The Effect of Warming and Nitrogen Addition on Soil Aggregate Enzyme Activities in a Desert Steppe
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Site and Experimental Design
2.2. Soil Aggregate Size Classification and Other Soil Physicochemical Attributes
2.3. Determination of Soil Enzyme Activity
2.4. Statistical Analysis
3. Results
3.1. Soil pH, SWC, SOC, TN and TP Values Among Soil Aggregates
3.2. Response of Enzyme Activities in Different Soil Aggregate Classes to Warming and Nitrogen Addition
3.3. Correlation Analysis Between Enzyme Activities Within Soil Aggregates and Physicochemical Properties
4. Discussion
4.1. Effects of Warming and Nitrogen Addition on the Content of C, N and P in Soil Aggregates
4.2. Effects of Warming and Nitrogen Addition on Enzyme Activities in Soil Aggregates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dillon, M.E.; Wang, G.; Huey, R.B. Global metabolic impacts of recent climate warming. Nature 2010, 467, 704–706. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022—Mitigation of Climate Chang: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- De Boeck, H.J.; Bassin, S.; Verlinden, M.; Zeiter, M.; Hiltbrunner, E. Simulated heat waves affected alpine grassland only in combination with drought. New Phytol. 2016, 209, 531–541. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Meng, C.; Tian, D.; Zeng, H.; Li, Z.L.; Chen, H.Y.H.; Niu, S.L. Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Sci. Total Environ. 2020, 705, 135992. [Google Scholar] [CrossRef]
- Wang, R.Z.; Dorodnikov, M.; Yang, S.; Zhang, Y.Y.; Filley, T.R.; Turco, R.F.; Zhang, Y.G.; Xu, Z.W.; Li, H.; Jiang, Y.; et al. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland. Soil Biol. Biochem. 2015, 81, 159–167. [Google Scholar] [CrossRef]
- De Mastro, F.; Brunetti, G.; Traversa, A.; Blagodatskaya, E. Fertilization promotes microbial growth and minimum tillage increases nutrient-acquiring enzyme activities in a semiarid agro-ecosystem. Appl. Soil Ecol. 2022, 177, 104529. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Cao, J. Intercropping increases soil N-targeting enzyme activities: A meta-analysis. Rhizosphere 2023, 26, 100686. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Maspons, J.; Molowny-Horas, R.; Fernández-Martínez, M.; Janssens, I.A.; Richter, A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. The effect of global change on soil phosphatase activity. Glob. Change Biol. 2021, 27, 5989–6003. [Google Scholar] [CrossRef]
- Zhou, L.-K. Soil Enzymology; Science Press: Beijing, China, 1987; pp. 116–206. ISBN 9783642142246. (In Chinese) [Google Scholar]
- Liu, X.J.A.; Pold, G.; Domeignoz-Horta, L.A.; Geyer, K.M.; Caris, H.; Nicolson, H.; Kemner, K.M.; Frey, S.D.; Melillo, J.M.; DeAngelis, K.M. Soil aggregate-mediated microbial responses to long-term warming. Soil Biol. Biochem. 2021, 152, 108055. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, P.; Li, Z.G.; Li, L.Y.; Zhang, R.Q.; Hu, W.; Liu, Y. Soil aggregate-associated organic carbon mineralization and its driving factors in rhizosphere soil. Soil Biol. Biochem. 2023, 186, 109182. [Google Scholar] [CrossRef]
- Wilpiszeski, R.L.; Aufrecht, J.A.; Retterer, S.T.; Sullivan, M.B.; Graham, D.E.; Pierce, E.M.; Zablocki, O.D.; Palumbo, A.V.; Elias, D.A. Soil aggregate microbial communities: Towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. 2019, 85, e00324-19. [Google Scholar] [CrossRef]
- Rui, Z.; Lu, X.; Li, Z.; Lin, Z.; Lu, H.; Zhang, D.; Shen, S.; Liu, X.; Zheng, J.; Drosos, M. Macroaggregates serve as micro-hotspots enriched with functional and networked microbial communities and enhanced under organic/inorganic fertilization in a paddy topsoil from southeastern China. Front. Microbiol. 2022, 13, 831746. [Google Scholar] [CrossRef]
- Xiao, L.; Yao, K.; Li, P.; Liu, Y.; Zhang, Y. Effects of freeze-thaw cycles and initial soil moisture content on soil aggregate stability in natural grassland and Chinese pine forest on the loess plateau of china. J. Soil Sediments 2020, 20, 1222–1230. [Google Scholar] [CrossRef]
- Zeng, Q.C.; Darboux, F.; Man, C.; Zhu, Z.L.; An, S.S. Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau (China). Catena 2018, 167, 276–283. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- Guan, S.; An, N.; Liu, J.H.; Zong, N.; He, Y.T.; Shi, P.L.; Zhang, J.J.; He, N.P. Warming impacts on carbon, nitrogen and phosphorus distribution in soil water-stable aggregates. Plant Soil Environ. 2018, 64, 64–69. [Google Scholar] [CrossRef]
- Sardans, J.; Peňuelas, J.; Estiarte, M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl. Soil Ecol. 2008, 39, 223–235. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Chen, C.R.; Wang, Y.F.; Xu, Z.H.; Han, H.Y.; Li, L.H.; Wan, S.Q. Warming and increased precipitation have different effects on soil extracellular enzyme activities in a temperate grassland. Sci. Total Environ. 2013, 444, 552–558. [Google Scholar] [CrossRef]
- Rui, Y.C.; Wang, Y.F.; Chen, C.R.; Zhou, X.Q.; Wang, S.P.; Xu, Z.H.; Duan, J.C.; Kang, X.M.; Lu, S.B.; Luo, C.Y. Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Platean, China. Plant Soil 2012, 357, 73–87. [Google Scholar] [CrossRef]
- Zhang, G.N.; Chen, Z.H.; Zhang, A.M.; Chen, L.J.; Wu, Z.J. Influence of climate warming and nitrogen addition on soil phosphorus composition and phosphorus availability in a temperate grassland, China. J. Aria Land 2014, 6, 156–163. [Google Scholar] [CrossRef]
- Lovell, R.; Jarvis, S.; Bardgett, R. Soil microbial biomass and activity in long-term grassland: Effects of management changes. Soil Biol. Biochem. 1995, 27, 969–975. [Google Scholar] [CrossRef]
- Davies, B.; Coulter, J.A.; Pagliari, P.H. Soil Enzyme Activity Behavior after Urea Nitrogen Application. Plants 2022, 11, 2247. [Google Scholar] [CrossRef]
- Wang, X.X.; Dong, S.K.; Gao, Q.Z.; Zhou, H.K.; Liu, S.L.; Su, X.K.; Li, Y.Y. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biol. Biochem. 2014, 76, 140–142. [Google Scholar] [CrossRef]
- Dorodnikov, M.; Blagodatskaya, E.; Blagodatsky, S.; Marhan, S.; Fangmeier, A.; Kuzyakov, Y. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Glob. Change Biol. 2009, 15, 1603–1614. [Google Scholar] [CrossRef]
- Kumar, A.; Dorodnikov, M.; Splettstößer, T.; Kuzyakov, Y.; Pausch, J. Effects of maize roots on aggregate stability and enzyme activities in soil. Geoderma 2017, 306, 50–57. [Google Scholar] [CrossRef]
- Bach, E.M.; Williams, R.J.; Hargreaves, S.K.; Yang, F.; Hofmockel, K.S. Greatest soil microbial diversity found in micro-habitats. Soil Biol. Biochem. Pergamon 2018, 118, 217–226. [Google Scholar] [CrossRef]
- Marx, M.C.; Kandeler, E.; Wood, M.; Wermbter, N.; Jarvis, S.C. Exploring the enzymatic landscape: Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 2005, 37, 35–48. [Google Scholar] [CrossRef]
- Allison, S.D.; Jastrow, J.D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biol. Biochem. 2006, 38, 3245–3256. [Google Scholar] [CrossRef]
- Nelson, D.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; Soil Science Society: Madison, WI, USA, 1982; ISBN 9780891180708. [Google Scholar]
- Sommers, L.E.; Nelson, D.W. Determination of total phosphorus in soils-rapid perchloric-acid digestion procedure. Soil Sci. Soc. Am. J. 1972, 36, 902–904. [Google Scholar] [CrossRef]
- Tabatabai, M. Soil enzymes. In Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties; Soil Science Society of America: Madison, WI, USA, 1994; ISBN 9780891188100. [Google Scholar]
- Chang, R.Y.; Zhou, W.J.; Fang, Y.T.; Bing, H.J.; Sun, X.Y.; Wang, G.X. Anthropogenic nitrogen addition increases soil carbon by enhancing new carbon of the soil aggregate formation. J. Geophys. Res. Biogeosciences 2009, 124, 572–584. [Google Scholar] [CrossRef]
- Xu, W.F.; Yuan, W.P.; Cui, L.L.; Ma, M.N.; Zhang, F.G. Responses of soil organic carbon decomposition to warming depend on the natural warming gradient. Geoderma 2019, 343, 10–18. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, P.; Tawaraya, K.; Tokida, T.; Fukuoka, M.; Yoshimoto, M.; Sakai, H.; Hasegawa, T.; Xu, X.; Cheng, W. Winter nocturnal warming affects the freeze-thaw frequency, soil aggregate distribution, and the contents and decomposability of C and N in paddy fields. Sci. Total Environ. 2021, 802, 149870. [Google Scholar] [CrossRef]
- Tamura, M.; Suseela, V.; Simpson, M.; Powell, B.; Tharayil, N. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded eco- systems. Glob. Change Biol. 2017, 23, 4002–4018. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Z.; Fu, G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Appl. Soil Ecol. 2015, 87, 32–38. [Google Scholar] [CrossRef]
- Seo, J.; Jang, I.; Jung, J.Y.; Lee, Y.K.; Kang, H. Warming and increased precipitation enhance phenol oxidase activity in soil while warming induces drought stress in vegetation of an Arctic ecosystem. Geoderma 2015, 259–260, 347–353. [Google Scholar] [CrossRef]
- Enwezor, W.O. Soil drying and organic matter decomposition. Plant Soil 1967, 26, 269–276. [Google Scholar] [CrossRef]
- Zhang, K.P.; Shi, Y.; Jing, X.; He, J.S.; Sun, R.B.; Yang, Y.F.; Shade, A.; Chu, H.Y. Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Front. Microbiol. 2016, 7, 1032. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, G.; Chen, H.; Zhang, M.; Cao, X.; Chen, M.; Chen, J.; Feng, Q.; Shi, Z. Contrasting responses of soil microbial biomass and extracellular enzyme activity along an elevation gradient on the eastern Qinghai-Tibetan Plateau. Front. Microbiol. 2023, 14, 974316. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wang, J.; Yu, M.; Zhang, R.; Mi, Y.; Xu, J.; Jiang, R.; Gao, J. Elevation Influences Belowground Biomass Proportion in Forests by Affecting Climatic Factors, Soil Nutrients and Key Leaf Traits. Plants 2024, 13, 674. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhong, X.L.; Gu, F.X.; Liu, Q.; Li, H.R. Effect of simulated warming on the functional traits of Leymus Chinensis plant in Songnen grassland. Aob Plants 2019, 11, plz073. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.E.; Lauber, C.L.; Cabaniss, S.E.; Waldrop, M.P.; Sinsabaugh, R.L.; Zak, D.R. Soil organic matter and litter chemistry response to ex- perimental N addition in northern temperate deciduous forest eco-systems. Glob. Change Biol. 2005, 11, 1514–1521. [Google Scholar] [CrossRef]
- Li, W.; Jin, C.; Guan, D.; Wang, Q.; Wang, A.; Yuan, F.; Wu, J. The effects of simulated nitrogen addition on plant root traits: A meta-analysis. Soil Biol. Biochem. 2015, 82, 112–118. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Eddy, W.C.; Buyarski, C.R.; Adair, E.C.; Ogdahl, M.L.; Weisenhorn, P. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 2012, 82, 389–405. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.J.; Gurmesa, G.A.; Yu, G.R.; Li, L.H.; Zhang, W.; Fang, H.J.; Mo, J.M. Effects of nitrogen addition on carbon cycle in terrestrial ecosystems of China: A meta-analysis. Environ. Pollut. 2015, 206, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Greaver, T.L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 2010, 13, 819–828. [Google Scholar] [CrossRef]
- Tian, J.; Dungait, J.A.J.; Lu, X.K.; Yang, Y.F.; Hartley, I.P.; Zhang, W.; Mo, J.M.; Yu, G.R.; Zhou, J.Z.; Kuzyakov, Y. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Glob. Change Biol. 2019, 25, 3267–3281. [Google Scholar] [CrossRef] [PubMed]
- Jimeénez, J.J.; Lorenz, K.; Lal, R. Organic carbon and nitrogen in soil particle-size aggregates under dry tropical forests from Guanacaste, Costa Rica—Implications for within-site soil organic carbon stabilization. Catena 2011, 86, 178–191. [Google Scholar] [CrossRef]
- Wei, H.; Chen, X.M.; Kong, M.M.; He, J.H.; Shen, W.J. Three-year-period nitrogen additions did not alter soil organic carbon content and lability in soil aggregates in a tropical forest. Environ. Sci. Pollut. Res. 2021, 28, 37793–37803. [Google Scholar] [CrossRef]
- Von, L.M.; Kögel-Knabner, I. Temperature sensitivity of soil organic matter decomposition—What do we know? Biol. Fertil. Soils 2009, 46, 1–15. [Google Scholar] [CrossRef]
- Liao, H.; Hao, X.; Zhang, Y.C.; Qin, F.; Xu, M.; Cai, P.; Chen, W.L.; Huang, Q.Y. Soil aggregate modulates microbial ecological adaptations and community assemblies in agricultural soils. Soil Biol. Biochem. 2022, 172, 108769. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, Y.; Wang, K.; Hao, X.; Huang, Q. Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol. Appl. Soil Ecol. 2020, 154, 103640. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wang, Z.L.; Zhang, Q.Z.; Hu, N.; Li, Z.F.; Lou, Y.L.; Li, Y.; Xue, D.M.; Chen, Y.; Wu, C.Y.; et al. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Sci. Total Environ. 2018, 624, 1131–1139. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S.; Crocker, G.J.; Grace, P.R.; Klir, J.; Korschens, M.; Poulton, P.R.; Richter, D.D. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 1997, 81, 29–44. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Khan, A.; Guo, S.; Wang, R.; Zhang, S.; Yang, X.; He, B.; Li, T. An assessment of various pools of organic phosphorus distributed in soil aggregates as affected by long-term P fertilization regimes. Soil Use Manag. 2023, 39, 833–848. [Google Scholar] [CrossRef]
- Fonte, S.J.; Nesper, M.; Hegglin, D.; Velaásquez, J.E.; Ramirez, B.; Rao, I.M.; Bernasconi, S.M.; Bunemann, E.K.; Frossard, E.; Oberson, A. Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biol. Biochem. 2014, 68, 150–157. [Google Scholar] [CrossRef]
- Liu, C.H.; Ma, J.Y.; Qu, T.T.; Xue, Z.J.; Li, X.Y.; Chen, Q.; Wang, N.; Zhou, Z.C.; An, S.S. Extracellular Enzyme Activity and Stoichiometry Reveal Nutrient Dynamics during Microbially-Mediated Plant Residue Transformation. Forests 2023, 14, 34. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Xiang, X.M.; De, K.J.; Lin, W.S.; Feng, T.X.; Li, F.; Wei, X.J. Indirect influence of soil enzymes and their stoichiometry on soil organic carbon response to warming and nitrogen deposition in the Tibetan Plateau alpine meadow. Front. Microbiol. 2024, 15, 1381891. [Google Scholar] [CrossRef]
- Alvarez, G.; Shahzad, T.; Andanson, L.; Bahn, M.; Wallenstein, M.D.; Fontaine, S. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. Glob. Change Biol. 2018, 24, 4238–4250. [Google Scholar] [CrossRef] [PubMed]
- Rachel, C.D.; Andrew, J.M. Examining activity–pH relationships of soil nitrogen hydrolytic enzymes. Soil Sci. Soc. Am. J. 2024, 88, 667–683. [Google Scholar] [CrossRef]
- Wan, W.J.; Hao, X.L.; Xing, Y.H.; Liu, S.; Zhang, X.Y.; Li, X.; Chen, W.L.; Huang, Q.Y. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degrad. Dev. 2021, 32, 766–776. [Google Scholar] [CrossRef]
- Chen, T.; Cheng, R.M.; Xiao, W.F.; Zeng, L.X.; Shen, Y.F.; Wang, L.J.; Sun, P.F.; Zhang, M.; Li, J. Nitrogen addition enhances nitrogen but not carbon mineralization in aggregate size fractions of soils in a Pinus massonia plantation. Front. For. Glob. Change 2024, 7, 1240577. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Yeoh, Y.K.; Kasinadhuni, N.R.P.; Lonhienne, T.G.A.; Robinson, N.; Hugenholtz, P.; Ragan, M.A.; Schmidt, S. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 2015, 5, 8678. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Shu, K.L.; Wang, S.Y.; Zhang, C.; Feng, Y.C.; Gao, M.; Li, Z.H.; Cai, H.G. Soil Enzyme Activities Affect SOC and TN in Aggregate Fractions in Sodic-Alkali Soils, Northeast of China. Agronomy 2022, 12, 2549. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, X.; Jing, X.; Zhu, B.A. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biol. Biochem. 2018, 123, 21–32. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Deng, Y.; Peng, Y. Long-term ammonium nitrate addition strengthens soil microbial cross-trophic interactions in a Tibetan alpine steppe. Ecology 2025, 106, e70057. [Google Scholar] [CrossRef]
- Sun, L.; Han, S. Microbial functional trait predicts soil organic carbon across soil aggregates in northeastern China. Soil Biol. Biochem. 2025, 206, 109793. [Google Scholar] [CrossRef]
- Nie, M.; Pendall, E.; Bell, C.; Wallenstein, M.D. Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Biol. Biochem. 2014, 68, 357–365. [Google Scholar] [CrossRef]
- Lagomarsino, A.; Grego, S.; Kandeler, E. Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions. Pedobiologia 2012, 55, 101–110. [Google Scholar] [CrossRef]
- Yang, Z.; Singh, B.R.; Hansen, S. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils. Soil Tillage Res. 2007, 95, 161–171. [Google Scholar] [CrossRef]
Years | Factors | pH | SWC | SOC | TN | TP |
---|---|---|---|---|---|---|
F Value | F Value | F Value | F Value | F Value | ||
2018 | W | 2.02 | 2.26 | 11.66 * | 8.01 * | 1.32 |
N | 18.75 ** | 0.33 | 0.61 | 1.34 | 0.05 | |
S | 3.59 * | 26.52 *** | 2.12 | 9.06 | 0.67 | |
W×N | 0.03 | 0.94 | 0.19 | 0.01 | 0.02 | |
W×S | 1.95 | 1.69 | 0.08 | 1.33 | 0.45 | |
N×S | 0.83 | 0.11 | 1.30 | 1.41 | 0.18 | |
W×N×S | 0.82 | 1.12 | 0.18 | 1.74 | 0.27 | |
2019 | W | 0.63 | 7.61 * | 5.05 * | 2.21 | 0.09 |
N | 4.04 | 1.8 | 0.48 | 1.40 | 0.14 | |
S | 26.76 *** | 4.18 * | 3.67 * | 4.79 * | 2.04 | |
W×N | 0.06 | 0.18 | 2.53 | 0.66 | 0.00 | |
W×S | 1.11 | 0.65 | 0.14 | 1.29 | 0.21 | |
N×S | 0.89 | 1.39 | 0.56 | 0.09 | 0.71 | |
W×N×S | 0.31 | 1.48 | 0.98 | 0.33 | 0.30 |
Years | Aggregate Sizes | pH | |||
---|---|---|---|---|---|
(μm) | CK | N | W | W + N | |
2018 | >2000 | 7.67 ± 0.04 Aa | 7.65 ± 0.02 Aa | 7.73 ± 0.03 Aa | 7.36 ± 0.24 Aa |
250–2000 | 7.52 ± 0.01 Bab | 7.12 ± 0.18 Ac | 7.71 ± 0.02 Aa | 7.27 ± 0.14 Abc | |
<250 | 7.65 ± 0.02 Aab | 7.06 ± 0.21 Ab | 7.76 ± 0.01 Aa | 7.21 ± 0.24 Aab | |
2019 | >2000 | 8.40 ± 0.22 Aa | 8.00 ± 0.29 Aa | 8.41 ± 0.20 Aa | 8.10 ± 0.36 Aa |
250–2000 | 8.30 ± 0.26 ABa | 7.63 ± 0.20 Ba | 8.39 ± 0.29 Aa | 7.89 ± 0.43 Aa | |
<250 | 7.76 ± 0.07 Ba | 7.46 ± 0.11 Aa | 8.00 ± 0.11 Aa | 7.53 ± 0.39 Aa |
Years | Factors | Urease | BG | ALP | DHA |
---|---|---|---|---|---|
F Value | F Value | F Value | F Value | ||
2018 | W | 5.30 * | 1.95 | 5.00 * | 1.05 |
N | 10.84 ** | 8.93 ** | 0.02 | 2.74 | |
S | 5.28 ** | 61.92 *** | 2.91 | 1.53 | |
W×N | 2.57 | 1.03 | 0.22 | 1.28 | |
W×S | 0.78 | 2.2 | 2.31 | 1.84 | |
N×S | 0.52 | 2.48 | 0.23 | 0.25 | |
W×N×S | 1.61 | 2.51 | 0.05 | 0.1 | |
2019 | W | 14.57 ** | 4.33 | 7.14 | 0.37 |
N | 0.94 | 4.78 * | 0.6 | 0.28 | |
S | 7.13 ** | 1.69 | 12.56 * | 5.16 * | |
W×N | 0.79 | 0.82 | 0.06 | 1.15 | |
W×S | 2.49 | 0.59 | 1.64 | 0.02 | |
N×S | 3.92 * | 0.81 | 0.12 | 0.12 | |
W×N×S | 0.56 | 1.46 | 0.21 | 0.11 |
Years | pH | SWC | TC | TN | SOC | Urease | DHA | ALP | BG | |
---|---|---|---|---|---|---|---|---|---|---|
2018 | pH | 1 | 0.28 | −0.18 | −0.35 | −0.3 | 0.17 | −0.75 *** | 0.11 | 0.45 * |
SWC | 0.28 | 1 | −0.71 | −0.13 | 0.17 | 0.26 | −0.54 ** | 0.19 | 0.43 * | |
TC | −0.18 | −0.71 | 1 | 0.92 *** | 0.27 | 0.025 | 0.26 | 0.26 | 0.094 | |
TN | −0.35 | −0.13 | 0.92 *** | 1 | 0.34 | 0.022 | 0.42 * | 0.2 | −0.054 | |
SOC | −0.3 | 0.17 | 0.27 | 0.34 | 1 | 0.34 | 0.42 * | 0.19 | 0.056 | |
Urease | 0.17 | 0.26 | 0.025 | 0.022 | 0.34 | 1 | −0.19 | 0.13 | 0.2 | |
DHA | −0.75 *** | −0.54 ** | 0.26 | 0.42 * | 0.42 * | −0.19 | 1 | −0.02 | −0.38 | |
ALP | 0.11 | 0.19 | 0.26 | 0.2 | 0.19 | 0.13 | −0.02 | 1 | 0.48 * | |
BG | 0.45 * | 0.43 * | 0.094 | −0.054 | 0.056 | 0.2 | −0.38 | 0.48 * | 1 | |
2019 | pH | 1 | 0.13 | −0.31 | 0.0047 | −0.4 | −0.13 | −0.15 | −0.44 * | 0.17 |
SWC | 0.13 | 1 | 0.17 | −0.28 | 0.38 | −0.2 | 0.07 | 0.29 | 0.43 * | |
TC | −0.31 | 0.17 | 1 | 0.41 * | 0.8 *** | 0.26 | −0.044 | 0.71 *** | 0.24 | |
TN | 0.0047 | −0.28 | 0.41 * | 1 | 0.22 | 0.19 | 0.063 | 0.31 | 0.14 | |
SOC | −0.4 | 0.38 | 0.8 *** | 0.22 | 1 | 0.19 | 0.047 | 0.62 ** | 0.26 | |
Urease | −0.13 | −0.2 | 0.26 | 0.19 | 0.19 | 1 | −0.041 | 0.014 | −0.36 | |
DHA | −0.15 | 0.07 | −0.044 | 0.063 | 0.047 | −0.041 | 1 | −0.087 | 0.11 | |
ALP | −0.44 * | 0.29 | 0.71 *** | 0.31 | 0.62 ** | 0.014 | −0.087 | 1 | 0.17 | |
BG | 0.17 | 0.43 * | 0.24 | 0.14 | 0.26 | −0.36 | 0.11 | 0.17 | 1 |
Years | pH | SWC | TC | TN | SOC | Urease | DHA | ALP | BG | |
---|---|---|---|---|---|---|---|---|---|---|
2018 | pH | 1 | 0.28 | −0.75 *** | −0.62 ** | −0.78 *** | −0.071 | −0.63 ** | 0.037 | 0.56 ** |
SWC | 0.28 | 1 | −0.022 | 0.12 | 0.015 | 0.15 | −0.13 | 0.52 * | −0.041 | |
TC | −0.75 *** | −0.022 | 1 | 0.96 *** | 0.97 *** | 0.17 | 0.53 ** | 0.15 | −0.28 | |
TN | −0.62 ** | 0.12 | 0.96 *** | 1 | 0.95 *** | 0.23 | 0.43 * | 0.29 | −0.14 | |
SOC | −0.78 *** | 0.015 | 0.97 *** | 0.95 *** | 1 | 0.21 | 0.50 * | 0.21 | −0.29 | |
Urease | −0.071 | 0.15 | 0.17 | 0.23 | 0.21 | 1 | 0.33 | 0.53 ** | 0.33 | |
DHA | −0.63 ** | −0.13 | 0.53 ** | 0.43 * | 0.50 * | 0.33 | 1 | 0.21 | −0.41 | |
ALP | 0.037 | 0.52 * | 0.15 | 0.29 | 0.21 | 0.53 ** | 0.21 | 1 | 0.17 | |
BG | 0.56 ** | −0.041 | −0.28 | −0.14 | −0.29 | 0.33 | −0.41 | 0.17 | 1 | |
2019 | pH | 1 | 0.15 | −0.65 *** | −0.36 | −0.63 *** | 0.56 ** | −0.072 | −0.57 ** | 0.40 * |
SWC | 0.15 | 1 | 0.29 | 0.022 | 0.33 | 0.19 | 0.053 | 0.49* | −0.035 | |
TC | −0.65 *** | 0.29 | 1 | 0.44 * | 0.86 *** | −0.13 | 0.19 | 0.76 *** | −0.34 | |
TN | −0.36 | 0.022 | 0.44 * | 1 | 0.41 * | −0.014 | −0.012 | 0.37 | 0.041 | |
SOC | −0.63 *** | 0.33 | 0.86 *** | 0.41 * | 1 | −0.21 | −0.024 | 0.68 *** | −0.28 | |
Urease | 0.56 ** | 0.19 | −0.13 | −0.014 | −0.21 | 1 | −0.18 | −0.11 | −0.0038 | |
DHA | −0.072 | 0.053 | 0.19 | −0.012 | −0.024 | −0.18 | 1 | 0.036 | 0.034 | |
ALP | −0.57 ** | 0.49 * | 0.76 *** | 0.37 | 0.68 *** | −0.11 | 0.036 | 1 | −0.26 | |
BG | 0.40 * | −0.035 | −0.34 | 0.041 | −0.28 | −0.0038 | 0.034 | −0.26 | 1 |
Years | pH | SWC | TC | TN | SOC | Urease | DHA | ALP | BG | |
---|---|---|---|---|---|---|---|---|---|---|
2018 | pH | 1 | 0.19 | −0.31 | −0.46 * | −0.28 | 0.37 | −0.64 ** | 0.28 | 0.36 |
SWC | 0.19 | 1 | 0.056 | 0.082 | −0.38 | −0.085 | −0.50 * | 0.33 | −0.2 | |
TC | −0.31 | 0.056 | 1 | 0.94 *** | 0.29 | 0.0086 | 0.34 | −0.062 | −0.3 | |
TN | −0.46 * | 0.082 | 0.94 *** | 1 | 0.33 | 0.0093 | 0.43 * | −0.14 | −0.35 | |
SOC | −0.28 | −0.38 | 0.29 | 0.33 | 1 | 0.24 | 0.04 | −0.23 | −0.024 | |
Urease | 0.37 | −0.085 | 0.0086 | 0.0093 | 0.24 | 1 | 0.024 | 0.045 | 0.0047 | |
DHA | −0.64 ** | −0.50 * | 0.34 | 0.43 * | 0.04 | 0.024 | 1 | −0.32 | −0.33 | |
ALP | 0.28 | 0.33 | −0.062 | −0.14 | −0.23 | 0.045 | −0.32 | 1 | 0.18 | |
BG | 0.36 | −0.2 | −0.3 | −0.35 | −0.024 | 0.0047 | −0.33 | 0.18 | 1 | |
2019 | pH | 1 | 0.14 | −0.67 *** | −0.29 | −0.37 | 0.28 | 0.23 | −0.67 *** | 0.40 |
SWC | 0.14 | 1 | −0.25 | −0.034 | −0.047 | 0.28 | 0.027 | 0.083 | 0.69 *** | |
TC | −0.67 *** | −0.25 | 1 | 0.28 | 0.76 *** | −0.074 | −0.048 | 0.47 * | −0.5 * | |
TN | −0.29 | −0.034 | 0.28 | 1 | 0.32 | −0.09 | 0.026 | 0.17 | −0.16 | |
SOC | −0.37 | −0.047 | 0.76 *** | 0.32 | 1 | 0.33 | 0.12 | 0.35 | −0.34 | |
Urease | 0.28 | 0.28 | −0.074 | −0.09 | 0.33 | 1 | −0.11 | 0.14 | 0.15 | |
DHA | 0.23 | 0.027 | −0.048 | 0.026 | 0.12 | −0.11 | 1 | −0.22 | −0.041 | |
ALP | −0.67 *** | 0.083 | 0.47 * | 0.17 | 0.35 | 0.14 | −0.22 | 1 | −0.25 | |
BG | 0.40 | 0.69 *** | −0.5 * | −0.16 | −0.34 | 0.15 | −0.041 | −0.25 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Han, G. The Effect of Warming and Nitrogen Addition on Soil Aggregate Enzyme Activities in a Desert Steppe. Sustainability 2025, 17, 6031. https://doi.org/10.3390/su17136031
Zhang X, Han G. The Effect of Warming and Nitrogen Addition on Soil Aggregate Enzyme Activities in a Desert Steppe. Sustainability. 2025; 17(13):6031. https://doi.org/10.3390/su17136031
Chicago/Turabian StyleZhang, Xin, and Guodong Han. 2025. "The Effect of Warming and Nitrogen Addition on Soil Aggregate Enzyme Activities in a Desert Steppe" Sustainability 17, no. 13: 6031. https://doi.org/10.3390/su17136031
APA StyleZhang, X., & Han, G. (2025). The Effect of Warming and Nitrogen Addition on Soil Aggregate Enzyme Activities in a Desert Steppe. Sustainability, 17(13), 6031. https://doi.org/10.3390/su17136031