Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = non-aqueous sol–gel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8375 KiB  
Article
Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica
by Bastian Rödig, Diana Funkner, Thomas Frank, Ulrich Schürmann, Julian Rieder, Lorenz Kienle, Werner Kunz and Matthias Kellermeier
Nanomaterials 2024, 14(24), 2054; https://doi.org/10.3390/nano14242054 - 23 Dec 2024
Viewed by 1524
Abstract
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and [...] Read more.
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol–gel process. To this end, solutions of soluble salts of metal cations (e.g., chlorides) and the respective anions (e.g., sodium carbonate or sulfide) are mixed in the presence of different amounts of sodium silicate at elevated pH levels. Upon mixing, metal carbonate/sulfide particles nucleate, and their subsequent growth causes a sensible decrease of pH in the vicinity. Dissolved silicate species respond to this local acidification by condensation reactions, which eventually lead to the formation of amorphous silica layers that encapsulate the metal carbonate/sulfide cores and, thus, effectively inhibit any further growth. The as-obtained carbonate nanodots can readily be converted into the corresponding metal oxides by secondary thermal treatment, during which their nanometric size is maintained. Although the described method clearly requires optimization towards actual applications, the results of this study highlight the potential of bottom-up self-assembly for the synthesis of functional nanoparticles at mild conditions. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

36 pages, 5088 KiB  
Article
Eco-Friendly Synthesis of ZnO Nanoparticles for Quinoline Dye Photodegradation and Antibacterial Applications Using Advanced Machine Learning Models
by Hayet Chelghoum, Noureddine Nasrallah, Hichem Tahraoui, Mahmoud F. Seleiman, Mustapha Mounir Bouhenna, Hayet Belmeskine, Meriem Zamouche, Souhila Djema, Jie Zhang, Amina Mendil, Fayçal Dergal, Mohammed Kebir and Abdeltif Amrane
Catalysts 2024, 14(11), 831; https://doi.org/10.3390/catal14110831 - 19 Nov 2024
Cited by 4 | Viewed by 2413
Abstract
Community drinking water sources are increasingly contaminated by various point and non-point sources, with emerging organic contaminants and microbial strains posing health risks and disrupting ecosystems. This study explores the use of zinc oxide nanoparticles (ZnO-NPs) as a non-specific agent to address groundwater [...] Read more.
Community drinking water sources are increasingly contaminated by various point and non-point sources, with emerging organic contaminants and microbial strains posing health risks and disrupting ecosystems. This study explores the use of zinc oxide nanoparticles (ZnO-NPs) as a non-specific agent to address groundwater contamination and combat microbial resistance effectively. The ZnO-NPs were synthesized via a green chemistry approach, employing a sol-gel method with lemon peel aqueous extract. The catalyst was characterized using techniques including XRD, ATR-FTIR, SEM-EDAX, UV-DRS, BET, and Raman spectroscopy. ZnO-NPs were then tested for photodegradation of quinoline yellow dye (QY) under sunlight irradiation, as well as for their antibacterial and antioxidant properties. The ZnO-NP photocatalyst showed significant photoactivity, attributed to effective separation of photogenerated charge carriers. The efficiency of sunlight dye photodegradation was influenced by catalyst dosage (0.1–0.6 mg L−1), pH (3–11), and initial QY concentration (10–50 mg L−1). The study developed a first-order kinetic model for ZnO-NPs using the Langmuir–Hinshelwood equation, yielding kinetic constants of equilibrium adsorption and photodegradation of Kc = 6.632 × 10−2 L mg−1 and kH = 7.104 × 10−2 mg L−1 min−1, respectively. The results showed that ZnO-NPs were effective against Gram-positive bacterial strains and showed moderate antioxidant activity, suggesting their potential in wastewater disinfection to achieve sustainable development goals. A potential antibacterial mechanism of ZnO-NPs involving interactions with microbial cells is proposed. Additionally, Gaussian Process Regression (GPR) combined with an improved Lévy flight distribution (FDB-LFD) algorithm was used to model QY photodegradation by ZnO-NPs. The ARD-Exponential kernel function provided high accuracy, validated through residue analysis. Finally, an innovative MATLAB-based application was developed to integrate the GPR_FDB-LFD model and FDB-LFD algorithm, streamlining optimization for precise photodegradation rate predictions. The results obtained in this study show that the GPR and FDB-LFD approaches offer efficient and cost-effective methods for predicting dye photodegradation, saving both time and resources. Full article
(This article belongs to the Special Issue Cutting-Edge Photocatalysis)
Show Figures

Figure 1

16 pages, 3498 KiB  
Article
Preparation and Characterization of Chitosan-Modified Bentonite Hydrogels and Application for Tetracycline Adsorption from Aqueous Solution
by Xuebai Guo, Zhenjun Wu, Zheng Lu, Zelong Wang, Shunyi Li, Freeman Madhau, Ting Guo and Rongqican Huo
Gels 2024, 10(8), 503; https://doi.org/10.3390/gels10080503 - 28 Jul 2024
Cited by 4 | Viewed by 2066
Abstract
The “sol–gel method” was used to prepare spherical chitosan-modified bentonite (SCB) hydrogels in this study. The SCB hydrogels were characterized and used as sorbents to remove tetracycline (TC) from aqueous solutions. The adsorbents were characterized by SEM, XRD, FTIR, TG, and BET techniques. [...] Read more.
The “sol–gel method” was used to prepare spherical chitosan-modified bentonite (SCB) hydrogels in this study. The SCB hydrogels were characterized and used as sorbents to remove tetracycline (TC) from aqueous solutions. The adsorbents were characterized by SEM, XRD, FTIR, TG, and BET techniques. Various characterization results showed that the SCB adsorbent had fewer surface pores and a specific surface area that was 96.6% lower than the powder, but the layered mesoporous structure of bentonite remained unchanged. The adsorption process fit to both the Freundlich model and the pseudo-second-order kinetic model showed that it was a non-monolayer chemical adsorption process affected by intra-particle diffusion. The maximum monolayer adsorption capacity determined by the Langmuir model was 39.49 mg/g. Thermodynamic parameters indicated that adsorption was a spontaneous, endothermic, and entropy-increasing process. In addition, solid–liquid separation was easy with the SCB adsorbent, providing important reference information for the synthesis of SCB as a novel and promising adsorbent for the removal of antibiotics from wastewater at the industrial level. Full article
Show Figures

Figure 1

17 pages, 3632 KiB  
Article
The Solvent Role for the Decomposition of Paracetamol in Distilled and Drinking Water by Pure and Ag-Modified TiO2 Sol–Gel Powders
by Albena Bachvarova-Nedelcheva, Reni Iordanova and Nina Kaneva
Materials 2024, 17(8), 1791; https://doi.org/10.3390/ma17081791 - 13 Apr 2024
Cited by 3 | Viewed by 1615
Abstract
In this study, pure TiO2 gels were synthesized by applying the sol–gel method, using Ti(IV) butoxide with the addition of two different solvents, namely ethylene glycol (EG) and isopropanol (isop), with only air moisture present. It was established using XRD that the [...] Read more.
In this study, pure TiO2 gels were synthesized by applying the sol–gel method, using Ti(IV) butoxide with the addition of two different solvents, namely ethylene glycol (EG) and isopropanol (isop), with only air moisture present. It was established using XRD that the gel prepared with the addition of EG was amorphous even at 400 °C, while the other gel was amorphous up to 300 °C. It was found that TiO2 (anatase) had a dominant crystalline phase during heating to 600 °C, while at 700 °C, TiO2 (rutile) appeared. The as-obtained powdered materials were annealed at 500 °C and subsequently underwent photocatalytic tests with paracetamol. Additionally, the TiO2 samples were modified with Ag+ co-catalysts (10−2 M), using photofixation by UV illumination. The photocatalytic activity of the Ag-modified powders was also tested in the photodegradation of a commonly used paracetamol in aqueous solution under UV light illumination. The obtained data exhibited that the annealed samples had better photocatalytic efficiency and decomposed paracetamol faster in comparison to the non-annealed sol–gel powders. The highest degradation efficiency was observed for the TBT/isop/Ag material, with degradation efficiencies average values of 65.59% and 75.61% paracetamol achieved after the third cycle of photocatalytic treatment. The co-catalytically modified powders had higher photocatalytic efficiency in comparison to the pure nanosized powders. Moreover, the sol–gel powders of TBT/EG, TBT/EG/Ag (10−2 M), TBT/isop, and TBT/isop/Ag (10−2 M) demonstrated the ability to retain their photocatalytic activity even after three cycles of use, suggesting that they could find practical use in the treatment of pharmaceutical wastewater. The observed photocatalytic efficiency and positive impact of silver make the prepared powders a desirable choice for pharmaceutical drug degradation, helping to promote environmentally friendly and effective wastewater treatment technology. Full article
Show Figures

Figure 1

22 pages, 5932 KiB  
Article
Self-Assembled Chitosan/Dialdehyde Carboxymethyl Cellulose Hydrogels: Preparation and Application in the Removal of Complex Fungicide Formulations from Aqueous Media
by Claudiu-Augustin Ghiorghita, Maria Marinela Lazar, Luminita Ghimici and Maria Valentina Dinu
Polymers 2023, 15(17), 3496; https://doi.org/10.3390/polym15173496 - 22 Aug 2023
Cited by 8 | Viewed by 2284
Abstract
Environmental contamination with pesticides occurs at a global scale as a result of prolonged usage and, therefore, their removal by low-cost and environmentally friendly systems is actively demanded. In this context, our study was directed to investigate the feasibility of using some self-assembled [...] Read more.
Environmental contamination with pesticides occurs at a global scale as a result of prolonged usage and, therefore, their removal by low-cost and environmentally friendly systems is actively demanded. In this context, our study was directed to investigate the feasibility of using some self-assembled hydrogels, comprising chitosan (CS) and carboxymethylcellulose (CMC) or dialdehyde (DA)-CMC, for the removal of four complex fungicide formulations, namely Melody Compact (MC), Dithane (Dt), Curzate Manox (CM), and Cabrio®Top (CT). Porous CS/CMC and CS/DA-CMC hydrogels were prepared as discs by combining the semi-dissolution acidification sol-gel transition method with a freeze-drying approach. The obtained CS/CMC and CS/DA-CMC hydrogels were characterized by gel fraction yield, FTIR, SEM, swelling kinetics, and uniaxial compression tests. The batch-sorption studies indicated that the fungicides’ removal efficiency (RE%) by the CS/CMC hydrogels was increased significantly with increasing sorbent doses reaching 94%, 93%, 66% and 48% for MC, Dt, CM and CT, respectively, at 0.2 g sorbent dose. The RE values were higher for the hydrogels prepared using DA-CMC than for those prepared using non-oxidized CMC when initial fungicide concentrations of 300 mg/L or 400 mg/L were used. Our results indicated that CS/DA-CMC hydrogels could be promising biosorbents for mitigating pesticide contamination of aqueous environments. Full article
(This article belongs to the Special Issue Functional Chitosan-Based Composites III)
Show Figures

Figure 1

19 pages, 3571 KiB  
Article
Revealing the Dependency of Dye Adsorption and Photocatalytic Activity of ZnO Nanoparticles on Their Morphology and Defect States
by Yuri Hendrix, Erwan Rauwel, Keshav Nagpal, Ryma Haddad, Elias Estephan, Cédric Boissière and Protima Rauwel
Nanomaterials 2023, 13(13), 1998; https://doi.org/10.3390/nano13131998 - 3 Jul 2023
Cited by 32 | Viewed by 2830
Abstract
ZnO is an effective photocatalyst applied to the degradation of organic dyes in aqueous media. In this study, the UV-light and sunlight-driven photocatalytic activities of ZnO nanoparticles are evaluated. A handheld Lovibond photometer was purposefully calibrated in order to monitor the dye removal [...] Read more.
ZnO is an effective photocatalyst applied to the degradation of organic dyes in aqueous media. In this study, the UV-light and sunlight-driven photocatalytic activities of ZnO nanoparticles are evaluated. A handheld Lovibond photometer was purposefully calibrated in order to monitor the dye removal in outdoor conditions. The effect of ZnO defect states, i.e., the presence of zinc and oxygen defects on the photocatalytic activity was probed for two types of dyes: fuchsin and methylene blue. Three morphologies of ZnO nanoparticles were deliberately selected, i.e., spherical, facetted and a mix of spherical and facetted, ascertained via transmission electron microscopy. Aqueous and non-aqueous sol-gel routes were applied to their synthesis in order to tailor their size, morphology and defect states. Raman spectroscopy demonstrated that the spherical nanoparticles contained a high amount of oxygen vacancies and zinc interstitials. Photoluminescence spectroscopy revealed that the facetted nanoparticles harbored zinc vacancies in addition to oxygen vacancies. A mechanism for dye degradation based on the possible surface defects in facetted nanoparticles is proposed in this work. The reusability of these nanoparticles for five cycles of dye degradation was also analyzed. More specifically, facetted ZnO nanoparticles tend to exhibit higher efficiencies and reusability than spherical nanoparticles. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Optoelectronics and Photocatalysis)
Show Figures

Graphical abstract

16 pages, 7081 KiB  
Article
Characterization of Agarose Gels in Solvent and Non-Solvent Media
by Denis C. D. Roux, Isabelle Jeacomine, Guillaume Maîtrejean, François Caton and Marguerite Rinaudo
Polymers 2023, 15(9), 2162; https://doi.org/10.3390/polym15092162 - 30 Apr 2023
Cited by 11 | Viewed by 4421
Abstract
Agarose is known to form a homogeneous thermoreversible gel in an aqueous medium over a critical polymer concentration. The solid-liquid phase transitions are thermoreversible but depend on the molecular structure of the agarose sample tested. The literature has mentioned that agarose gels could [...] Read more.
Agarose is known to form a homogeneous thermoreversible gel in an aqueous medium over a critical polymer concentration. The solid-liquid phase transitions are thermoreversible but depend on the molecular structure of the agarose sample tested. The literature has mentioned that agarose gels could remain stable in non-solvents such as acetone or ethanol. However, there has been no characterization of their behavior nor a comparison with the gels formed in a good solvent such as water. In the first step of this article, the structure was characterized using 1H and 13C NMR in both D2O and DMSO-d6 solvents. DMSO is a solvent that dissolves agarose regardless of the temperature. First, we have determined a low yield of methyl substitution on the D-galactose unit. Then, the evolution of the 1H NMR spectrum was monitored as a function of temperature during both increasing and decreasing temperature processes, ranging from 25 to 80 °C. A large thermal hysteresis was obtained and discussed, which aided in the interpretation of rheological behavior. The hysteresis of NMR signals is related to the mobility of the agarose chains, which follows the sol/gel transition depending on the chains’ association with H-bonds between water and the -OH groups of agarose for tightly bound water and agarose/agarose in chain packing. In the second step of the study, the water in the agarose gel was exchanged with ethanol, which is a non-solvent for agarose. The resulting gel was stable, and its properties were characterized using rheology and compared to its behavior in aqueous media. The bound water molecules that act as plasticizers were likely removed during the exchange process, resulting in a stronger and more brittle gel in ethanol, with higher thermal stability compared to the aqueous gel. It is the first time that such gel is characterized without phase transition when passing from a good solvent to a non-solvent. This extends the domains of application of agarose. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

18 pages, 2896 KiB  
Article
Sunlight-Driven Photocatalytic Degradation of Methylene Blue with Facile One-Step Synthesized Cu-Cu2O-Cu3N Nanoparticle Mixtures
by Patricio Paredes, Erwan Rauwel, David S. Wragg, Laetitia Rapenne, Elias Estephan, Olga Volobujeva and Protima Rauwel
Nanomaterials 2023, 13(8), 1311; https://doi.org/10.3390/nano13081311 - 8 Apr 2023
Cited by 15 | Viewed by 4112
Abstract
Sunlight-driven photocatalytic degradation is an effective and eco-friendly technology for the removal of organic pollutants from contaminated water. Herein, we describe the one-step synthesis of Cu-Cu2O-Cu3N nanoparticle mixtures using a novel non-aqueous, sol-gel route and their application in the [...] Read more.
Sunlight-driven photocatalytic degradation is an effective and eco-friendly technology for the removal of organic pollutants from contaminated water. Herein, we describe the one-step synthesis of Cu-Cu2O-Cu3N nanoparticle mixtures using a novel non-aqueous, sol-gel route and their application in the solar-driven photocatalytic degradation of methylene blue. The crystalline structure and morphology were investigated with XRD, SEM and TEM. The optical properties of the as-prepared photocatalysts were investigated with Raman, FTIR, UV-Vis and photoluminescence spectroscopies. The influence of the phase proportions of Cu, Cu2O and Cu3N in the nanoparticle mixtures on the photocatalytic activity was also investigated. Overall, the sample containing the highest quantity of Cu3N exhibits the highest photocatalytic degradation efficiency (95%). This enhancement is attributed to factors such as absorption range broadening, increased specific surface of the photocatalysts and the downward band bending in the p-type semiconductors, i.e., Cu3N and Cu2O. Two different catalytic dosages were studied, i.e., 5 mg and 10 mg. The higher catalytic dosage exhibited lower photocatalytic degradation efficiency owing to the increase in the turbidity of the solution. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Optoelectronics and Photocatalysis)
Show Figures

Graphical abstract

20 pages, 22243 KiB  
Article
Conducting ITO Nanoparticle-Based Aerogels—Nonaqueous One-Pot Synthesis vs. Particle Assembly Routes
by Samira Sang Bastian, Felix Rechberger, Sabrina Zellmer, Markus Niederberger and Georg Garnweitner
Gels 2023, 9(4), 272; https://doi.org/10.3390/gels9040272 - 25 Mar 2023
Cited by 1 | Viewed by 2076
Abstract
Indium tin oxide (ITO) aerogels offer a combination of high surface area, porosity and conductive properties and could therefore be a promising material for electrodes in the fields of batteries, solar cells and fuel cells, as well as for optoelectronic applications. In this [...] Read more.
Indium tin oxide (ITO) aerogels offer a combination of high surface area, porosity and conductive properties and could therefore be a promising material for electrodes in the fields of batteries, solar cells and fuel cells, as well as for optoelectronic applications. In this study, ITO aerogels were synthesized via two different approaches, followed by critical point drying (CPD) with liquid CO2. During the nonaqueous one-pot sol–gel synthesis in benzylamine (BnNH2), the ITO nanoparticles arranged to form a gel, which could be directly processed into an aerogel via solvent exchange, followed by CPD. Alternatively, for the analogous nonaqueous sol–gel synthesis in benzyl alcohol (BnOH), ITO nanoparticles were obtained and assembled into macroscopic aerogels with centimeter dimensions by controlled destabilization of a concentrated dispersion and CPD. As-synthesized ITO aerogels showed low electrical conductivities, but an improvement of two to three orders of magnitude was achieved by annealing, resulting in an electrical resistivity of 64.5–1.6 kΩ·cm. Annealing in a N2 atmosphere led to an even lower resistivity of 0.2–0.6 kΩ·cm. Concurrently, the BET surface area decreased from 106.2 to 55.6 m2/g with increasing annealing temperature. In essence, both synthesis strategies resulted in aerogels with attractive properties, showing great potential for many applications in energy storage and for optoelectronic devices. Full article
(This article belongs to the Special Issue Gels for Flexible Electronics and Energy Devices)
Show Figures

Figure 1

18 pages, 4699 KiB  
Article
Dual-Responsive and Reusable Optical Sensors Based on 2,3-Diaminoquinoxalines for Acidity Measurements in Low-pH Aqueous Solutions
by Elizaveta V. Ermakova, Anastasia V. Bol’shakova and Alla Bessmertnykh-Lemeune
Sensors 2023, 23(6), 2978; https://doi.org/10.3390/s23062978 - 9 Mar 2023
Cited by 3 | Viewed by 1983
Abstract
This work is focused on the age-old challenge of developing optical sensors for acidity measurements in low-pH aqueous solutions (pH < 5). We prepared halochromic (3-aminopropyl)amino-substituted quinoxalines QC1 and QC8 possessing different hydrophilic–lipophilic balance (HLB) and investigated them as molecular components of pH [...] Read more.
This work is focused on the age-old challenge of developing optical sensors for acidity measurements in low-pH aqueous solutions (pH < 5). We prepared halochromic (3-aminopropyl)amino-substituted quinoxalines QC1 and QC8 possessing different hydrophilic–lipophilic balance (HLB) and investigated them as molecular components of pH sensors. Embedding the hydrophilic quinoxaline QC1 into the agarose matrix by sol-gel process allows for fabrication of pH responsive polymers and paper test strips. The emissive films thus obtained can be used for a semi-quantitative dual-color visualization of pH in aqueous solution. Being exposed to acidic solutions with pH in the range of 1–5, they rapidly give different color changes when the analysis is performed in daylight or under irradiation at 365 nm. Compared with classical non-emissive pH indicators, these dual-responsive pH sensors allow for an increase in the accuracy of pH measurements, particularly in complex environmental samples. pH indicators for quantitative analysis can be prepared by the immobilization of amphiphilic quinoxaline QC8 using Langmuir–Blodgett (LB) and Langmuir–Schäfer (LS) techniques. Compound QC8 possessing two long alkyl chains (n-C8H17) forms stable Langmuir monolayers at the air–water interface, and these monolayers can be successfully transferred onto hydrophilic quartz and hydrophobic polyvinylchlorid (PVC) substrates using LB and LS techniques, respectively. The 30-layer films thus obtained are emissive, reveal excellent stability, and can be used as dual-responsive pH indicators for quantitative measurements in real-world samples with pH in the range of 1–3. The films can be regenerated by immersing them in basic aqueous solution (pH = 11) and can be reused at least five times. Full article
(This article belongs to the Special Issue Colorimetric Sensors: Methods and Applications)
Show Figures

Graphical abstract

16 pages, 4060 KiB  
Article
Photocatalytic Degradation and Mineralization of Estriol (E3) Hormone Using Boron-Doped TiO2 Catalyst
by Laura Yanneth Ramírez-Quintanilla, Diego Pino-Sandoval, Juan Camilo Murillo-Sierra, Jorge Luis Guzmán-Mar, Edgar J. Ruiz-Ruiz and Aracely Hernández-Ramírez
Catalysts 2023, 13(1), 43; https://doi.org/10.3390/catal13010043 - 25 Dec 2022
Cited by 4 | Viewed by 2777
Abstract
In this research work, boron-doped titanium oxide (B-TiO2) was prepared by the sol-gel method to investigate its behavior in the degradation of the recalcitrant hormone estriol (E3). The doped photocatalyst was synthesized at different boron/titania ratios of 2, 3, and 5 [...] Read more.
In this research work, boron-doped titanium oxide (B-TiO2) was prepared by the sol-gel method to investigate its behavior in the degradation of the recalcitrant hormone estriol (E3). The doped photocatalyst was synthesized at different boron/titania ratios of 2, 3, and 5 wt.% of boron with respect to the TiO2 content. The obtained materials were characterized by UV-Vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The textural properties, specific surface area, and porosity were obtained from N2 adsorption–desorption isotherms by BET and BJH methods, respectively. The photocatalytic performance of each synthesized catalyst was evaluated on the degradation of an aqueous solution (10 mg/L) of estriol (E3) under simulated solar radiation. The variation in the hormone concentration was determined by the HPLC technique, and the mineralization was evaluated by the quantification of total organic carbon (TOC). The obtained results indicated that the catalyst with 3 wt.% of boron incorporation exhibited the best performance on the degradation and mineralization of estriol, achieving its complete degradation at 300 kJ/m2 of accumulated energy and 71% of mineralization at 400 kJ/m2 (2 h) obtaining a non-toxic effluent. Full article
Show Figures

Figure 1

28 pages, 7862 KiB  
Article
High Surface Area ZnO-Nanorods Catalyze the Clean Thermal Methane Oxidation to CO2
by Tanika Kessaratikoon, Sawarin Saengsaen, Silvano Del Gobbo, Valerio D’Elia and Tawan Sooknoi
Catalysts 2022, 12(12), 1533; https://doi.org/10.3390/catal12121533 - 28 Nov 2022
Cited by 13 | Viewed by 2825
Abstract
ZnO nanostructures were synthesized by a combination of non-aqueous and aqueous sol-gel techniques to obtain morphologically different ZnO nanostructures, nanorods, and nanopyramids, featuring oxygen vacancies-rich exposed lattice faces and exhibiting different catalytic properties and activity. In particular, ZnO nanorods with high surface area [...] Read more.
ZnO nanostructures were synthesized by a combination of non-aqueous and aqueous sol-gel techniques to obtain morphologically different ZnO nanostructures, nanorods, and nanopyramids, featuring oxygen vacancies-rich exposed lattice faces and exhibiting different catalytic properties and activity. In particular, ZnO nanorods with high surface area (36 m2/g) were obtained through a rapid, scalable, and convenient procedure. The materials were tested for complete methane oxidation as an important benchmark reaction that is sensitive to surface area and to the availability of oxygen vacancies. Simple ZnO nanorods derived from nanosized quantum dots showed the best catalytic performance that compared well to that of several literature-reported perovskites, mixed metal oxides, and single-metal oxides in terms of T50 (576 °C) and T90 (659 °C) temperatures. Such a result was attributed to their high surface-to-volume ratio enhancing the availability of catalytically active sites such as oxygen vacancies whose abundance further increased following catalytic application at high temperatures. The latter effect allowed us to maintain a nearly stable catalytic performance with over 90% conversion for 12 h at 700 °C despite sintering. This research shows that ZnO-based nanomaterials with a high surface area are viable alternatives to oxides of commonly applied (but of potentially limited availability) transition metals (La, Mn, Co, Ni) for the complete combustion of methane when working at moderate temperatures (600–700 °C). Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

17 pages, 2776 KiB  
Article
Rapid Determination of Non-Steroidal Anti-Inflammatory Drugs in Urine Samples after In-Matrix Derivatization and Fabric Phase Sorptive Extraction-Gas Chromatography-Mass Spectrometry Analysis
by Bharti Jain, Rajeev Jain, Abuzar Kabir and Shweta Sharma
Molecules 2022, 27(21), 7188; https://doi.org/10.3390/molecules27217188 - 24 Oct 2022
Cited by 32 | Viewed by 3566
Abstract
Fabric phase sorptive extraction (FPSE) has become a popular sorptive-based microextraction technique for the rapid analysis of a wide variety of analytes in complex matrices. The present study describes a simple and green analytical protocol based on in-matrix methyl chloroformate (MCF) derivatization of [...] Read more.
Fabric phase sorptive extraction (FPSE) has become a popular sorptive-based microextraction technique for the rapid analysis of a wide variety of analytes in complex matrices. The present study describes a simple and green analytical protocol based on in-matrix methyl chloroformate (MCF) derivatization of non-steroidal anti-inflammatory (NSAID) drugs in urine samples followed by FPSE and gas chromatography-mass spectrometry (GC-MS) analysis. Use of MCF as derivatizing reagent saves substantial amounts of time, reagent and energy, and can be directly performed in aqueous samples without any sample pre-treatment. The derivatized analytes were extracted using sol–gel Carbowax 20M coated FPSE membrane and eluted in 0.5 mL of MeOH for GC-MS analysis. A chemometric design of experiment-based approach was utilized comprising a Placket–Burman design (PBD) and central composite design (CCD) for screening and optimization of significant variables of derivatization and FPSE protocol, respectively. Under optimized conditions, the proposed FPSE-GC-MS method exhibited good linearity in the range of 0.1–10 µg mL−1 with coefficients of determination (R2) in the range of 0.998–0.999. The intra-day and inter-day precisions for the proposed method were lower than <7% and <10%, respectively. The developed method has been successfully applied to the determination of NSAIDs in urine samples of patients under their medication. Finally, the green character of the proposed method was evaluated using ComplexGAPI tool. The proposed method will pave the way for simper analysis of polar drugs by FPSE-GC-MS. Full article
(This article belongs to the Special Issue Forensic Analysis in Chemistry)
Show Figures

Figure 1

13 pages, 3286 KiB  
Article
Significance of Hydroxyl Groups on the Optical Properties of ZnO Nanoparticles Combined with CNT and PEDOT:PSS
by Keshav Nagpal, Erwan Rauwel, Elias Estephan, Maria Rosario Soares and Protima Rauwel
Nanomaterials 2022, 12(19), 3546; https://doi.org/10.3390/nano12193546 - 10 Oct 2022
Cited by 15 | Viewed by 3559
Abstract
We report on the synthesis of ZnO nanoparticles and their hybrids consisting of carbon nanotubes (CNT) and polystyrene sulfonate (PEDOT:PSS). A non-aqueous sol–gel route along with hydrated and anhydrous acetate precursors were selected for their syntheses. Transmission electron microscopy (TEM) studies revealed their [...] Read more.
We report on the synthesis of ZnO nanoparticles and their hybrids consisting of carbon nanotubes (CNT) and polystyrene sulfonate (PEDOT:PSS). A non-aqueous sol–gel route along with hydrated and anhydrous acetate precursors were selected for their syntheses. Transmission electron microscopy (TEM) studies revealed their spherical shape with an average size of 5 nm. TEM also confirmed the successful synthesis of ZnO-CNT and ZnO-PEDOT:PSS hybrid nanocomposites. In fact, the choice of precursors has a direct influence on the chemical and optical properties of the ZnO-based nanomaterials. The ZnO nanoparticles prepared with anhydrous acetate precursor contained a high amount of oxygen vacancies, which tend to degrade the polymer macromolecule, as confirmed from X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, a relative increase in hydroxyl functional groups in the ZnO-CNT samples was observed. These functional groups were instrumental in the successful decoration of CNT and in producing the defect-related photoluminescence emission in ZnO-CNT. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Optoelectronics and Photocatalysis)
Show Figures

Graphical abstract

16 pages, 3901 KiB  
Article
Effects of Viscosity and Salt Interference for Planar Iridium Oxide and Silver Chloride pH Sensing Electrodes on Flexible Substrate
by Khengdauliu Chawang, Sen Bing and Jung-Chih Chiao
Chemosensors 2022, 10(9), 371; https://doi.org/10.3390/chemosensors10090371 - 17 Sep 2022
Cited by 4 | Viewed by 2664
Abstract
The equivalency of pH measurements between aqueous and non-aqueous or viscous solutions is of great interest in biomedical applications as well for processing food and pharmaceuticals. Commercial glass-type electrodes have practical limitations, such as bulky sizes and membrane clogging in viscous environments. In [...] Read more.
The equivalency of pH measurements between aqueous and non-aqueous or viscous solutions is of great interest in biomedical applications as well for processing food and pharmaceuticals. Commercial glass-type electrodes have practical limitations, such as bulky sizes and membrane clogging in viscous environments. In this study, planar and flexible electrochemical pH sensors with iridium oxide as the sensing film have been developed by sol-gel and oxidation processes. A reference electrode was prepared by screen printing Ag/AgCl ink on the same polyimide substrate. The small form factors of the planar flexible electrodes provide an advantage in small volume or conformal surface measurements. Cyclic voltammetry was performed in different pH solutions. The electrode originally produced a response of −70.1 mV/pH at room temperature in aqueous solutions. The sensitivities were reduced when salt was added into the buffer solutions, although output potentials were increased. Sensing performances in a wide range of viscous conditions with various concentrations of added salt have been analyzed to study their effects on pH-sensing responses. Suitable calibration techniques using aqueous buffer solutions were studied for output potentials and their respective pH readings in viscous salt-added solutions. The mechanisms affecting output potentials are explained and results matched well for two different thickening agents. Specificity to pH changes measured by the planar IrOx-Ag/AgCl pH electrodes showed how the potential-pH calibration should consider the interference effect of salt. The viscosity effects on pH reading errors became more pronounced as solution viscosity increased. Comparisons of pH readings to those from a commercial glass-bodied pH meter indicated that the planar electrodes provided predictable pH deviations that were confined to a limited range. The planar IrOx-Ag/AgCl electrodes on flexible polyimide substrates have mostly been demonstrated with aqueous solutions in various diagnostic and environmental monitoring applications. This work provides more insights into pH sensing performance when the fluid is viscous and contains salt, which often is the case in biomedical and food-processing applications. Full article
(This article belongs to the Collection pH Sensors, Biosensors and Systems)
Show Figures

Figure 1

Back to TopTop