–Williamson model for the description of rough surface asperity contacts. The model enables the prediction of the friction hysteresis for predefined contact descriptions (i.e., surface profile and roughness, lubricant, etc.) and allows the study of the physics and parametric influences of dynamically sliding contacts. In this paper, it is shown that (i) friction hysteresis is captured by classic transient models for mixed lubrication; (ii) system parameters, such as roughness, applied load, viscosity and velocity, including the offset, amplitude and motion reversal, influence the shape and area of friction hysteresis; and (iii) the selection of the aforementioned parameters may minimize friction hysteresis. Full article
Show Figures

Figure 1

18 pages, 7567 KB  
Article
Research on Flexible End-Effectors with Humanoid Grasp Function for Small Spherical Fruit Picking
by Fu Zhang, Zijun Chen, Yafei Wang, Ruofei Bao, Xingguang Chen, Sanling Fu, Mimi Tian and Yakun Zhang
Agriculture 2023, 13(1), 123; https://doi.org/10.3390/agriculture13010123 - 2 Jan 2023
Cited by 44 | Viewed by 5872
Abstract
The rapid, stable, and undamaged picking of small-sized spherical fruits are one of the key technologies to improve the level of intelligent picking robots and reduce grading operations. Cherry tomatoes were selected as the research object in this work. Picking strategies of two-stage [...] Read more.
The rapid, stable, and undamaged picking of small-sized spherical fruits are one of the key technologies to improve the level of intelligent picking robots and reduce grading operations. Cherry tomatoes were selected as the research object in this work. Picking strategies of two-stage “Holding-Rotating” and finger-end grasping were determined. The end-effector was designed to separate the fruit from the stalk based on the linear motion of the constraint part and the rotating gripper. This work first studied the human hand-grasping of cherry tomatoes and designed the fingers with sinusoidal characteristics. The mathematical model of a single finger of the gripper was established. The structural parameters of the gripper were determined to meet the requirements of the grabbing range from 0 to 61.6 mm. Based on the simulation model, the constraint part was set to 6 speeds, and the fruit sizes were set to 20 mm, 30 mm, and 40 mm, respectively. When the speed was 0.08m/s, the results showed that the grabbing time was 0.5381 s, 0.387 s, and 0.2761 s, respectively, and the maximum grabbing force was 0.9717 N, 3.5077 N, and 4.0003 N now of clamping, respectively. It met the picking requirements of high speed and low loss. The criterions of two-index stability and undamaged were proposed, including the grasping index of the fixed value and the slip detection of variance to mean ratio. Therefore, the control strategy and algorithm based on two-stage and two-index for rapid, stable, and non-destructive harvesting of small fruit were proposed. The results of the picking experiment for seventy-two cherry tomatoes showed that the picking success rate was 95.82%, the average picking time was 4.86 s, the picking damage rate was 2.90%, the browning rate was 2.90% in 72 h, and the wrinkling rate was 1.49% in 72 h, which can meet the actual small spherical fruit picking requirements. The research will provide an idea for the flexible end-effectors with humanoid grasp function and provides a theoretical reference for small spherical fruit picking. Full article
(This article belongs to the Special Issue 'Eyes', 'Brain', 'Feet' and 'Hands' of Efficient Harvesting Machinery)
Show Figures

Figure 1

16 pages, 5907 KB  
Article
Study of the Sloshing Dynamics in Partially Filled Rectangular Tanks with Submerged Baffles Using VOF and LES Turbulence Methods for Different Impact Angles
by Xavier Vallés Rebollo, Ehsan Sadeghi, Ibuki Kusano and Andrés-Amador García-Granada
Computation 2022, 10(12), 225; https://doi.org/10.3390/computation10120225 - 19 Dec 2022
Cited by 7 | Viewed by 5066
Abstract
This research studies how the angle and dimensions of a single baffle affect the dynamics of a fluid in a closed rectangular tank under an accelerated harmonic vibration in resonance. A half-filled non-deformable rectangular tank with a single centered submerged baffle has been [...] Read more.
This research studies how the angle and dimensions of a single baffle affect the dynamics of a fluid in a closed rectangular tank under an accelerated harmonic vibration in resonance. A half-filled non-deformable rectangular tank with a single centered submerged baffle has been simulated using ANSYS® FLUENT. The study aims to characterize the effect of changing the baffle’s angle; hence, 10 simulations have been performed: without a baffle, 90°, 30°, 60°, 120° and 150°, either maintaining the baffle’s length or the projected height constant. The computational fluid dynamics (CFD) method using volume of fluid (VOF) and large eddy simulation (LES) are used to predict the movement of the fluid in two dimensions, which have been benchmarked against experimental data with excellent agreement. The motion is sinusoidal in the +X direction, with a frequency of oscillation equal to its first vibration mode. The parameters studied have been the free surface elevation, values at three different points and maximum; the center of gravity’s position, velocity, and acceleration; and the forces against the tank’s walls. It has been found that the 90° angle has the most significant damping effect, stabilizing the free-surface elevation, reducing the center of gravity dispersion, and leveling the impacting forces. Smaller angles also tame the sloshing and stabilize it. Full article
(This article belongs to the Special Issue Application of Finite Element Methods)
Show Figures

Figure 1

14 pages, 1681 KB  
Article
Leveraging Accelerometry as a Prognostic Indicator for Increase in Opioid Withdrawal Symptoms
by Tamara P. Lambert, Asim H. Gazi, Anna B. Harrison, Sevda Gharehbaghi, Michael Chan, Malik Obideen, Parvaneh Alavi, Nancy Murrah, Lucy Shallenberger, Emily G. Driggers, Rebeca Alvarado Ortega, Brianna Washington, Kevin M. Walton, Yi-Lang Tang, Rahul Gupta, Jonathon A. Nye, Justine W. Welsh, Viola Vaccarino, Amit J. Shah, J. Douglas Bremner and Omer T. Inanadd Show full author list remove Hide full author list
Biosensors 2022, 12(11), 924; https://doi.org/10.3390/bios12110924 - 26 Oct 2022
Cited by 6 | Viewed by 3926
Abstract
Treating opioid use disorder (OUD) is a significant healthcare challenge in the United States. Remaining abstinent from opioids is challenging for individuals with OUD due to withdrawal symptoms that include restlessness. However, to our knowledge, studies of acute withdrawal have not quantified restlessness [...] Read more.
Treating opioid use disorder (OUD) is a significant healthcare challenge in the United States. Remaining abstinent from opioids is challenging for individuals with OUD due to withdrawal symptoms that include restlessness. However, to our knowledge, studies of acute withdrawal have not quantified restlessness using involuntary movements. We hypothesized that wearable accelerometry placed mid-sternum could be used to detect withdrawal-related restlessness in patients with OUD. To study this, 23 patients with OUD undergoing active withdrawal participated in a protocol involving wearable accelerometry, opioid cues to elicit craving, and non-invasive Vagal Nerve Stimulation (nVNS) to dampen withdrawal symptoms. Using accelerometry signals, we analyzed how movements correlated with changes in acute withdrawal severity, measured by the Clinical Opioid Withdrawal Scale (COWS). Our results revealed that patients demonstrating sinusoidal–i.e., predominantly single-frequency oscillation patterns in their motion almost exclusively demonstrated an increase in the COWS, and a strong relationship between the maximum power spectral density and increased withdrawal over time, measured by the COWS (R = 0.92, p = 0.029). Accelerometry may be used in an ambulatory setting to indicate the increased intensity of a patient’s withdrawal symptoms, providing an objective, readily-measurable marker that may be captured ubiquitously. Full article
(This article belongs to the Special Issue Wearable Sensing for Health Monitoring)
Show Figures

Graphical abstract

17 pages, 5482 KB  
Article
Non-Contact Breathing Monitoring Using Sleep Breathing Detection Algorithm (SBDA) Based on UWB Radar Sensors
by Muhammad Husaini, Latifah Munirah Kamarudin, Ammar Zakaria, Intan Kartika Kamarudin, Muhammad Amin Ibrahim, Hiromitsu Nishizaki, Masahiro Toyoura and Xiaoyang Mao
Sensors 2022, 22(14), 5249; https://doi.org/10.3390/s22145249 - 13 Jul 2022
Cited by 27 | Viewed by 7517
Abstract
Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a [...] Read more.
Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

14 pages, 4744 KB  
Article
Numerical Assessment of the Loading Factors Affecting Liquefaction-Induced Failure
by Davide Forcellini and Anthony Tessari
Geosciences 2022, 12(3), 123; https://doi.org/10.3390/geosciences12030123 - 7 Mar 2022
Cited by 5 | Viewed by 4147
Abstract
This paper presents parametric studies that assess the role of loading factors (i.e., number of cycles, frequency, and amplitude) on liquefaction-induced failure by performing numerical simulations. Most of the existing literature considers the effects of the soil properties on the development of excess [...] Read more.
This paper presents parametric studies that assess the role of loading factors (i.e., number of cycles, frequency, and amplitude) on liquefaction-induced failure by performing numerical simulations. Most of the existing literature considers the effects of the soil properties on the development of excess pore pressure with few research endeavours focusing on the effects of the input motion itself. Numerical simulations are performed herein, via the advanced software platform OpenSees, to generate several finite element models that consider non-linear development of pore pressure inside the soil. Several sinusoidal inputs were considered to study the effects of the various loading factors and compare the responses. The main findings arise from evaluating the effects of several input motion parameters (number of cycles, frequency, and amplitude) on soil liquefaction through numerical simulations. This research study, based on state-of-the-art knowledge, may be applied to assess future seismic events and to update or propose new code provisions for soil liquefaction. Full article
(This article belongs to the Special Issue Assessment of Earthquake-Induced Soil Liquefaction Hazard)
Show Figures

Figure 1

Back to TopTop