Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (782)

Search Parameters:
Keywords = non-reversible process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3261 KB  
Article
Establishment of a Rapid and Efficient Method for the Detection of Avian Reovirus Based on RT-RAA-CRISPR/Cas12a Technology
by Qi Zheng, Zhiyuan Lu, Huahua Chen, Muzi Li, Haoyi Zhang, Ziqiang Cheng and Jianzhu Liu
Animals 2025, 15(20), 2994; https://doi.org/10.3390/ani15202994 - 16 Oct 2025
Viewed by 242
Abstract
Avian reovirus (ARV), a highly pathogenic agent in poultry, causes severe economic losses through immunosuppression and secondary infections. Traditional diagnostic methods like reverse transcription quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) face limitations in resource-limited settings due to equipment dependency and prolonged [...] Read more.
Avian reovirus (ARV), a highly pathogenic agent in poultry, causes severe economic losses through immunosuppression and secondary infections. Traditional diagnostic methods like reverse transcription quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) face limitations in resource-limited settings due to equipment dependency and prolonged processing. To address this, we developed a rapid, portable detection method integrating reverse transcription–recombinase-aided amplification (RT-RAA) with CRISPR/Cas12a. By targeting the conserved P17-coding region of the ARV S1 gene, this assay amplifies viral RNA isothermally (37 °C) within 20 min, followed by Cas12a-mediated collateral cleavage of fluorescent or lateral flow reporters for visual readout. The method achieved a sensitivity of 1 copy/μL, surpassing RT-qPCR (10 copies/μL), and completed detection in 40 min. Specificity tests against non-target pathogens confirmed zero cross-reactivity. Utilizing a portable incubator and low-cost visual tools, this platform eliminates reliance on thermocyclers and skilled personnel. Its field-deployable design enables on-site diagnosis, facilitating early ARV detection to mitigate outbreaks and economic losses in poultry farming. This study provides a paradigm shift in avian pathogen surveillance, combining speed, sensitivity, and accessibility for global agricultural and public health applications. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

17 pages, 3460 KB  
Article
Integrating Pumped Hydro Storage into Zero Discharge Strategy for Wastewater: The Alicante Case Study
by Miguel Ángel Bofill, Francisco-Javier Sánchez-Romero, Francisco Zapata-Raboso, Helena M. Ramos and Modesto Pérez-Sánchez
Appl. Sci. 2025, 15(20), 10953; https://doi.org/10.3390/app152010953 - 12 Oct 2025
Viewed by 309
Abstract
The use of reclaimed water is crucial to prevent pollution from wastewater discharges and mitigate the water deficit faced by irrigation districts or other non-potable water users. Therefore, the zero-discharge strategy represents a significant challenge for coastal cities affected by marine pollution from [...] Read more.
The use of reclaimed water is crucial to prevent pollution from wastewater discharges and mitigate the water deficit faced by irrigation districts or other non-potable water users. Therefore, the zero-discharge strategy represents a significant challenge for coastal cities affected by marine pollution from effluents. In regions such as the Mediterranean arc, agricultural areas located near these cities are increasingly exposed to reduced water allocations or rising irrigation demands due to the impacts of climate change. To address this dual challenge, a circular system is proposed through the implementation of hybrid treatment technologies that enable zero wastewater discharge into the sea. This approach would contribute up to 30 hm3 of reclaimed water annually for irrigation, covering approximately 27,000 hectares of cropland in the province of Alicante. The proposed system integrates advanced techniques, such as reverse osmosis, to ensure irrigation water quality, while also considering partial blending strategies to optimize resource use. Additionally, constructed wetlands are incorporated to regulate and treat the reject streams produced by these processes, minimizing their environmental impact. This combined strategy enhances water reuse efficiency, strengthens agricultural resilience, and provides a sustainable model for managing water resources in coastal Mediterranean regions. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

16 pages, 3068 KB  
Article
Unveiling the Regulatory Mechanisms of Irradiation Response in Pseudococcus jackbeardsleyi Under Hypoxic Conditions
by Li Li, Changyao Shan, Qiang Xu, Baishu Li, Haijun Liu and Tao Liu
Agriculture 2025, 15(20), 2104; https://doi.org/10.3390/agriculture15202104 - 10 Oct 2025
Viewed by 279
Abstract
Mealybugs are high-priority quarantine pests in fresh-produce trade due to cryptic habits, broad host ranges, and market-access risks. Phytosanitary irradiation (PI) provides a non-residual, process-controlled option that is increasingly integrated with modified-atmosphere (MA/MAP) logistics. Because molecular oxygen enhances indirect radiation damage (oxygen enhancement [...] Read more.
Mealybugs are high-priority quarantine pests in fresh-produce trade due to cryptic habits, broad host ranges, and market-access risks. Phytosanitary irradiation (PI) provides a non-residual, process-controlled option that is increasingly integrated with modified-atmosphere (MA/MAP) logistics. Because molecular oxygen enhances indirect radiation damage (oxygen enhancement ratio, OER), oxygen limitation may modulate PI outcomes in mealybugs. The Jack Beardsley mealybug (Pseudococcus jackbeardsleyi) has an IPPC-adopted PI treatment of 166 Gy (ISPM 28, PT 45). We exposed adult females to 166 Gy under air and 1% O2 and generated whole-transcriptome profiles across treatments. Differentially expressed genes and co-differentially expressed genes (co-DEGs) were integrated with protein–protein interaction (PPI) and regulatory networks, and ten hubs were validated by reverse transcription quantitative PCR (RT-qPCR). Hypoxia attenuated irradiation-induced transcriptional disruption. Expression programs shifted toward transport, redox buffering, and immune readiness, while morphogen signaling (Wnt, Hedgehog, BMP) was coherently suppressed; hubs including wg, hh, dpp, and ptc showed stronger down-regulation under hypoxia + irradiation than under irradiation alone. Despite these molecular differences, confirmatory bioassays at 166 Gy under both atmospheres (air and 1% O2) achieved complete control. These results clarify how oxygen limitation modulates PI responses in a quarantine mealybug while confirming the operational efficacy of the prescribed 166 Gy dose. Practically, they support the current international standard and highlight the value of documenting oxygen atmospheres and managing dose margins when PI is applied within MA/MAP supply chains. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

11 pages, 2025 KB  
Article
Collateral Status Evaluation Using CT Angiography and Perfusion Source Images in Acute Stroke Patients
by Heitor C. B. R. Alves, Bruna G. Dutra, Vivian Gagliardi, Rubens J. Gagliardi, Felipe T. Pacheco, Antonio C. M. Maia and Antônio J. da Rocha
Brain Sci. 2025, 15(10), 1092; https://doi.org/10.3390/brainsci15101092 - 9 Oct 2025
Viewed by 357
Abstract
Background/Objectives: Single-phase CT angiography (sCTA) is widely used to assess collateral circulation in acute ischemic stroke, but its static nature can lead to an underestimation of collateral flow. Our study aimed to develop and validate a direct, qualitative dynamic CTA (dCTA) collateral score [...] Read more.
Background/Objectives: Single-phase CT angiography (sCTA) is widely used to assess collateral circulation in acute ischemic stroke, but its static nature can lead to an underestimation of collateral flow. Our study aimed to develop and validate a direct, qualitative dynamic CTA (dCTA) collateral score based on CTP source images, without the need for post-processing software, to provide a more accurate prognostic tool. Methods: We retrospectively analyzed 112 patients with anterior circulation ischemic stroke from a prospective registry who underwent non-contrast CT, sCTA, and CTP within 8 h of onset. Collateral circulation was graded using a 4-point sCTA score and our novel 4-point dCTA score, which incorporates temporal filling patterns. We used linear regression to compare the association of both scores with CTP-derived core/hypoperfusion volumes, infarct growth, and final infarct volume. Results: The dCTA method frequently reclassified patients with poor collaterals on sCTA to good collaterals on dCTA (n = 23), while the reverse was rare (n = 5). A better collateral score was significantly associated with smaller core volume for both sCTA and dCTA, but the dCTA score demonstrated a superior model fit (R2 = 0.36 vs. 0.32). Similar superior correlations for dCTA were observed for hypoperfusion, infarct growth, and final infarct volumes. Critically, only the dCTA score significantly modified the association between core volume and time since stroke onset (p for interaction = 0.04). Conclusions: A collateral score derived from CTP source images (dCTA) offers a more reliable prediction of infarct lesion sizes and progression than conventional sCTA. By incorporating temporal resolution without requiring extra software, dCTA provides a robust correlation with stroke temporal evolution and represents a readily implementable tool to enhance patient selection in acute stroke. Full article
(This article belongs to the Special Issue Stroke: Epidemiology, Diagnosis, Etiology, Treatment, and Prevention)
Show Figures

Figure 1

17 pages, 28862 KB  
Article
LncRNA MEG3 Regulates Glaesserella parasuis-Induced Apoptosis of Porcine Alveolar Macrophages via Regulating ssc-miR-135/CASP8 Axis
by Yongchao Jia, Meiling Qian, Xinlu Sun, Ronglan Yin, Na Li, Aobo Shen, Haoran Wang, Fanhua Zeng, Yuanyuan Zhou and Ronghuan Yin
Microorganisms 2025, 13(10), 2287; https://doi.org/10.3390/microorganisms13102287 - 1 Oct 2025
Viewed by 303
Abstract
Glaesserella parasuis (G. parasuis), a common pathogenic bacterium in the porcine respiratory tract, can cause porcine polyserositis, arthritis, and meningitis. Alveolar macrophages are the first line of defense in the pulmonary innate immunity, and their abnormal apoptosis plays a critical role [...] Read more.
Glaesserella parasuis (G. parasuis), a common pathogenic bacterium in the porcine respiratory tract, can cause porcine polyserositis, arthritis, and meningitis. Alveolar macrophages are the first line of defense in the pulmonary innate immunity, and their abnormal apoptosis plays a critical role in the pathogenic process of G. parasuis. Long non-coding RNA maternally expressed gene 3 (MEG3) is associated with G. parasuis infection, but its mechanism remains incompletely unclear. This study aimed to investigate the role of MEG3 in G. parasuis-induced apoptosis of the porcine alveolar macrophage cell line 3D4/21 and its detailed molecular mechanism. Here, we found that MEG3 overexpression promoted G. parasuis-induced apoptosis and upregulated key extrinsic pathway proteins caspase-8 (CASP8) and caspase-3 (CASP3). Mechanistically, MEG3 functioned as a competing endogenous RNA by sponging ssc-miR-135, which directly targets and inhibits CASP8. Consequently, MEG3 overexpression alleviated ssc-miR-135-mediated repression of CASP8. Functional rescue experiments confirmed that either ssc-miR-135 mimic or CASP8 siRNA reversed the pro-apoptotic effect of MEG3. In conclusion, this study reveals that MEG3 relieves the inhibitory effect of ssc-miR-135 on CASP8 through competitively binding, thereby regulating G. parasuis-induced apoptosis of 3D4/21 cells. This study provides new insights into the pathogenic molecular mechanism of G. parasuis. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

16 pages, 2907 KB  
Article
Polyvinylidene Fluoride Membrane Modified by PEG Additive for Tofu Industrial Wastewater Treatment
by Sutrasno Kartohardjono, Michael Gabriell Owen, Sherlyta Estella, Irfan Purnawan and Woei Jye Lau
ChemEngineering 2025, 9(5), 106; https://doi.org/10.3390/chemengineering9050106 - 1 Oct 2025
Viewed by 370
Abstract
This study investigates the enhancement of polyvinylidene fluoride (PVDF) membranes with polyethylene glycol (PEG) to improve their efficacy in treating tofu wastewater through the ultrafiltration (UF) process. PVDF membranes with varying PEG concentrations of 0, 0.5, 1, and 1.5% in the dope solution [...] Read more.
This study investigates the enhancement of polyvinylidene fluoride (PVDF) membranes with polyethylene glycol (PEG) to improve their efficacy in treating tofu wastewater through the ultrafiltration (UF) process. PVDF membranes with varying PEG concentrations of 0, 0.5, 1, and 1.5% in the dope solution were produced, characterized via FTIR, mechanical strength, porosity, and contact angle measurements, and evaluated in wastewater treatment at varying pressures of 3, 4, and 5 bar in the UF process. The incorporation of PEG increased the membrane’s porosity from 28.2% for M-0 to 43.5% for M-1.5. The contact angle decreased from 65.3° for M-0 to 53.3° for M-1.5, indicating an increase in hydrophilicity. Elongation increased from 36.0% for M-0 to 113.5% for M-1.5; however, the tensile strength decreased from 11.8 MPa for M-0 to 5.4 MPa for M-1.5. Although PEG-modified membranes demonstrated enhanced flux, with values of 6.3 L∙m−2∙h−1 for M-0 and 15.7 L∙m−2∙h−1 for M-1.5 at a pressure of 5 bar, pure PVDF membranes (M-0) showed greater rejection rates for chemical oxygen demand (COD), total dissolve solid (TDS), total suspended solid (TSS), and turbidity at 3 bar, achieving values of 66.3%, 41.6%, 99.6%, and 99.1%, respectively. Following ultrafiltration, the pH and TDS levels conformed to Indonesian government guidelines; however, the COD levels were non-compliant, indicating the need for additional treatment. The findings suggest that PVDF/PEG ultrafiltration membranes are suitable for pre-treatment; however, nanofiltrationor reverse osmosis may be necessary to meet the stringent regulatory standards for tofu wastewater treatment. The modified M-1.5 membrane is recommended as the primary ultrafiltration membrane for tofu wastewater treatment due to its superior flux, prior to nanofiltration or reverse osmosis, to comply with the stringent regulatory standards established by the Government of the Republic of Indonesia. Full article
Show Figures

Graphical abstract

19 pages, 2292 KB  
Article
Analysis and Prediction of Concentration Polarization in a Pilot Reverse Osmosis Plant with Seawater at Different Concentrations Using Python Software
by Jesús Álvarez-Sánchez, Germán Eduardo Dévora-Isiordia, Yedidia Villegas-Peralta, Luis Enrique Chaparro-Valdez, Sebastian Alonso Meza-Tarin, Claudia Rosario Muro-Urista, Reyna Guadalupe Sánchez-Duarte, Sergio Pérez-Sicairos, Emilio Medina-Bojorquez and Salvador Rascon-Leon
Processes 2025, 13(10), 3139; https://doi.org/10.3390/pr13103139 - 30 Sep 2025
Viewed by 338
Abstract
Reverse osmosis (RO) is the most widely used technology in seawater desalination, accounting for around 70% of installations worldwide due to its efficiency and lower energy consumption compared to conventional thermal processes. However, a major challenge for RO is concentration polarization (CP), a [...] Read more.
Reverse osmosis (RO) is the most widely used technology in seawater desalination, accounting for around 70% of installations worldwide due to its efficiency and lower energy consumption compared to conventional thermal processes. However, a major challenge for RO is concentration polarization (CP), a phenomenon that reduces permeate flow, increases osmotic pressure, and compromises salt rejection, affecting the useful life of the membranes. In this work, an RO pilot plant was operated with synthetic solutions ranging from 4830 to 39,850 mg L−1 at pressures between 0.69 and 5.79 MPa, to analyze and predict CP behavior. The results obtained showed salt rejection percentages ranging from 98.80% to 99.63%. The adjusted polynomial models presented correlation coefficients close to unity, which supports their high predictive capacity and statistical robustness for estimating the behavior of CP as a function of pressure. These models were implemented in Python software, allowing for the simulation of non-experimental scenarios and the anticipation of critical conditions that could compromise the RO process. Therefore, this work provides a robust predictive simulation tool to optimize RO processes and ensure the sustainable supply of drinking water in regions with water availability problems. Full article
Show Figures

Figure 1

14 pages, 611 KB  
Article
Studies on the Recovery of Wash Water from Swimming Pool Filters and Their Characteristics—A Case Study
by Wojciech Poćwiardowski
Water 2025, 17(19), 2854; https://doi.org/10.3390/w17192854 - 30 Sep 2025
Viewed by 609
Abstract
Filter wash water (FWW) from public swimming pools is a recoverable resource, yet full-scale evidence on safe on-site reuse with documented economics is scarce. We evaluated a full-scale integrated recovery unit (SOWA) installed at an indoor public pool. The SOWA system—sedimentation, granular filtration [...] Read more.
Filter wash water (FWW) from public swimming pools is a recoverable resource, yet full-scale evidence on safe on-site reuse with documented economics is scarce. We evaluated a full-scale integrated recovery unit (SOWA) installed at an indoor public pool. The SOWA system—sedimentation, granular filtration operated at a hydraulic loading rate (HLR) of 7.5–10 m3 m−2 h−1, ultrafiltration, and chlorine-dioxide (ClO2) disinfection—was monitored for physicochemical and microbiological performance. Turbidity decreased from 23.1 nephelometric turbidity units (NTU) to 0.25 NTU; chemical oxygen demand, reported as the permanganate index (COD_Mn), fell from 10.4 to 1.6 mg O2 L−1; and total microbial count declined from 1.6 × 104 to 30 colony-forming units per millilitre (CFU mL−1). Indicator organisms (Escherichia coli, Intestinal enterococci and Pseudomonas aeruginosa) were not detected, and all quality criteria complied with national standards. At the Olender facility, monthly freshwater use dropped from 1700 to 1000 m3 after 24/7 SOWA operation, while combined chlorine was maintained at 0.12 mg Cl2/L and no issues with chloroform were observed. The unit recovered 4.7 m3 h−1 of FWW for non-potable uses. According to manufacturer catalogue data, the recovery process can reach up to 96%, enabling annual savings up to ~EUR 9000 and a payback of ~2 years under favourable tariffs and loads. Our outcomes are consistent with independent full-scale reuse trains (e.g., ultrafiltration/reverse osmosis) and with disinfection-by-product control strategies reported in the literature, and they align with international guidance for swimming-pool water reuse. This study provides a rare, end-to-end implementation at full scale, documenting continuous operation, verified microbial safety, regulatory compliance, quantified water and cost savings, and site-specific economics for a compact, multi-barrier FBW recovery system that can be directly transferred to similar facilities. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 1726 KB  
Article
Study of the Patterns of DNA Methylation in Human Cells Through the Prism of Intra-Strand DNA Symmetry
by Zamart Ramazanova, Aizhan Alikul, Dinara Begimbetova, Sabira Taipakova, Bakhyt T. Matkarimov and Murat Saparbaev
Int. J. Mol. Sci. 2025, 26(19), 9504; https://doi.org/10.3390/ijms26199504 - 28 Sep 2025
Viewed by 316
Abstract
Cellular organisms store heritable information in two forms, genetic and epigenetic, the latter being largely dependent on cytosine methylation (5mC). Chargaff’s Second Parity Rule (CSPR) describes the nucleotide composition of cellular genomes in terms of intra-strand DNA symmetry. However, it remains unknown whether [...] Read more.
Cellular organisms store heritable information in two forms, genetic and epigenetic, the latter being largely dependent on cytosine methylation (5mC). Chargaff’s Second Parity Rule (CSPR) describes the nucleotide composition of cellular genomes in terms of intra-strand DNA symmetry. However, it remains unknown whether DNA methylation patterns display intra-strand DNA symmetry. Computational analysis was conducted of the DNA methylation patterns observed in human cell lines and in tissue samples from healthy donors. Analysis of 5mC marks in mutually reverse-complementary pairs of short oligomers, containing CpG dinucleotide in the middle, revealed deviations from CSPR and methylation asymmetry that can be observed for two non-overlapping mirror groups defined by CpG methylation values. Deviations from CSPR, together with combinatorial probabilities of pattern distributions and computer simulations, highlight the non-random nature of methylation processes and enabled us to identify specific cell types as outliers. Further analysis revealed a compensatory methylation asymmetry that reduces deviations from intra-strand symmetry and implies the existence of strand-specific methylation during cell differentiation. Among six pairs of reverse-complementary tetranucleotides, four pairs with specific sequence motifs display pronounced methylation asymmetry. This mirror asymmetry may be associated with chromosome folding and the formation of a complex three-dimensional landscape. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

24 pages, 6147 KB  
Article
Sex-Specific Gene Expression Differences in Varicose Veins
by Mariya A. Smetanina, Valeria A. Korolenya, Ksenia S. Sevostyanova, Konstantin A. Gavrilov, Fedor A. Sipin, Andrey I. Shevela and Maxim L. Filipenko
Biomedicines 2025, 13(10), 2373; https://doi.org/10.3390/biomedicines13102373 - 27 Sep 2025
Viewed by 417
Abstract
Background/Objectives: There is clear evidence for the higher prevalence of varicose veins (VVs) among women. In this regard, the research on sex differences affecting this condition is very important for sex-specific health care. We aimed to assess how male or female sex [...] Read more.
Background/Objectives: There is clear evidence for the higher prevalence of varicose veins (VVs) among women. In this regard, the research on sex differences affecting this condition is very important for sex-specific health care. We aimed to assess how male or female sex may contribute to the changes to gene expression profiles in the vein wall during varicose transformation. Methods: Paired varicose vein (VV) and non-varicose vein (NV) segments were harvested from patients with VVs after venous surgery. Processed RNAs from those samples were subjected to gene expression analysis by reverse transcription quantitative polymerase chain reaction (RT-qPCR) followed by further data analysis. Multiple linear regression (MLR) analysis was performed to identify and characterize relationships among multiple factors (relative mRNA levels of a gene in NV or VV or their ratio, as dependent variables) and sex (independent variable, used individually or in combination with other patient’s characteristics). For sex-specific gene regulation analysis, all potential binding sites for sex hormone receptors were identified in each gene’s regulatory region sequence. Results: Using the independent method and a replicative patient sample set, we validated our previous data on 23 genes’ differential expression in VVs and obtained insights on their sex-specific regulation. Sex (as an individual independent variable or in combination with other parameters—patient characteristics such as Age, BMI, CEAP class, Height, VVD manifestation and duration) was a moderate predictor (0.40 < R < 0.59; p (R) < 0.05) for the STK38L expression in VVs (with its higher mRNA level in NVs and VVs of women compared to men); sex was a strong predictor (0.6 < R < 0.79; p (R) < 0.05) for the TIMP1 expression in VVs (with its lower mRNA level in VVs of women compared to men); sex was a moderate predictor (0.40 < R < 0.59; p (R) < 0.05) for the EBF1 expression in NVs (with its lower mRNA level in NVs of women compared to men). Conclusions: Confirmed differential expression of the studied genes in VVs indicates their plausible participation in vein wall remodeling. Sex-specific expression in veins for the subset of those genes suggests their hormonal regulation as well as other mechanisms involved in VV pathogenesis. This work enriches our understanding of sex features for the development of VVs and may provide the foundation for future investigations and beneficial treatment options. Full article
(This article belongs to the Special Issue Unveiling the Genetic Architecture of Complex and Common Diseases)
Show Figures

Figure 1

13 pages, 670 KB  
Review
Characteristic Gene Alterations During Fatty Acid Metabolism in the Goose Liver
by Anna Koseniuk
Genes 2025, 16(10), 1137; https://doi.org/10.3390/genes16101137 - 25 Sep 2025
Viewed by 416
Abstract
The development of hepatic steatosis in geese is a complex, multistage process involving genes related to lipid synthesis, transport, storage, and metabolism. Key genes activated during this process include ME1 (malic enzyme 1), SCD1 (stearoyl-CoA desaturase), ACSL1 (acyl-CoA synthetase long-chain family member 1), [...] Read more.
The development of hepatic steatosis in geese is a complex, multistage process involving genes related to lipid synthesis, transport, storage, and metabolism. Key genes activated during this process include ME1 (malic enzyme 1), SCD1 (stearoyl-CoA desaturase), ACSL1 (acyl-CoA synthetase long-chain family member 1), and ELOVL6 (elongation of very-long-chain fatty acids protein 6). The expression of these genes varies depending on the tissue, breed, and metabolic context. Geese possess a unique ability to develop hepatic steatosis (fatty liver) without accompanying inflammation or liver damage. This condition typically arises from overfeeding, either through carbohydrates or fats, leading to significant triglyceride accumulation in hepatocytes. Importantly, this state remains reversible and is considered non-pathological. The physiological and molecular changes observed in overfed geese, particularly regarding liver lipid accumulation and serum enzyme activity, closely resemble those found in human non-alcoholic fatty liver disease (NAFLD). This similarity makes geese an excellent biomedical model for studying NAFLD. Overfeeding initiates a cascade of enzymatic reactions that regulate lipid metabolism at the genetic level. These reactions decrease circulating free fatty acids and glucose while promoting triglyceride storage in the liver. The aim of this study is to synthesize current knowledge on the genetic regulation of fatty acid metabolism in geese, highlighting how these genes coordinate the processes of activation, desaturation, synthesis, and elongation during induced steatosis. Moreover, the summarized effects of different diet supplements will enhance goose feeding strategies for foie gras production. Full article
(This article belongs to the Special Issue Genetic Breeding of Poultry)
Show Figures

Figure 1

18 pages, 3328 KB  
Article
Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China
by Peng Guo, Shaoqing Chen, Xiaosheng Luo, Kelin Hu and Baoguo Li
Water 2025, 17(19), 2815; https://doi.org/10.3390/w17192815 - 25 Sep 2025
Viewed by 308
Abstract
Groundwater serves as a vital water resource for agricultural irrigation and domestic use in farmland areas. Its chemical composition is jointly influenced by agricultural fertilization, land use practices, and natural geological processes. However, research on the controlling factors and spatial distribution characteristics of [...] Read more.
Groundwater serves as a vital water resource for agricultural irrigation and domestic use in farmland areas. Its chemical composition is jointly influenced by agricultural fertilization, land use practices, and natural geological processes. However, research on the controlling factors and spatial distribution characteristics of groundwater hydrochemistry in agricultural regions remains insufficient. In this study, 56 groundwater samples were collected from the central-eastern plain of Henan Province, China. A combination of hierarchical cluster analysis, ionic ratio methods, principal component analysis, and kriging interpolation was employed to investigate the hydrochemical characteristics, spatial patterns, and primary controlling factors of regional groundwater. The results indicate that the first group of samples is characterized by high total dissolved solids (TDS), elevated Na+ and Cl concentrations, predominantly controlled by evaporation and concentration processes. The second group exhibits high pH and low Ca2+ concentrations, mainly influenced by silicate weathering, with reverse cation exchange acting as a secondary controlling process. The third group is characterized by elevated concentrations of Ca2+ and NO3, primarily controlled by carbonate weathering and agricultural activities. The western part of the study area serves as the main groundwater recharge zone and has the highest NO3 and Ca2+ concentrations. In the central area, most ion concentrations are relatively high, forming a distinct gradient with surrounding regions. Meanwhile, the eastern area displays elevated concentrations of HCO3, TDS, Na+, and Cl, highlighting pronounced spatial heterogeneity. Overall, the hydrochemical composition of groundwater in the study area is shaped by both natural processes and anthropogenic activities, exhibiting significant spatial heterogeneity. Notably, the spatial variation of NO3 concentrations is substantial, indicating that certain localities have already been affected by agricultural non-point source pollution. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

26 pages, 6893 KB  
Article
Angle-of-Attack, Induced Attitude Evolution in a Coupled Crater, and Plugging Penetration of Thin Concrete Targets
by Zheng Tao, Wenbin Li, Wei Zhu, Junjie Xu and Jihua Yan
Symmetry 2025, 17(9), 1572; https://doi.org/10.3390/sym17091572 - 19 Sep 2025
Viewed by 256
Abstract
To address the limitations of existing models that typically treat crater formation and shear plugging as independent processes and only consider angle of attack effects during the initial crater phase, this study proposes a dynamic shear _plugging model for projectile penetration into thin [...] Read more.
To address the limitations of existing models that typically treat crater formation and shear plugging as independent processes and only consider angle of attack effects during the initial crater phase, this study proposes a dynamic shear _plugging model for projectile penetration into thin concrete targets. The model is built upon the improved three-stage penetration theory and cavity expansion principles, and introduces a coupled cratering, plugging mechanism that captures the simultaneous interaction between these stages. A differential surface force approach is employed to describe the asymmetric stress distribution on the projectile nose under non-zero angle of attack conditions, while free surface effects are incorporated to refine local stress predictions. A series of validation experiments was performed with 30 mm rigid projectiles penetrating 27 MPa concrete slabs under different impact velocities and initial angles of attack. The results show that the proposed model achieves prediction errors of less than 20% for both residual velocity and exit attitude angle, significantly outperforming classical models such as those of Duan and Liu, which tend to underestimate post-impact deflection by treating cratering and plugging separately. Based on this validated framework, parametric studies were conducted to examine the effects of the initial inclination, impact velocity, and target thickness on the evolution of projectile attitude and angle of attack. The findings demonstrate that the dynamic shear plugging mechanism exerts a critical regulatory influence on projectile deflection during thin target penetration. This work, therefore, not only resolves the directional reversal issue inherent in earlier theories but also provides theoretical support for the engineering design of concrete protective structures subjected to angular impact conditions. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

16 pages, 3557 KB  
Article
Mechanisms of Variation in Abdominal Adipose Color Among Male Kazakh Horses Through Non-Coding RNA Sequencing
by Yuhe Zhou, Xinkui Yao, Jun Meng, Jianwen Wang, Yaqi Zeng, Linling Li and Wanlu Ren
Biology 2025, 14(9), 1285; https://doi.org/10.3390/biology14091285 - 17 Sep 2025
Viewed by 384
Abstract
The Kazakh horse is a highly valuable indigenous Chinese breed known for its use in both milk and meat production. However, the mechanisms underlying color variation in the abdominal adipose tissue of this breed remain poorly understood. In this study, the sequencing of [...] Read more.
The Kazakh horse is a highly valuable indigenous Chinese breed known for its use in both milk and meat production. However, the mechanisms underlying color variation in the abdominal adipose tissue of this breed remain poorly understood. In this study, the sequencing of non-coding RNAs (ncRNAs) was conducted on abdominal adipose tissue of different colors from Kazakh horses, with the aim of investigating the molecular mechanisms responsible for this variation. A total of 205 differentially expressed long non-coding RNAs (DELncRNAs) including ENSECAG00000003836, ENSECAG00000017858, and ENSECAG00000035167; 52 differentially expressed microRNAs (DEmiRNAs) including miR-200-y and eca-miR-9a; and 559 differentially expressed circular RNAs (DEcircRNAs) including ZNF226 and ITPKC, were identified between Group W and Group Y. GO annotation and KEGG enrichment analyses of the DEGs revealed that these genes were primarily involved in biological processes such as chemical homeostasis (biological process, BP), intracellular components (cellular component, CC), and iron-sulfur cluster binding (molecular function, MF) as well as in metabolic pathways related to lipid biosynthesis and metabolism including vitamin B6 metabolism, tryptophan metabolism, and glycerolipid metabolism. The sequencing accuracy was further validated using reverse transcription quantitative PCR (RT-qPCR). This study identified key DEGs and signaling pathways associated with the color variation in adipose tissue of Kazakh horses and sheds light on the regulatory genes and biological processes involved. These findings provide a theoretical basis and research foundation for future studies on color variations in the adipose tissue of equine species. Full article
Show Figures

Figure 1

22 pages, 4951 KB  
Article
Multi-Strain Probiotic Lysate Attenuates TGF-β1-Induced Intestinal Fibrosis and EMT Modulating Smad, Akt, and WNT/β-Catenin Pathways
by Alessia Ciafarone, Serena Artone, Valeria Ciummo, Francesca Rosaria Augello, Serena Altamura, Francesca Lombardi, Giovanni Latella, Paola Palumbo and Benedetta Cinque
Cells 2025, 14(18), 1432; https://doi.org/10.3390/cells14181432 - 12 Sep 2025
Viewed by 770
Abstract
Intestinal fibrosis is a common complication of inflammatory bowel diseases (IBD), and, to date, effective and safe antifibrotic drugs are still lacking. Emerging evidence suggests that probiotics may provide novel strategies to counteract fibrotic processes. In this study, we evaluated the anti-fibrotic potential [...] Read more.
Intestinal fibrosis is a common complication of inflammatory bowel diseases (IBD), and, to date, effective and safe antifibrotic drugs are still lacking. Emerging evidence suggests that probiotics may provide novel strategies to counteract fibrotic processes. In this study, we evaluated the anti-fibrotic potential of a multi-strain probiotic formulation, OxxySlabTM, using in vitro models of intestinal fibrosis and epithelial-to-mesenchymal transition (EMT). Human intestinal fibroblasts (CCD-18Co cell line) and epithelial cells (Caco-2 cell line, IECs) were stimulated with transforming growth factor-β1 (TGF-β1) to induce fibrotic and EMT phenotypes, respectively. Treatment with OxxySlab modulated cell proliferation and fibrosis-related markers, which we assessed through CCK-8 assay, Western blotting, and immunofluorescence. The probiotic lysate inhibited both canonical and non-canonical TGF-β1 signaling pathways, and it also reduced TGF-β1 gene expression in activated myofibroblasts, as shown by RT-qPCR. Furthermore, probiotic treatment reversed EMT features by restoring epithelial markers and downregulating mesenchymal markers. These findings highlight the beneficial effects of the multi-strain probiotic formulation as an adjunctive therapeutic agent targeting key pathways involved in intestinal fibrosis. Full article
(This article belongs to the Special Issue Fibrosis in Chronic Inflammatory Diseases)
Show Figures

Graphical abstract

Back to TopTop