Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,086)

Search Parameters:
Keywords = nitrogen fractionation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4914 KiB  
Article
Drought–Rewatering Cycles: Impact on Non-Structural Carbohydrates and C:N:P Stoichiometry in Pinus yunnanensis Seedlings
by Weisong Zhu, Yuanxi Liu, Zhiqi Li, Jialan Chen and Junwen Wu
Plants 2025, 14(15), 2448; https://doi.org/10.3390/plants14152448 - 7 Aug 2025
Abstract
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly [...] Read more.
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly in its seedlings. This study investigates the response mechanisms of non-structural carbohydrates (NSCs, defined as the sum of soluble sugars and starch) and the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) to repeated drought conditions in Pinus yunnanensis seedlings. We established three treatment groups in a potting water control experiment involving 2-year-old Pinus yunnanensis seedlings: normal water supply (CK), a single drought (D1), and three drought–rewatering cycles (D3). The findings indicated that the frequency of drought occurrences, organ responses, and their interactions significantly influenced the non-structural carbohydrate (NSC) content and its fractions, as well as the C/N/P content and its stoichiometric ratios. Under D3 treatment, stem NSC content increased by 24.97% and 29.08% compared to CK and D1 groups (p < 0.05), respectively, while root NSC content increased by 41.35% and 49.46% versus CK and D1 (p < 0.05). The pronounced accumulation of soluble sugars and starch in stems and roots under D3 suggests a potential stress memory effect. Additionally, NSC content in the stems increased significantly by 77.88%, while the roots enhanced their resource acquisition by dynamically regulating the C/P ratio, which increased by 23.26% (p < 0.05). Needle leaf C content decreased (18.77%) but P uptake increased (8%) to maintain basal metabolism (p < 0.05). Seedling growth was N-limited (needle N/P < 14) and the degree of N limitation was exacerbated by repeated droughts. Phenotypic plasticity indices and principal component analysis revealed that needle nitrogen and phosphorus, soluble sugars in needles, stem C/N ratio (0.61), root C/N ratio (0.53), and stem C/P ratio were crucial for drought adaptation. This study elucidates the physiological mechanisms underlying the resilience of Pinus yunnanensis seedlings to recurrent droughts, as evidenced by their organ-specific strategies for allocating carbon, nitrogen, and phosphorus, alongside the dynamic regulation of nitrogen storage compounds (NSCs). These findings provide a robust theoretical foundation for implementing drought-resistant afforestation and ecological restoration initiatives targeting Pinus yunnanensis in southwestern China. Full article
Show Figures

Figure 1

17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 163
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 3753 KiB  
Article
Elevational Patterns and Seasonal Dynamics of Soil Organic Carbon Fractions and Content in Rice Paddies of Yuanyang Terrace, Southwest China
by Haitao Li, Linxi Chang, Yonglin Wu, Yang Li, Xinran Liang, Fangdong Zhan and Yongmei He
Agronomy 2025, 15(8), 1868; https://doi.org/10.3390/agronomy15081868 - 1 Aug 2025
Viewed by 200
Abstract
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons [...] Read more.
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons (spring, summer, autumn and winter) at Yuanyang Terrace in southwest China were investigated, and their relationship with environmental factors was analyzed. The contents of SOC, unprotected SOC (uPOM), physically protected SOC (pPOM) and biochemically protected SOC (bcPOM) in rice paddies at a low elevation (250 m), were significantly lower by 49–51% than those at relatively high elevations (1600 m and 1800 m). Among the SOC fractions, the highest proportion (33–50%) was uPOM, followed by pPOM and bcPOM (accounting for 17–40%), and the lowest proportion was chemically protected SOC (cPOM). In addition, there were interseasonal differences among the contents of SOC fractions, with a significantly higher content of SOC, uPOM and pPOM at an elevation of 1600 m in summer than in the other three seasons, whereas the cPOM content at an elevation of 250 m in spring was significantly higher than in the other three higher elevations. According to the redundancy analysis (RDA), total nitrogen was the key environmental factor, with an explanatory degree of 56% affecting the contents of SOC and its fractions. Thus, the SOC content increased with increasing elevation, and physical and biochemical protection were potential stabilization mechanisms responsible for their stability in the rice paddy of Yuanyang Terrace. These results provides empirical evidence for the elevational distribution patterns and seasonal dynamics of SOC fractions in rice paddies across Yuanyang Terrace. These findings highlight the importance of physical and biochemical protection mechanisms in stabilizing SOC in rice paddies, which could enhance long-term C sequestration and contribute to climate change mitigation in terraced agroecosystems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 1640 KiB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Viewed by 388
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios
by Hanbing Cao, Xinru Chen, Yunqi Luo, Zhanxiang Wu, Chengjiao Duan, Mengru Cao, Jorge L. Mazza Rodrigues, Junyu Xie and Tingliang Li
Agronomy 2025, 15(8), 1808; https://doi.org/10.3390/agronomy15081808 - 26 Jul 2025
Viewed by 302
Abstract
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in [...] Read more.
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in the region. In a long-term experimental site located in Hongtong County, Shanxi Province, soil samples were collected from the 0–100 cm depth over a nine-year period. These samples were analyzed to evaluate the impact of five treatments: no fertilization and no mulching (CK), conventional farming practices (FP), nitrogen reduction and controlled fertilization (MF), nitrogen reduction and controlled fertilization with ridge-film furrow-sowing (RF), and nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH). The average annual yield of wheat grain, SOC stock, water-soluble organic carbon (WSOC), particulate organic carbon (POC), light fraction organic carbon (LFOC), mineral-associated organic carbon (MOC), and heavy fraction organic carbon (HFOC) stocks were measured. The results revealed that the FH treatment not only significantly increased wheat grain yield but also significantly elevated the SOC stock by 23.71% at the 0–100 cm depth compared to CK. Furthermore, this treatment significantly enhanced the POC, LFOC, and MOC stocks by 106.43–292.98%, 36.93–158.73%, and 17.83–81.55%, respectively, within 0–80 cm. However, it also significantly decreased the WSOC stock by 34.32–42.81% within the same soil layer and the HFOC stock by 72.05–101.51% between the 20 and 100 cm depth. Notably, the SOC stock at the 0–100 cm depth was primarily influenced by the HFOC. Utilizing the DNDC (denitrification–decomposition) model, we found that future temperature increases are detrimental to SOC sequestration in dryland areas, whereas reduced rainfall is beneficial. The simulation results indicated that in a warmer climate, a 2 °C temperature increase would result in a SOC stock decrease of 0.77 to 1.01 t·ha−1 compared to a 1 °C increase scenario. Conversely, under conditions of reduced precipitation, a 20% rainfall reduction would lead to a SOC stock increase of 1.53% to 3.42% compared to a 10% decrease scenario. In conclusion, the nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH) treatment emerged as the most effective practice for increasing SOC sequestration in dryland areas by enhancing the HFOC stock. This treatment also fortified the SOC pool’s capacity to withstand future climate change, thereby serving as the optimal approach for concurrently enhancing production and fertility in this region. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

21 pages, 20797 KiB  
Article
The Urate-Lowering Effects and Renal Protective Activity of Iridoid Glycosides from Paederia foetida in Rats with Hyperuricemia-Induced Kidney Injury: A Pharmacological and Molecular Docking Study
by Haifeng Zhou, Xinyi Yue, Longhai Shen, Lifeng Wu, Xiaobo Li and Tong Wu
Molecules 2025, 30(15), 3098; https://doi.org/10.3390/molecules30153098 - 24 Jul 2025
Viewed by 274
Abstract
(1) Background: The urate-lowering effects of three iridoid glycosides, which are paederosidic acid, paederosidic acid methyl ester, and paederoside, isolated from Paederia foetida and the protection they provide against hyperuricemia-induced kidney injury were investigated in a rat model. (2) Methods: A hyperuricemia (HUA) [...] Read more.
(1) Background: The urate-lowering effects of three iridoid glycosides, which are paederosidic acid, paederosidic acid methyl ester, and paederoside, isolated from Paederia foetida and the protection they provide against hyperuricemia-induced kidney injury were investigated in a rat model. (2) Methods: A hyperuricemia (HUA) rat model was established in Sprague-Dawley (SD) rats through intraperitoneal potassium oxonate (PO) and intragastrical adenine for 2 weeks. Subsequently, rats in the pharmaceutical intervention groups received corresponding drug treatments at a concentration of 40 mg/kg/day, maintained consistently for 7 days. (3) Results: The results showed that three compounds reduced serum urate (SU), creatinine (CRE), and blood urea nitrogen (BUN) levels and that the urinary excretion levels of uric acid, urine urea nitrogen, and creatinine increased. Furthermore, the administration of three iridoid glycosides enhanced renal filtration capacity, as demonstrated by the elevated 24 h creatinine clearance rate (CCR) and 24 h uric acid clearance rate (CUA); improved the fraction excretion of uric acid (FEUA); and attenuated renal damage. Finally, three iridoid glycosides promoted uric acid excretion in HUA rats by downregulating URAT1 and GLUT9 and upregulating ABCG2, OAT1, and OAT3. Moreover, the molecular docking results further corroborated the finding that the three compounds can bind to multiple sites of the uric acid transporter via hydrogen, P-π, and hydrophobic bonds. (4) Conclusions: The three iridoid glycosides were found to lower SU levels by increasing uric acid excretion. They are promising natural products for the prevention of HUA and HUA-induced kidney injury. Full article
Show Figures

Figure 1

22 pages, 4025 KiB  
Article
Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil
by Ximei Zhao, Fengyun Xiang, Xicheng Wang, Mengchen Yang and Jifu Li
Agronomy 2025, 15(7), 1628; https://doi.org/10.3390/agronomy15071628 - 3 Jul 2025
Viewed by 368
Abstract
This study investigated the effects of three land use patterns—rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation (Rapeseed), rice–shrimp (Procambarus clarkii G.) rotation (Shrimp), and the conversion of paddy fields to forestland (Forestland)—on aggregate structure, nutrient content, and microbial diversity in [...] Read more.
This study investigated the effects of three land use patterns—rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation (Rapeseed), rice–shrimp (Procambarus clarkii G.) rotation (Shrimp), and the conversion of paddy fields to forestland (Forestland)—on aggregate structure, nutrient content, and microbial diversity in rice soils in Chuandian Town, Jingzhou District, Jianghan Plain, central China. The results revealed that the Shrimp treatment significantly increased soil organic matter (SOM), available nitrogen (AN), and available phosphorus (AP) content in the surface soil (0–10 cm) while reducing soil bulk density and improving pore structure. Forestland exhibited higher aggregate stability in deeper soil layers (20–40 cm), particularly in the 0.053–0.25 mm size fraction. Microbial diversity analysis showed that bacterial richness (Chao1 index) and diversity (Shannon index) were significantly higher in the Shrimp and Rapeseed treatments compared to those in the Forestland treatment, with Proteobacteria and Chloroflexi being the dominant bacterial phyla. Fungal communities were dominated by Ascomycota, withfForestland showing greater fungal richness in deeper soil. Soil depth significantly influenced aggregates, nutrients, and microbial diversity, with surface soil exhibiting higher values for these parameters than deeper layers. Redundancy analysis indicated that SOM, AP, and pH were the key drivers of bacterial community variation, while fungal communities were more influenced by nitrogen and porosity. Path analysis further demonstrated that land use patterns indirectly affected microbial diversity via altering aggregate structure and nutrient availability. Overall, the Shrimp treatment outperformed others in improving soil structure and nutrient supply, whereas the Forestland treatment was more conducive to promoting aggregate stability in deeper soil. Land use patterns indirectly regulated microbial communities through modifying soil aggregate structure and nutrient status, thereby influencing soil ecosystem health and stability. This study provides a theoretical basis for the sustainable management of rice soils, suggesting the optimization of rotation patterns in agricultural production to synergistically enhance soil physical, chemical, and biological properties. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

14 pages, 1278 KiB  
Article
High Ratio of Manure Substitution Enhanced Soil Organic Carbon Storage via Increasing Particulate Organic Carbon and Nutrient Availability
by Xiaoyu Hao, Xingzhu Ma, Lei Sun, Shuangquan Liu, Jinghong Ji, Baoku Zhou, Yue Zhao, Yu Zheng, Enjun Kuang, Yitian Liu and Shicheng Zhao
Plants 2025, 14(13), 2045; https://doi.org/10.3390/plants14132045 - 3 Jul 2025
Viewed by 430
Abstract
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios [...] Read more.
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios of manure substitution in northeast China, with treatments including chemical fertilizer application alone (nitrogen, phosphorus, and potassium, NPK) and replacing 1/4 (1/4M), 2/4 (2/4M), 3/4 (3/4M), and 4/4 (4/4M) of chemical fertilizer N with manure N. Soil nutrients, enzymatic activity, and SOC fractions were analyzed to evaluate the effect of different manure substitution ratios on SOC storage. A high ratio of manure substitution (>1/4) significantly increased soil total N, total P, total K, and available nutrients (NO3-N, available P, and available K), and the 4/4M greatly decreased the C/N ratio compared to the NPK. Manure incorporation increased microbial biomass carbon (MBC) by 18.3–53.0%. Treatments with 50%, 75%, and 100% manure substitution (2/4M, 3/4M, and 4/4M) enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total microbial necromass carbon (MNC) by 31.9–63.5%, 25.5–107.1%, and 27.4–94.2%, respectively, compared to the NPK treatment. Notably, the increase in FNC was greater than that of BNC as the manure substitution ratio increased. The increasing manure substitution significantly enhanced particulate organic C (POC) and total SOC but did not affect mineral-associated organic C (MAOC). High soil N and P supplies decreased leucine aminopeptidases (LAPs) and alkaline phosphatase activities but increased the activity ratio of β-glucosidase (BG)/(N-acetyl-glucosaminidase (NAG) + LAP). Treatments with 25% manure substitution (1/4M) maintained maize and soybean yield, but with increasing manure rate, the maize yield decreased gradually. Overall, the high ratio of manure substitution enhanced SOC storage via increasing POC and MNC, and decreasing the decomposition potential of manure C and soil C resulting from low N- and P-requiring enzyme activities under high nutrient supplies. This study provides empirical evidence that the rational substitution of chemical fertilizers with manure is an effective measure to improve the availability of nutrients, and its effect on increasing crop yields still needs to be continuously observed, which is still a beneficial choice for enhancing black soil fertility. Full article
Show Figures

Graphical abstract

12 pages, 502 KiB  
Article
Can Molybdenum Fertilization Enhance Protein Content and Digestibility of Sorghum Single Cropped and Intercropped with Cowpea?
by Nágila Sabrina Guedes da Silva, Alexandre Campelo de Oliveira, Baltazar Cirino Júnior, Rhaiana Oliveira de Aviz, Kedes Paulo Pereira, Domingos Sávio Marques de Menezes Vieira, Claudenilde de Jesus Pinheiro Costa, Jucelane Salvino de Lima, Jamiles Carvalho Gonçalves de Souza Henrique and Evaristo Jorge Oliveira de Souza
Grasses 2025, 4(3), 28; https://doi.org/10.3390/grasses4030028 - 2 Jul 2025
Viewed by 271
Abstract
Molybdenum fertilization represents a viable alternative for improving forage quality, potentially complementing or enhancing the effects of nitrogen fertilization. This study aimed to determine whether foliar or soil application of molybdenum would increase the crude protein content and digestibility of sorghum cultivated as [...] Read more.
Molybdenum fertilization represents a viable alternative for improving forage quality, potentially complementing or enhancing the effects of nitrogen fertilization. This study aimed to determine whether foliar or soil application of molybdenum would increase the crude protein content and digestibility of sorghum cultivated as a monoculture or intercropped with cowpea. The first experiment followed a 2 × 2 + 2 factorial design, including two application methods (foliar or soil), two cropping systems (monoculture or intercropping), and two additional control treatments (with and without molybdenum). In the second experiment, a split-plot design was used to assess the effects of molybdenum fertilization on the in situ digestibility of sorghum from monoculture and intercropping systems. Molybdenum fertilization increased the levels of crude protein, total carbohydrates, and soluble fractions. It also enhanced the disappearance rate, potential degradability, and effective degradability of sorghum, regardless of the application method or cropping system. Foliar or soil application of molybdenum is recommended to optimize the crude protein content and in situ digestibility of sorghum cultivated either as a monoculture or intercropped with cowpea. Full article
Show Figures

Graphical abstract

18 pages, 1684 KiB  
Article
The Effect of Warming and Nitrogen Addition on Soil Aggregate Enzyme Activities in a Desert Steppe
by Xin Zhang and Guodong Han
Sustainability 2025, 17(13), 6031; https://doi.org/10.3390/su17136031 - 1 Jul 2025
Viewed by 401
Abstract
Soil enzymes secreted by microorganisms play a key role in carbon (C), nitrogen (N), and phosphorus (P) metabolism in soil organic matter. As major drivers of climate change, warming and nitrogen addition affect soil physicochemical properties and enzyme activity, but their combined effects [...] Read more.
Soil enzymes secreted by microorganisms play a key role in carbon (C), nitrogen (N), and phosphorus (P) metabolism in soil organic matter. As major drivers of climate change, warming and nitrogen addition affect soil physicochemical properties and enzyme activity, but their combined effects on these parameters across different soil aggregate size scales in desert steppes remain unclear. This study used a 2 × 2 factorial split-plot design (control; warming; nitrogen addition: warming + nitrogen addition) conducted from 2006 in Inner Mongolia’s desert steppe. Soil samples were collected in 2018–2019, and aggregates were fractionated into >2000 μm, 250–2000 μm, and <250 μm sizes using a modified dry-sieving method. Physicochemical properties and enzyme activities were measured. Our results show that warming significantly reduced the total nitrogen (TN) and organic carbon (SOC) content in aggregates, while nitrogen addition significantly decreased the pH value in aggregates but had no significant impact on other soil nutrient content indicators. For soil enzyme activity, warming significantly reduced the activity of Urease and Alkaline Phosphatase (ALP) in soil aggregates, and nitrogen addition significantly reduced the activity of Urease, ALP, and β-glucosidase (BG) in aggregates. However, the size of the aggregates had a significant impact on the activity of Urease and BG. The influence of soil physicochemical properties on different enzyme activities varied across different years. These findings indicate that under the global change scenario, the physicochemical properties and enzyme activity of desert steppe soils are affected by warming and nitrogen addition to varying degrees, and the impact of these two factors shows significant differences across different years. Moreover, the interactive effects of warming and nitrogen addition did not simply result in an additive effect influenced by single factors. Full article
Show Figures

Figure 1

20 pages, 6259 KiB  
Article
Remediation Effects of Potamogeton crispus on Nitrogen-Loaded Water Bodies and Its Greenhouse Gas Emission Mechanisms
by Xiaoyi Li, Xiaoxiu Lun, Jianzhi Niu, Lumin Zhang, Bo Wu and Xinyue Wang
Atmosphere 2025, 16(7), 803; https://doi.org/10.3390/atmos16070803 - 1 Jul 2025
Viewed by 231
Abstract
Potamogeton crispus (P. crispus), with strong nitrogen uptake capacity, plays an important ecological role during winter and early spring when most aquatic plants are inactive. Its presence can also influence microbial denitrification in sediments by regulating oxygen levels and organic carbon [...] Read more.
Potamogeton crispus (P. crispus), with strong nitrogen uptake capacity, plays an important ecological role during winter and early spring when most aquatic plants are inactive. Its presence can also influence microbial denitrification in sediments by regulating oxygen levels and organic carbon availability. In this study, an indoor hydroponic simulation system was used to systematically evaluate the effects of P. crispus under different nitrogen-loading conditions on nitrogen removal from water, changes in sediment carbon and nitrogen fractions, microbial community structure, and greenhouse gas fluxes. The results showed that P. crispus effectively removed TN, NH4+-N, NO3-N, and NO2-N, maintaining strong denitrification capacity even under high-nitrogen loading. Under all nitrogen conditions, TN removal exceeded 80%, while NH4+-N and NO3-N removal efficiencies surpassed 90%, with effective suppression of NO2-N accumulation. Rhizosphere-mediated regulation by P. crispus enhanced the transformation and stabilization of DOC and NO3-N in sediments, while also mitigating nitrogen-induced disturbances to carbon–nitrogen balance. The plant also exhibited strong CO2 uptake capacity, low CH4 emissions with a slight increase under higher nitrogen loading, and N2O fluxes that were significantly affected by nitrogen levels—showing negative values under low nitrogen and sharp increases under high-nitrogen conditions. Correlation analyses indicated that CO2 and N2O emissions were mainly regulated by microbial taxa involved in carbon and nitrogen transformation, while CH4 emissions were primarily driven by methanogenic archaea and showed weaker correlations with environmental factors. These findings highlight the importance of water restoration during low-temperature seasons and provide a theoretical basis for integrated wetland management strategies aimed at coordinated pollution reduction and carbon mitigation. Full article
(This article belongs to the Special Issue Interactions of Urban Greenings and Air Pollution)
Show Figures

Figure 1

21 pages, 3801 KiB  
Article
Age-Specific Effects of Nitrogen Addition on Soil Aggregate Dynamics in Chinese Evergreen Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(7), 1082; https://doi.org/10.3390/f16071082 - 29 Jun 2025
Viewed by 325
Abstract
In the context of China’s ecosystem facing a high intensity of nitrogen loads, carbon–nitrogen interactions are receiving increasing attention. Physical protection by soil aggregates is critical for soil carbon and nitrogen sequestration in terrestrial ecosystems; however, there is currently limited information on how [...] Read more.
In the context of China’s ecosystem facing a high intensity of nitrogen loads, carbon–nitrogen interactions are receiving increasing attention. Physical protection by soil aggregates is critical for soil carbon and nitrogen sequestration in terrestrial ecosystems; however, there is currently limited information on how nitrogen addition influences carbon and nitrogen dynamics across different stages of forest ageing. Herein, a field nitrogen manipulation experiment over 6 years was established in subtropical forests (46, 78, and about 200 years old) in China. Aggregate fractions and stable isotope analyses were used to assess the effects of nitrogen addition. The results show that forest soil was dominated by macroaggregates, and these increased with forest ageing (p > 0.05). The macroaggregates’ carbon content decreased with forest ageing (p > 0.05), while the macroaggregates’ nitrogen content was highest in the 200-year-old forest. Nitrogen addition increased the aggregates’ carbon and nitrogen concentrations in the 46- and 200-year-old forests. The macroaggregates, under nitrogen addition in the 78- and 200-year-old forests, were relatively weak, while forest age and nitrogen addition mainly affected macroaggregate carbon and nitrogen concentrations to promote their carbon and nitrogen storage, and the macroaggregates were the main storage unit for fixing and protecting new carbon in soils. Nitrogen addition increased the macroaggregates’ δ13C abundance in the 78- and 200-year-old forests and decreased it in the 46-year-old forest (p > 0.05); significantly increased the macroaggregates’ δ15N in the 46-year-old forest (p < 0.05), and decreased the macroaggregates’ δ15N in the 200-year-old forest (p > 0.05). Considering the distribution of δ13C and δ15N in the aggregates, the effect of nitrogen addition on the dynamic mechanism of soil aggregate carbon and nitrogen fractions varied based on forest age and aggregate size. Correlation analysis further revealed that soil total phosphorus, NH4+-N, NO3-N, dissolved organic nitrogen, pH, texture, etc., were the primary predictors explaining most of the variation in aggregate fractions and their δ13C distribution. In summary, the effect of nitrogen deposition on the carbon and nitrogen stability of soil aggregates in broad-leaved forests depends on forest age. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

10 pages, 833 KiB  
Article
Carotid Intima–Media Thickness Is Associated with Long-Term Mortality in Patients with Non-ST Segment Elevation Myocardial Infarction
by Ayse Selcan Koc, Abdullah Eren Cetin, Yahya Kemal Icen, Hilmi Erdem Sumbul, Mehmet Ugurlu, Ugur Can Izlimek and Mevlut Koc
J. Clin. Med. 2025, 14(13), 4461; https://doi.org/10.3390/jcm14134461 - 23 Jun 2025
Viewed by 421
Abstract
Background: There is insufficient data in the literature on the relationship between carotid intima–media thickness (cIMT) measured in non-ST segment elevation myocardial infarction (NSTEMI) and cardiovascular (CV) mortality. Therefore, we aimed to determine the effect of cIMT value on long-term mortality in [...] Read more.
Background: There is insufficient data in the literature on the relationship between carotid intima–media thickness (cIMT) measured in non-ST segment elevation myocardial infarction (NSTEMI) and cardiovascular (CV) mortality. Therefore, we aimed to determine the effect of cIMT value on long-term mortality in patients with NSTEMI. Methods: This retrospective cohort study included 279 patients with NSTEMI. In addition to clinical, demographic, laboratory, and angiographic investigations, cIMT, femoral IMT (fIMT), and aortic IMT (aIMT) were measured by B-mode ultrasonography. All patients received follow-up evaluation for CV mortality. The patients were grouped as with and without mortality. Results: Patients with NSTEMI received follow-up evaluations for 7.51 ± 0.85 years and 77 (27.6%) patients had mortality. Age, creatinine, blood urea nitrogen, cIMT, aIMT, fIMT, and SYNTAX score values were significantly higher in patients with mortality compared to patients without mortality. Hemoglobin, total cholesterol, LDL cholesterol, triglyceride levels, and left ventricular ejection fraction were significantly lower in patients with mortality compared to patients without mortality. In multivariate analysis, cIMT, age, and creatinine level were found to be independent predictors of mortality. Among these parameters, an increase in age (each year), carotid IMT (each 0.1 mm), and serum creatinine (each 0.1 mg/L) levels predicted an increase in mortality by 8%, 46.5%, and 12.6%, respectively. In ROC analysis, age, cIMT, and creatinine level were found to determine the development of mortality due to NSTEMI with acceptable sensitivity and specificity when an age of 65 years, 0.80 mm, and 0.90 mg/L were taken as cut-off values, respectively. Discussion: In patients with NSTEMI, cIMT measurement is independently associated with the development of long-term mortality. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

14 pages, 668 KiB  
Article
Blaťácké Zlato Cheese: A Screenshot of Its Biofunctional and Physicochemical Characteristics
by Sandra T. Martín-del-Campo, Alexa Pérez-Alva, Sheba Sunny-Marottickal, Michaela Freyová, Tomáš Kudera, Iveta Klojdova and Diana K. Baigts-Allende
Foods 2025, 14(13), 2208; https://doi.org/10.3390/foods14132208 - 23 Jun 2025
Viewed by 409
Abstract
This study aims to determine the Blaťácké zlato cheese in vitro antioxidant activity and its correlation with specific peptides. A general physicochemical evaluation was also conducted, considering possible differences between batches. The antioxidant activity focused mainly on the nitrogen fractions with the shortest-chain [...] Read more.
This study aims to determine the Blaťácké zlato cheese in vitro antioxidant activity and its correlation with specific peptides. A general physicochemical evaluation was also conducted, considering possible differences between batches. The antioxidant activity focused mainly on the nitrogen fractions with the shortest-chain peptides. Other parameters were evaluated, including color, weight, size, moisture, dry matter, and texture analysis, which included the whole cheese hardness and the texture profile analysis. The ethanol soluble (EtOH-SN) and non-protein nitrogen (NPN) fractions were selected to evaluate antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, total phenol content (TPC), and peptide profiles. Our findings revealed significant differences between batches for NPN ABTS activity and EtOH-SN TPC. Significant differences were observed for water activity, moisture, dry matter, moisture on fat-free basis (MFFB), and pH in the central surface. DPPH and TPC showed a similar behavior, and NPN showed higher values than the EtOH-SN fraction. However, the opposite was observed for ABTS. Significant correlations were found for the biological activities with individual peaks of their corresponding HPLC peptide profiles. Finally, the principal component analysis separated the cheeses according to the batch, mainly due to specific peptides. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

21 pages, 3985 KiB  
Article
Can the Urea Fatty Fraction Support Sustainable Agriculture in the Improvement of Soil Properties?
by Barbara Filipek-Mazur, Barbara Wiśniowska-Kielian, Leszek Wojnar and Krystyna Ciarkowska
Sustainability 2025, 17(12), 5529; https://doi.org/10.3390/su17125529 - 16 Jun 2025
Viewed by 331
Abstract
One of the assumptions of the circular economy is the introduction of nitrogen (N) fertilizers into soil in the form of by-products, such as urea fatty fraction (UFF). Another recommended sustainable agriculture treatment is to plough post-harvest straw into soil to improve the [...] Read more.
One of the assumptions of the circular economy is the introduction of nitrogen (N) fertilizers into soil in the form of by-products, such as urea fatty fraction (UFF). Another recommended sustainable agriculture treatment is to plough post-harvest straw into soil to improve the organic matter (OM) balance. We aimed to verify the efficacy of UFF as a N fertilizer applied with wheat or rape straw by examining its effect on the total carbon and N contents, pH, enzyme activity, OM mineralization and stabilization of soil. For this, we conducted a 120-day-long incubation experiment in which we compared the effect of UFF fertilizer applied with urea (both with and without a Ure inhibitor) on soil properties. Our main findings were that UFF acidified the soil (pH was lowered to 5.93) more than the urea (pH was above 6). Both fertilizers administered with straw slightly increased the soil carbon (to above 14 g kg1) and N contents (to around 1.4 g kg−1) compared to the control treatment and caused an increase in enzyme activity at the beginning of the experiment, followed by a gradual decrease. The UFF application accelerated the OM decomposition, although urea had a more stabilizing effect on the OM expressed by larger (above 16%) areas occupied by stable, aggregated OM than UFF (below 10%). We concluded that UFF can replace urea as an environmentally friendly N fertilizer, and that it has a similar effect to urea on soil properties. Full article
Show Figures

Figure 1

Back to TopTop