Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = nitrones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1321 KiB  
Article
Solvent-Free 1,3-Dipolar Cycloadditions of Nitrones for a More Sustainable Synthesis of Glycomimetics
by Debora Pratesi, Alessio Morano, Andrea Goti, Francesca Cardona and Camilla Matassini
Reactions 2025, 6(2), 36; https://doi.org/10.3390/reactions6020036 - 5 Jun 2025
Viewed by 898
Abstract
1,3-Dipolar cycloadditions on nitrone dipoles are key reactions to access five-membered heterocycles, which are useful intermediates in the synthesis of biologically relevant glycomimetics. The good atomic balance and high stereoselectivity characteristic of such reactions make them good candidates for the development of green [...] Read more.
1,3-Dipolar cycloadditions on nitrone dipoles are key reactions to access five-membered heterocycles, which are useful intermediates in the synthesis of biologically relevant glycomimetics. The good atomic balance and high stereoselectivity characteristic of such reactions make them good candidates for the development of green protocols. In the present work, these features were maximized by avoiding the use of organic solvents and considering starting materials derived from biomass. Reactions involving (acyclic and cyclic) carbohydrate-derived nitrones as dipoles and levoglucosenone as dipolarophile were considered. Performing selected 1,3-dipolar cycloadditions in neat conditions showed reduced reaction times, maintaining similar selectivity and yields with respect to the classical protocols. The use of microwave irradiation and orbital shaking were also exploited to increase the sustainability of the synthetic protocols. The collected results highlight the potential of solvent-free 1,3-dipolar cycloadditions in the design of efficient synthetic routes according to green chemistry principles, such as prevention, atom economy, safer solvents and auxiliaries, and use of renewable feedstocks. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Graphical abstract

8 pages, 1978 KiB  
Brief Report
Development of a Prototype of Industrial Installation for the Deposition of Self-Restoring Nitride Coatings on Reed Switch Contacts
by Igor A. Zeltser, Alexander Tolstoguzov and Dejun Fu
Coatings 2025, 15(5), 533; https://doi.org/10.3390/coatings15050533 - 29 Apr 2025
Viewed by 548
Abstract
A prototype of an industrial installation for the deposition of self-restoring nitride coatings on the surface of reed switch contacts using electro-spark erosion alloying was developed, manufactured, and tested under the laboratory conditions at LLC Nitron. It was shown that the coatings are [...] Read more.
A prototype of an industrial installation for the deposition of self-restoring nitride coatings on the surface of reed switch contacts using electro-spark erosion alloying was developed, manufactured, and tested under the laboratory conditions at LLC Nitron. It was shown that the coatings are formed inside a bulb of reed switches at the final stage of their production following the impact from the spark breakdown between the contacts, stimulated via alternating magnetic and electric fields. The nitrogen concentration in the surface layers of the nitride coatings, estimated by means of X-ray microanalysis, was ca. 19 at. % and their thickness, measured by time-of-flight secondary ion mass spectrometry via sputter depth profiling, ranged between 250 and 350 nm. The novelty of the presented work consists of the development of an innovative piece of equipment, the operating principle and design of which are protected by intellectual property rights (four Russian patents). The technological approach implemented in this installation differs from the industrial galvanic technology due to its high level of environmental safety and economic efficiency, since it does not require the use of gold, ruthenium, or other high-priced metals. Full article
(This article belongs to the Special Issue Smart Coatings: Adapting to the Future)
Show Figures

Figure 1

33 pages, 28780 KiB  
Article
Failure Strain and Related Triaxiality of Aluminum 6061-T6, A36 Carbon Steel, 304 Stainless Steel, and Nitronic 60 Metals, Part I: Experimental Investigation
by Ron Harwell, Robert Spears and Arya Ebrahimpour
Metals 2025, 15(4), 458; https://doi.org/10.3390/met15040458 - 18 Apr 2025
Viewed by 769
Abstract
The objective of this study is to develop failure-limit material models for Aluminum 6061-T6, A36 Carbon Steel, 304 Stainless Steel, and Nitronic 60 metals, based on parameters of plastic equivalent strain (failure strain) and stress triaxiality. The research is conducted in two parts. [...] Read more.
The objective of this study is to develop failure-limit material models for Aluminum 6061-T6, A36 Carbon Steel, 304 Stainless Steel, and Nitronic 60 metals, based on parameters of plastic equivalent strain (failure strain) and stress triaxiality. The research is conducted in two parts. This paper presents Part One of the study. In Part One, custom-designed test specimens undergo controlled uniaxial tension and compression testing at ambient temperature. These tests are performed at quasi-static speeds using Universal Testing Machines (UTMs) in accordance with ASTM E8 and ASTM E9 standards. Experimental data, specifically engineering stress–strain and force–displacement curves, are recorded from the onset of loading until specimen fracture, or in the case of compression tests, until the capacity of the testing machine is reached. In Part Two, the emphasis shifts to the calibration of Finite Element Analysis (FEA) models of the custom-designed test specimens. Plastic equivalent strain and the corresponding stress triaxiality values at failure are extracted from each test specimen for the given metal. These values are then systematically plotted onto a single graph to construct the failure-limit curve, which delineates the boundary conditions for material failure. This approach will facilitate the development of a comprehensive material property definition that correlates plastic equivalent strain with stress triaxiality at failure for Aluminum 6061-T6, A36 Carbon Steel, 304 Stainless Steel, and Nitronic 60 metals. Full article
Show Figures

Graphical abstract

12 pages, 920 KiB  
Article
Nitrone or Oxaziridine? Further Insights into the Selectivity of Imine Oxidation Catalyzed by Methyltrioxorhenium
by Camilla Matassini, Marco Bonanni, Francesca Cardona and Andrea Goti
Catalysts 2025, 15(4), 344; https://doi.org/10.3390/catal15040344 - 1 Apr 2025
Cited by 1 | Viewed by 636
Abstract
The oxidation of imines may give several products, such as oxaziridines, nitrones, amides, and other rearranged compounds. Therefore, its selectivity is a challenge that various methods have to face. The controversial selectivity of the oxidation of imines using urea hydrogen peroxide (UHP) catalyzed [...] Read more.
The oxidation of imines may give several products, such as oxaziridines, nitrones, amides, and other rearranged compounds. Therefore, its selectivity is a challenge that various methods have to face. The controversial selectivity of the oxidation of imines using urea hydrogen peroxide (UHP) catalyzed by methyltrioxorhenium (MTO) is addressed by varying the solvent, temperature, reaction time, amount of oxidant, and catalyst used. The reactivity and selectivity of the oxidation of imines proved to be particularly sensitive to the type of solvent. The use of methanol furnished the corresponding nitrones as the exclusive products, except for very hindered N-tert-alkyl substituted substrates. Using the ionic liquid [bmim]BF4 as a solvent resulted in a complete switch in reactivity and selectivity. N-methyl substituted imines gave the corresponding amides, while imines with bulkier substituents at nitrogen did not show any reactivity. An exception was the C-phenyl,N-tert-butyl imine—the only substrate that was oxidized to the corresponding oxaziridine, albeit with low conversion. The results reported herein reaffirm the oxidation of imines with UHP/MTO in MeOH as the method of choice for their interconversion to nitrones. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

31 pages, 12346 KiB  
Review
Phosphorylated Nitrones—Synthesis and Applications
by Iwona Rozpara, José Marco-Contelles, Dorota G. Piotrowska and Iwona E. Głowacka
Molecules 2025, 30(6), 1333; https://doi.org/10.3390/molecules30061333 - 16 Mar 2025
Cited by 1 | Viewed by 1488
Abstract
Phosphorylated nitrones belong to an important class of compounds with several applications, such as their therapeutic potency to reduce oxidative stress or as spin-trapping agents. This review covers available synthetic methods for the preparation of both non-cyclic and cyclic phosphorylated nitrones, including the [...] Read more.
Phosphorylated nitrones belong to an important class of compounds with several applications, such as their therapeutic potency to reduce oxidative stress or as spin-trapping agents. This review covers available synthetic methods for the preparation of both non-cyclic and cyclic phosphorylated nitrones, including the possibilities of the modification of structures with selected functional groups, as well as examples of their application. As reported, the incorporation of diethoxyphosphoryl function into the structure of PBN and DMPO resulted in obtaining their phosphorylated analogs, i.e., N-benzylidene-1-diethoxyphosphoryl-1-methylethylamine N-oxide (PPN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO), respectively, both forming spin adducts of improved stability in comparison to the reference non-phosphorus nitrones. Moreover, antioxidant and neuroprotective activity observed in the group of phosphorylated nitrones makes them promising candidates for therapeutics. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 3rd Edition)
Show Figures

Figure 1

19 pages, 1701 KiB  
Article
Synthesis of ω-Methylsulfinyl- and ω-Methylsulfonylalkyl Glucosinolates
by Manolis Mavratzotis, Stéphanie Cassel, Gina Rosalinda De Nicola, Sabine Montaut and Patrick Rollin
Molecules 2025, 30(3), 704; https://doi.org/10.3390/molecules30030704 - 5 Feb 2025
Viewed by 802
Abstract
General pathways were devised to synthesize ω-methylsulfinyl- and ω-methylsulfonylalkyl glucosinolates, which represent an important class of structurally homogeneous plant specialized metabolites. The first approach was based on the selective S-oxidation of ω-methylsulfanyl analogs previously obtained in our laboratory, producing the corresponding sulfoxide [...] Read more.
General pathways were devised to synthesize ω-methylsulfinyl- and ω-methylsulfonylalkyl glucosinolates, which represent an important class of structurally homogeneous plant specialized metabolites. The first approach was based on the selective S-oxidation of ω-methylsulfanyl analogs previously obtained in our laboratory, producing the corresponding sulfoxide or sulfone counterparts in moderate yields. In an alternative approach, previously prepared ω-nitroalkyl methylsulfide precursors were selectively oxidized either to sulfoxides or to sulfones. The key-thiofunctionalized hydroximoyl chloride intermediates were prepared in situ from sulfoxides or sulfones using a nitronate chlorination strategy. A coupling reaction with 1-thio-β-d-glucopyranose was directly applied, followed by O-sulfation of the intermediate thiohydroximates. The final deprotection of the sugar moiety produced the target compounds, including renowned glucoraphanin and homologs, intended for further bioactivity investigations. Full article
(This article belongs to the Collection Advances in Glycosciences)
Show Figures

Figure 1

13 pages, 3781 KiB  
Communication
Initial Examinations of the Diastereoselectivity and Chemoselectivity of Intramolecular Silyl Nitronate [3+2] Cycloadditions with Alkenyl/Alkynyl Nitroethers
by Katelyn Stevens, Shik Ki Li, Emily Kaufman, Annika Schull, Katie Hassebroek, Joseph Stevens, Matthew Grandbois, Arlen Viste and Jetty Duffy-Matzner
Molecules 2024, 29(24), 5816; https://doi.org/10.3390/molecules29245816 - 10 Dec 2024
Viewed by 1137
Abstract
This study examined the chemoselectivity and diastereoselectivity of silyl nitronate alkenyn-nitroethers in Intramolecular Silyl Nitronate Cycloadditions (ISNCs) to produce isoxazole derivatives with interesting medicinal properties. These reactions resulted in the formation of either dihydrofuro[3,4-c]isoxazolines/isoxazolidines and/or alkynyl moieties attached to 2,5-dihydrofuryl carbonyls. This study [...] Read more.
This study examined the chemoselectivity and diastereoselectivity of silyl nitronate alkenyn-nitroethers in Intramolecular Silyl Nitronate Cycloadditions (ISNCs) to produce isoxazole derivatives with interesting medicinal properties. These reactions resulted in the formation of either dihydrofuro[3,4-c]isoxazolines/isoxazolidines and/or alkynyl moieties attached to 2,5-dihydrofuryl carbonyls. This study also discerned the diastereoselectivities of the resulting cyclic adducts and compared them to previous findings. The reactions were also investigated with Spartan molecular modeling computations to aid in the understanding of any displayed chemo- and/or stereoselectivity. These [3+2]-cycloaddition reactions demonstrated excellent to complete chemospecificity. The cycloadditions also demonstrated remarkable diastereospecificity in that each diastereomer of the nitroethers resulted in the formation of only one of four possible diastereomeric outcomes. The stereochemistry of the major diastereomers did not agree with previously published findings. Full article
Show Figures

Graphical abstract

15 pages, 7839 KiB  
Article
A Novel Cold-Adapted Nitronate Monooxygenase from Psychrobacter sp. ANT206: Identification, Characterization and Degradation of 2-Nitropropane at Low Temperature
by Yatong Wang, Shumiao Hou, Qi Zhang, Yanhua Hou and Quanfu Wang
Microorganisms 2024, 12(10), 2100; https://doi.org/10.3390/microorganisms12102100 - 21 Oct 2024
Viewed by 1522
Abstract
Aliphatic nitro compounds cause environmental pollution by being discharged into water with industrial waste. Biodegradation needs to be further explored as a green and pollution-free method of environmental remediation. In this study, we successfully cloned a novel nitronate monooxygenase gene (psnmo) [...] Read more.
Aliphatic nitro compounds cause environmental pollution by being discharged into water with industrial waste. Biodegradation needs to be further explored as a green and pollution-free method of environmental remediation. In this study, we successfully cloned a novel nitronate monooxygenase gene (psnmo) from the genomic DNA library of Psychrobacter sp. ANT206 and investigated its ability to degrade 2-nitropropane (2-NP). Homology modeling demonstrated that PsNMO had a typical I nitronate monooxygenase catalytic site and cold-adapted structural features, such as few hydrogen bonds. The specific activity of purified recombinant PsNMO (rPsNMO) was 97.34 U/mg, rPsNMO exhibited thermal instability and reached maximum catalytic activity at 30 °C. Moreover, rPsNMO was most active in 1.5 M NaCl and remained at 104% of its full activity in 4.0 M NaCl, demonstrating its significant salt tolerance. Based on this finding, a novel bacterial cold-adapted enzyme was obtained in this work. Furthermore, rPsNMO protected E. coli BL21 (DE3)/pET28a(+) from the toxic effects of 2-NP at 30 °C because the 2-NP degradation rate reached 96.1% at 3 h and the final product was acetone. These results provide a reliable theoretical basis for the low-temperature degradation of 2-NP by NMO. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

17 pages, 8670 KiB  
Article
A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study
by Mikołaj Sadowski, Ewa Dresler, Aneta Wróblewska and Radomir Jasiński
Molecules 2024, 29(20), 4876; https://doi.org/10.3390/molecules29204876 - 14 Oct 2024
Cited by 8 | Viewed by 1812
Abstract
The molecular mechanism of the reaction between 2-methoxyfuran and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate was investigated using wb97xd/6-311+G(d,p)(PCM) quantum chemical calculations. It was found that the most probable reaction mechanism is fundamentally different from what was previously postulated. In particular, six possible zwitterionic intermediates [...] Read more.
The molecular mechanism of the reaction between 2-methoxyfuran and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate was investigated using wb97xd/6-311+G(d,p)(PCM) quantum chemical calculations. It was found that the most probable reaction mechanism is fundamentally different from what was previously postulated. In particular, six possible zwitterionic intermediates were detected on the reaction pathway. Their formation is determined by the nature of local nucleophile/electrophile interactions. Additionally, the channel involving the formation of the exo-nitro Diels–Alder cycloadduct was completely ruled out. Finally, the electronic nature of the five- and six-membered nitronates as potential TACs was evaluated. Full article
Show Figures

Figure 1

75 pages, 60182 KiB  
Review
Synthesis of 2-Azetidinones via Cycloaddition Approaches: An Update
by Franca Maria Cordero, Donatella Giomi and Fabrizio Machetti
Reactions 2024, 5(3), 492-566; https://doi.org/10.3390/reactions5030026 - 16 Aug 2024
Cited by 3 | Viewed by 5585
Abstract
The present review is a comprehensive update of the synthesis of monocyclic β-lactams via cycloaddition reactions. According to the IUPAC definition of cycloaddition, both elementary and stepwise processes (formal cycloadditions) have been considered. The years 2019–2022 are covered by the cited literature. The [...] Read more.
The present review is a comprehensive update of the synthesis of monocyclic β-lactams via cycloaddition reactions. According to the IUPAC definition of cycloaddition, both elementary and stepwise processes (formal cycloadditions) have been considered. The years 2019–2022 are covered by the cited literature. The focus of the review is on synthetic aspects with emphasis on the structural scope, reaction conditions, mechanistic aspects, and selectivity results. Selected significant data related to biological activities and synthetic applications are also highlighted. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Figure 1

22 pages, 4616 KiB  
Article
In Vitro Modulation of Autophagy by New Antioxidant Nitrones as a Potential Therapeutic Approach for the Treatment of Ischemic Stroke
by Sara Izquierdo-Bermejo, Beatriz Chamorro, María Dolores Martín-de-Saavedra, Miguel Lobete, Francisco López-Muñoz, José Marco-Contelles and María Jesús Oset-Gasque
Antioxidants 2024, 13(8), 946; https://doi.org/10.3390/antiox13080946 - 3 Aug 2024
Cited by 1 | Viewed by 1671
Abstract
Stroke is a leading cause of death worldwide, yet current therapeutic strategies remain limited. Among the neuropathological events underlying this disease are multiple cell death signaling cascades, including autophagy. Recent interest has focused on developing agents that target molecules involved in autophagy to [...] Read more.
Stroke is a leading cause of death worldwide, yet current therapeutic strategies remain limited. Among the neuropathological events underlying this disease are multiple cell death signaling cascades, including autophagy. Recent interest has focused on developing agents that target molecules involved in autophagy to modulate this process under pathological conditions. This study aimed to analyze the role of autophagy in cell death induced by an in vitro ischemia–reperfusion (IR) model and to determine whether nitrones, known for their neuroprotective and antioxidant effects, could modulate this process. We focused on key proteins involved in different phases of autophagy: HIF-1α, BNIP3, and BECN1 for induction and nucleation, LC3 for elongation, and p62 for degradation. Our findings confirmed that the IR model promotes autophagy, initially via HIF-1α activation. Additionally, the neuroprotective effect of three of the selected synthetic nitrones (quinolylnitrones QN6 and QN23, and homo-bis-nitrone HBN6) partially derives from their antiautophagic properties, demonstrated by a downregulation of the expression of molecular markers involved in various phases of autophagy. In contrast, the neuroprotective power of cholesteronitrone ChN2 seems to derive from its promoting effects on the initial phases of autophagy, which could potentially help inhibit other forms of cell death. These results underscore the importance of autophagy modulation in neuroprotection, highlighting the potential of inhibiting prodeath autophagy and promoting prosurvival autophagy as promising therapeutic approaches in treating ischemic stroke clinically. Full article
Show Figures

Figure 1

15 pages, 7585 KiB  
Article
Tetramethylpyrazine Nitrone (TBN) Reduces Amyloid β Deposition in Alzheimer’s Disease Models by Modulating APP Expression, BACE1 Activity, and Autophagy Pathways
by Xinhua Zhou, Zeyu Zhu, Shaoming Kuang, Kaipeng Huang, Yueping Li, Yuqiang Wang, Haiyun Chen, Maggie Pui Man Hoi, Benhong Xu, Xifei Yang and Zaijun Zhang
Pharmaceuticals 2024, 17(8), 1005; https://doi.org/10.3390/ph17081005 - 30 Jul 2024
Cited by 1 | Viewed by 2187
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with age. A wealth of evidence indicates that the amyloid β (Aβ) aggregates result from dyshomeostasis between Aβ production and clearance, which plays a pivotal role in the pathogenesis of AD. Consequently, therapies targeting Aβ [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with age. A wealth of evidence indicates that the amyloid β (Aβ) aggregates result from dyshomeostasis between Aβ production and clearance, which plays a pivotal role in the pathogenesis of AD. Consequently, therapies targeting Aβ reduction represent a promising strategy for AD intervention. Tetramethylpyrazine nitrone (TBN) is a novel tetramethylpyrazine derivative with potential for the treatment of AD. Previously, we demonstrated that TBN markedly enhanced cognitive functions and decreased the levels of Aβ, APP, BACE 1, and hyperphosphorylated tau in 3×Tg-AD mice. However, the mechanism by which TBN inhibits Aβ deposition is still unclear. In this study, we employed APP/PS1 mice treated with TBN (60 mg/kg, ig, bid) for six months, and N2a/APP695swe cells treated with TBN (300 μM) to explore the mechanism of TBN in Aβ reduction. Our results indicate that TBN significantly alleviated cognitive impairment and reduced Aβ deposition in APP/PS1 mice. Further investigation of the underlying mechanisms revealed that TBN decreased the expression of APP and BACE1, activated the AMPK/mTOR/ULK1 autophagy pathway, inhibited the PI3K/AKT/mTOR/ULK1 autophagy pathway, and decreased the phosphorylation levels of JNK and ERK in APP/PS1 mice. Moreover, TBN was found to significantly reduce the mRNA levels of APP and BACE1, as well as those of SP1, CTCF, TGF-β, and NF-κB, transcription factors involved in regulating gene expression. Additionally, TBN was observed to decrease the level of miR-346 and increase the levels of miR-147 and miR-106a in the N2a/APP695swe cells. These findings indicate that TBN may reduce Aβ levels likely by reducing APP expression by regulating APP gene transcriptional factors and miRNAs, reducing BACE1 expression, and promoting autophagy activities. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

22 pages, 3674 KiB  
Article
New 3-(Dibenzyloxyphosphoryl)isoxazolidine Conjugates of N1-Benzylated Quinazoline-2,4-diones as Potential Cytotoxic Agents against Cancer Cell Lines
by Magdalena Łysakowska, Iwona E. Głowacka, Ewelina Honkisz-Orzechowska, Jadwiga Handzlik and Dorota G. Piotrowska
Molecules 2024, 29(13), 3050; https://doi.org/10.3390/molecules29133050 - 27 Jun 2024
Cited by 1 | Viewed by 2338
Abstract
In this study, a new series of cis and trans 5-substituted-3-(dibenzyloxyphosphoryl)isoxazolidines 16ag were synthesized by the 1,3-dipolar cycloaddition reaction of N-benzyl-C-(dibenzyloxyphosphoryl)nitrone and selected N1-allyl-N3-benzylquinazoline-2,4-diones. All the obtained trans-isoxazolidines 16ag and [...] Read more.
In this study, a new series of cis and trans 5-substituted-3-(dibenzyloxyphosphoryl)isoxazolidines 16ag were synthesized by the 1,3-dipolar cycloaddition reaction of N-benzyl-C-(dibenzyloxyphosphoryl)nitrone and selected N1-allyl-N3-benzylquinazoline-2,4-diones. All the obtained trans-isoxazolidines 16ag and the samples enriched in respective cis-isomers were evaluated for anticancer activity against three tumor cell lines. All the tested compounds exhibited high activity against the prostate cancer cell line (PC-3). Isoxazolidines trans-16a and trans-16b and diastereoisomeric mixtures of isoxazolidines enriched in cis-isomer using HPLC, namely cis-16a/trans-16a (97:3) and cis-16b/trans-16b (90:10), showed the highest antiproliferative properties towards the PC-3 cell line (IC50 = 9.84 ± 3.69–12.67 ± 3.45 μM). For the most active compounds, induction apoptosis tests and an evaluation of toxicity were conducted. Isoxazolidine trans-16b showed the highest induction of apoptosis. Moreover, the most active compounds turned out safe in vitro as none affected the cell viability in the HEK293, HepG2, and HSF cellular models at all the tested concentrations. The results indicated isoxazolidine trans-16b as a promising new lead structure in the search for effective anticancer drugs. Full article
Show Figures

Graphical abstract

10 pages, 1042 KiB  
Article
Synthesis and Antioxidant Activity of N-Benzyl-2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine Oxides
by Dimitra Hadjipavlou-Litina, Iwona E. Głowacka, José Marco-Contelles and Dorota G. Piotrowska
Int. J. Mol. Sci. 2024, 25(11), 5908; https://doi.org/10.3390/ijms25115908 - 29 May 2024
Cited by 2 | Viewed by 2038
Abstract
The synthesis, antioxidant capacity, and anti-inflammatory activity of four novel N-benzyl-2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine oxides 10ad are reported herein. The nitrones 10ad were tested for their antioxidant properties and their ability to inhibit soybean lipoxygenase (LOX). Four diverse antioxidant [...] Read more.
The synthesis, antioxidant capacity, and anti-inflammatory activity of four novel N-benzyl-2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine oxides 10ad are reported herein. The nitrones 10ad were tested for their antioxidant properties and their ability to inhibit soybean lipoxygenase (LOX). Four diverse antioxidant tests were used for in vitro antioxidant assays, namely, interaction with the stable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl radical) as well as with the water-soluble azo compound AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride), competition with DMSO for hydroxyl radicals, and the scavenging of cationic radical ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation). Nitrones 10b, 10c, and 10d, having the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, exhibited high interaction with DPPH (64.5–81% after 20 min; 79–96% after 60 min), whereas nitrone 10a with unfunctionalized phenyl group showed the lowest inhibitory potency (57% after 20 min, 78% after 60 min). Nitrones 10a and 10d, decorated with phenyl and 4-fluoro-3-methylphenyl motif, respectively, appeared the most potent inhibitors of lipid peroxidation. The results obtained from radical cation ABTS•+ were not significant, since all tested compounds 10ad showed negligible activity (8–46%), much lower than Trolox (91%). Nitrone 10c, bearing the 2,4-difluorophenyl motif, was found to be the most potent LOX inhibitor (IC50 = 10 μM). Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

30 pages, 10080 KiB  
Review
α-Phenyl-N-tert-Butylnitrone and Analogous α-Aryl-N-alkylnitrones as Neuroprotective Antioxidant Agents for Stroke
by José Marco-Contelles
Antioxidants 2024, 13(4), 440; https://doi.org/10.3390/antiox13040440 - 7 Apr 2024
Cited by 6 | Viewed by 1899
Abstract
The recent advances in research on the use of the antioxidant and neuroprotective agent α-phenyl-N-tert-butylnitrone (PBN) for the therapy of stroke have been reviewed. The protective effect of PBN in the transient occlusion of the middle cerebral artery (MCAO) has been [...] Read more.
The recent advances in research on the use of the antioxidant and neuroprotective agent α-phenyl-N-tert-butylnitrone (PBN) for the therapy of stroke have been reviewed. The protective effect of PBN in the transient occlusion of the middle cerebral artery (MCAO) has been demonstrated, although there have been significant differences in the neuronal salvaging effect between PBN-treated and untreated animals, each set of data having quite large inter-experimental variation. In the transient forebrain ischemia model of gerbil, PBN reduces the mortality after ischemia and the neuronal damage in the hippocampal cornu ammonis 1 (CA1) area of the hippocumpus caused by ischemia. However, PBN fails to prevent postischemic CA1 damage in the rat. As for focal cerebral ischemia, PBN significantly reduces cerebral infarction and decreases neurological deficit after ischemia using a rat model of persistent MCAO in rats. Similarly, the antioxidant and neuroprotective capacity of a number of PBN-derived nitrones prepared in the author’s laboratory have also been summarized here, showing their high potential therapeutic power to treat stroke. Full article
Show Figures

Figure 1

Back to TopTop