Synthesis of ω-Methylsulfinyl- and ω-Methylsulfonylalkyl Glucosinolates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Pathway 1
2.2. Synthetic Pathway 2
3. Experimental Section
3.1. General Information
3.2. Organic Synthesis
3.2.1. Pathway 1
Selective Oxidation of ω-Sulfides 5 to ω-Sulfoxides 6
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-3-(methylsulfinyl)propanethiohydroximate (6a).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-4-(methylsulfinyl)butanethiohydroximate (6b).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-5-(methylsulfinyl)pentanethiohydroximate (6c) [28].
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-6-(methylsulfinyl)hexanethiohydroximate (6d).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-8-(methylsulfinyl)octanethiohydroximate (6e).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-10-(methylsulfinyl)decanethiohydroximate (6f).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-12-(methylsulfinyl)dodecanethiohydroximate (6g).
Selective Oxidation of ω-Sulfides 5 to ω-Sulfones 7
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-3-(methylsulfonyl)propanethiohydroximate (7a).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-4-(methylsulfonyl)butanethiohydroximate (7b).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-5-(methylsulfonyl)pentanethiohydroximate (7c).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-6-(methylsulfonyl)hexanethiohydroximate (7d).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-8-(methylsulfonyl)octanethiohydroximate (7e).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-10-(methylsulfonyl)decanethiohydroximate (7f).
- S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl) (Z)-12-(methylsulfonyl)dodecanethiohydroximate (7g).
3.2.2. Pathway 1 and 2 Common Procedures
General Procedure for NO-Sulfation of the Glucosyl Thiohydroximates 6 and 7
- Per-O-acetylated 2-methylsulfinylethyl glucosinolate (8a).
- Per-O-acetylated 3-methylsulfinylpropyl glucosinolate (8b).
- Per-O-acetylated 4-methylsulfinylbutyl glucosinolate (8c).
- Per-O-acetylated 5-methylsulfinylpentyl glucosinolate (8d).
- Per-O-acetylated 7-methylsulfinylheptyl glucosinolate (8e).
- Per-O-acetylated 9-methylsulfinylnonyl glucosinolate (8f).
- Per-O-acetylated 11-methylsulfinylundecyl glucosinolate (8g).
- Per-O-acetylated 2-methylsulfonylethyl glucosinolate (9a).
- Per-O-acetylated 3-methylsulfonylpropyl glucosinolate (9b).
- Per-O-acetylated 4-methylsulfonylbutyl glucosinolate (9c).
- Per-O-acetylated 5-methylsulfonylpentyl glucosinolate (9d).
- Per-O-acetylated 7-methylsulfonylheptyl glucosinolate (9e).
- Per-O-acetylated 9-methylsulfonylnonyl glucosinolate (9f).
- Per-O-acetylated 11-methylsulfonylundecyl glucosinolate (9g).
General Procedure for Deprotection of the Glucopyranosyl Moiety
- 2-(Methylsulfinyl)ethyl glucosinolate (3a) [443340-10-1].
- 3-(Methylsulfinyl)propyl glucosinolate (3b). Glucoiberin [554-88-1].
- 4-(Methylsulfinyl)butyl glucosinolate (3c). Glucoraphanin [21414-41-5].
- 5-(Methylsulfinyl)pentyl glucosinolate (3d). Glucoalyssin [499-37-6].
- 7-(Methylsulfinyl)heptyl glucosinolate (3e). Glucoibarin [112572-51-7].
- 9-(Methylsulfinyl)nonyl glucosinolate (3f). Glucoarabin [67920-64-3].
- 11-(Methylsulfinyl)undecyl glucosinolate (3g) [186037-18-3].
- 2-(Methylsulfonyl)ethyl glucosinolate (4a).
- 3-(Methylsulfonyl)propyl glucosinolate (4b). Glucocheirolin [15592-36-6].
- 4-(Methylsulfonyl)butyl glucosinolate (4c). Glucoerysolin [22149-26-4].
- 5-(Methylsulfonyl)pentyl glucosinolate (4d) [666235-38-7].
- 7-(Methylsulfonyl)heptyl glucosinolate (4e) [862388-51-0].
- 9-(Methylsulfonyl)nonyl glucosinolate (4f) [192580-85-1].
- 11-(Methylsulfonyl)undecyl glucosinolate (4g).
3.2.3. Pathway 2
Selective Oxidation of ω-Methylsulfanylnitroalkanes 10 to ω-Sulfoxides 11
- (1-Methylsulfinyl)-3-nitropropane (11a).
- (1-Methylsulfinyl)-4-nitrobutane (11b).
- (1-Methylsulfinyl)-5-nitropentane (11c).
- (1-Methylsulfinyl)-6-nitrohexane (11d).
- (1-Methylsulfinyl)-8-nitrooctane (11e).
- (1-Methylsulfinyl)-10-nitrodecane (11f).
- (1-Methylsulfinyl)-12-nitrododecane (11g).
Selective Oxidation of ω-Methylsulfanylnitroalkanes 10 to ω-Sulfones 12
- (1-Methylsulfonyl)-3-nitropropane (12a).
- (1-Methylsulfonyl)-4-nitrobutane (12b).
- (1-Methylsulfonyl)-5-nitropentane (12c).
- (1-Methylsulfonyl)-6-nitrohexane (12d).
- (1-Methylsulfonyl)-8-nitrooctane (12e).
- (1-Methylsulfonyl)-10-nitrodecane (12f).
- (1-Methylsulfonyl)-12-nitrododecane (12g).
General Procedure for Nitronate Chlorination and Coupling with the Thioglucose Unit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, V.P.T.; Stewart, J.; Lopez, M.; Ioannou, I.; Allais, F. Glucosinolates: Natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules 2020, 25, 4537. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Massih, R.M.; Debs, E.; Othman, L.; Attieh, J.; Cabrerizo, F.M. Glucosinolates, a natural chemical arsenal: More to tell than the myrosinase story. Front. Microbiol. 2023, 14, 1130208. [Google Scholar] [CrossRef] [PubMed]
- Hanschen, F.S.; Lamy, E.; Schreiner, M.; Rohn, S. Reactivity and stability of glucosinolates and their breakdown products. Angew. Chem. Int. Ed. 2014, 53, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef] [PubMed]
- Agerbirk, N.; Olsen, C.E. Glucosinolate structures in evolution. Phytochemistry 2012, 77, 16–45. [Google Scholar] [CrossRef] [PubMed]
- Paolini, M.; Perocco, P.; Canistro, D.; Valgimigli, L.; Pedulli, G.F.; Iori, R.; Della Croce, C.; Cantelli-Forti, G.; Legator, M.S.; Abdel-Rahman, S.Z. Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli. Carcinogenesis 2004, 25, 61–67. [Google Scholar] [CrossRef]
- Nagata, N.; Xu, L.; Kohno, S.; Ushida, Y.; Aoki, Y.; Umeda, R.; Fuke, N.; Zhuge, F.; Ni, Y.; Nagashimada, M.; et al. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes 2017, 66, 1222–1236. [Google Scholar] [CrossRef]
- Natella, F.; Maldini, M.; Leoni, G.; Scaccini, C. Glucosinolates redox activities: Can they act as antioxidants? Food Chem. 2014, 149, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Zhang, Y.; Talalay, P. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA 1997, 94, 10367–10372. [Google Scholar] [CrossRef]
- Houghton, C.A. Sulforaphane: Its “Coming of Age” as a clinically relevant nutraceutical in the prevention and treatment of chronic disease. Oxid. Med. Cell. Longev. 2019, 14, 2716870. [Google Scholar] [CrossRef] [PubMed]
- Janczewski, Ł. Sulforaphane and its bifunctional analogs: Synthesis and biological activity. Molecules 2022, 27, 1750. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, E.; Micheli, L.; Trallori, E.; Citi, V.; Martelli, A.; Testai, L.; De Nicola, G.R.; Iori, R.; Calderone, V.; Ghelardini, C.; et al. Effect of glucoraphanin and sulforaphane against chemotherapy-induced neuropathic pain: Kv7 potassium channels dodulation by H2S release in vivo. Phytother. Res. 2018, 32, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, G.R.; Rollin, P.; Mazzon, E.; Iori, R. Novel gram-scale production of enantiopure R-sulforaphane from Tuscan black kale seeds. Molecules 2014, 19, 6975–6986. [Google Scholar] [CrossRef] [PubMed]
- Tucci, P.; Bove, M.; Sikora, V.; Dimonte, S.; Morgese, M.G.; Schiavone, S.; Di Cesare Mannelli, L.; Ghelardini, C.; Trabace, L. Glucoraphanin triggers rapid antidepressant responses in a rat model of beta amyloid-induced depressive-like behavior. Pharmaceuticals 2022, 15, 1054. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Mitidieri, E.; Turnaturi, C.; Vanacore, D.; Ciampi, C.; Lucarini, E.; Cirino, G.; Ghelardini, C.; Sorrentino, R.; Di Cesare Mannelli, L.; et al. Beneficial effect of H2S-releasing molecules in an in vitro model of sarcopenia: Relevance of glucoraphanin. Int. J. Mol. Sci. 2022, 23, 5955. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liang, H.; Yuan, Q. Separation and purification of sinigrin and gluconapin from defatted indian mustard seed meals by macroporous anion exchange resin and medium pressure liquid chromatography. Sep. Sci. Technol. 2014, 49, 1838–1847. [Google Scholar] [CrossRef]
- Hebert, M.; Serra, E.; Vorobiev, E.; Mhemdi, H. Isolation and purification of mustard glucosinolates by macroporous anion-exchange resin: Process optimization and kinetics’ modelling. Processes 2022, 10, 191. [Google Scholar] [CrossRef]
- Bennett, R.N.; Mellon, F.A.; Kroon, P.A. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J. Agric. Food Chem. 2004, 52, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Barillari, J.; Canistro, D.; Paolini, M.; Ferroni, F.; Pedulli, G.F.; Iori, R.; Valgimigli, L. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J. Agric. Food Chem. 2005, 53, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Baasanjav-Gerber, C.; Monien, B.H.; Mewis, I.; Schreiner, M.; Barillari, J.; Iori, R.; Glatt, H. Identification of glucosinolate congeners able to form DNA adducts and to induce mutations upon activation by myrosinase. Mol. Nutr. Food Res. 2011, 55, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, S.F.; Berhow, M.A. Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind. Crops Prod. 2005, 21, 193–202. [Google Scholar] [CrossRef]
- Davidson, N.E.; Rutherford, T.J.; Botting, N.P. Synthesis, analysis and rearrangement of novel unnatural glucosinolates. Carbohydr. Res. 2001, 330, 295–307. [Google Scholar] [CrossRef]
- Mavratzotis, M.; Dourtoglou, V.; Lorin, C.; Rollin, P. Glucosinolate chemistry. First synthesis of glucosinolates bearing an external thio-function. Tetrahedron Lett. 1996, 37, 5699–5700. [Google Scholar] [CrossRef]
- Morrison, J.J.; Botting, N.P. The synthesis of isotopically-labelled glucoraphanin for metabolic studies. Tetrahedron Lett. 2007, 48, 1891–1894. [Google Scholar] [CrossRef]
- Botting, N.P.; Robertson, A.A.B.; Morrison, J.J. The synthesis of isotopically-labelled glucosinolates for analysis and metabolic studies. J. Label. Compd. Radiopharm. 2007, 50, 260–263. [Google Scholar] [CrossRef]
- Zhang, Q.; Lebl, T.; Kulczynska, A.; Botting, N.P. The synthesis of novel hexa-13C-labelled glucosinolates from [13C6]-D-glucose. Tetrahedron 2009, 65, 4871–4876. [Google Scholar] [CrossRef]
- Yamazoe, S.; Hasegawa, K.; Shigemori, H. First total synthesis of 4-methylthio-3-butenyl glucosinolate. Biosci. Biotechnol. Biochem. 2009, 73, 785–787. [Google Scholar] [CrossRef]
- Vo, Q.V.; Trenerry, C.; Rochfort, S.; Hughes, A.B. A total synthesis of (R,S)S-glucoraphanin. Tetrahedron 2013, 69, 8731–8737. [Google Scholar] [CrossRef]
- Mavratzotis, M.; Cassel, S.; Montaut, S.; Rollin, P. ω-Methylsulfanylalkyl glucosinolates: A general synthetic pathway. Molecules 2018, 23, 786. [Google Scholar] [CrossRef]
- Iori, R.; Bernardi, R.; Gueyrard, D.; Rollin, P.; Palmieri, S. Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin: A chemoenzymatic route to sulforaphane. Bioorg. Med. Chem. Lett. 1999, 9, 1047–1048. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.R.; Kjaer, A. Synthesis of 2-hydroxy-2-butenyl glucosinolates. Acta Chem. Scand. 1971, 25, 3891–3893. [Google Scholar] [CrossRef]
- Prepared on a 10-g scale according to Černý, M.; Staněk, J.; Pacák, J. 2,3,4,6-Tetra-O-acetyl-β-d-galaktopyranosylmercaptan und dessen Anwendung zur Synthese von β-d-Thiogalaktosiden. Monatshefte Chem. 1963, 94, 290–294. [Google Scholar]
- Jaki, B.; Sticher, O.; Veit, M.; Fröhlich, R.; Pauli, G.F. Evaluation of glucoiberin reference material from Iberis amara by spectroscopic fingerprinting. J. Nat. Prod. 2002, 65, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Fréchard, A.; Fabre, N.; Hannedouche, S.; Fourasté, I. Glucosinolates from Cardaria draba. Fitoterapia 2002, 73, 177–178. [Google Scholar] [CrossRef]
- Song, L.; Iori, R.; Thornalley, P.J. Purification of major glucosinolates from Brassicaceae seeds and preparation of isothiocyanate and amine metabolites. J. Sci. Food Agric. 2006, 86, 1271–1280. [Google Scholar] [CrossRef]
- Berhow, M.A.; Polat, U.; Glinski, J.A.; Glensk, M.; Vaughn, S.F.; Isbell, T.; Ayala-Diaz, I.; Marek, L.; Gardner, C. Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Ind. Crops Prod. 2013, 43, 119–125. [Google Scholar] [CrossRef]
- Montaut, S.; Montagut-Romans, A.; Chiari, L.; Benson, H.J. Glucosinolates in Draba borealis DC. (Brassicaceae) in a taxonomic perspective. Biochem. Syst. Ecol. 2018, 78, 31–34. [Google Scholar] [CrossRef]
- Fabre, N.; Bon, M.; Moulis, C.; Fourasté, I.; Stanislas, E. Three glucosinolates from seeds of Brassica juncea. Phytochemistry 1997, 45, 525–527. [Google Scholar] [CrossRef]
Chain Size (n) | cpd | Yield (%) [29] | cpd | Yield (%) | Overall Yield (%) | cpd | Yield (%) | Overall Yield (%) |
---|---|---|---|---|---|---|---|---|
2 | 5a | 32 | 6a | 42 | 13 | 7a | 49 | 16 |
3 | 5b | 34 | 6b | 49 | 17 | 7b | 54 | 18 |
4 | 5c | 40 | 6c | 53 | 21 | 7c | 56 | 22 |
5 | 5d | 48 | 6d | 51 | 24 | 7d | 60 | 29 |
7 | 5e | 47 | 6e | 60 | 28 | 7e | 68 | 32 |
9 | 5f | 51 | 6f | 68 | 35 | 7f | 65 | 33 |
11 | 5g | 56 | 6g | 65 | 36 | 7g | 70 | 39 |
Chain Size (n) | cpd | Yield (%) | cpd | Yield (%) | Overall Yield (%) | cpd | Yield (%) | cpd | Yield (%) | Overall Yield (%) |
---|---|---|---|---|---|---|---|---|---|---|
2 | 11a | 60 | 6a | 30 | 18 | 12a | 72 | 7a | 35 | 25 |
3 | 11b | 63 | 6b | 31 | 20 | 12b | 88 | 7b | 36 | 32 |
4 | 11c | 82 | 6c | 38 | 31 | 12c | 94 | 7c | 40 | 38 |
5 | 11d | 89 | 6d | 46 | 41 | 12d | 92 | 7d | 45 | 41 |
7 | 11e | 88 | 6e | 45 | 40 | 12e | 96 | 7e | 48 | 46 |
9 | 11f | 94 | 6f | 54 | 51 | 12f | 98 | 7f | 52 | 51 |
11 | 11g | 92 | 6g | 51 | 47 | 12g | 95 | 7g | 55 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavratzotis, M.; Cassel, S.; De Nicola, G.R.; Montaut, S.; Rollin, P. Synthesis of ω-Methylsulfinyl- and ω-Methylsulfonylalkyl Glucosinolates. Molecules 2025, 30, 704. https://doi.org/10.3390/molecules30030704
Mavratzotis M, Cassel S, De Nicola GR, Montaut S, Rollin P. Synthesis of ω-Methylsulfinyl- and ω-Methylsulfonylalkyl Glucosinolates. Molecules. 2025; 30(3):704. https://doi.org/10.3390/molecules30030704
Chicago/Turabian StyleMavratzotis, Manolis, Stéphanie Cassel, Gina Rosalinda De Nicola, Sabine Montaut, and Patrick Rollin. 2025. "Synthesis of ω-Methylsulfinyl- and ω-Methylsulfonylalkyl Glucosinolates" Molecules 30, no. 3: 704. https://doi.org/10.3390/molecules30030704
APA StyleMavratzotis, M., Cassel, S., De Nicola, G. R., Montaut, S., & Rollin, P. (2025). Synthesis of ω-Methylsulfinyl- and ω-Methylsulfonylalkyl Glucosinolates. Molecules, 30(3), 704. https://doi.org/10.3390/molecules30030704