Blaťácké Zlato Cheese: A Screenshot of Its Biofunctional and Physicochemical Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples, Chemicals, and Standards
2.2. Material Conditioning
2.2.1. Physicochemical Properties
Color
Moisture and Fat Content, and Water Activity
2.2.2. Textual Parameters
2.3. Isolation and Characterization of Microorganisms
2.3.1. Cultivation of Microorganisms
2.3.2. Culture Isolation and Identification
2.4. Peptides Fractionation
2.5. Nitrogenous Fractions Analysis by RP-HPLC
2.6. In Vitro Bioactivity
2.6.1. Antioxidant Capacity
2.6.2. Total Phenolic Content (TPC)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Microbiological Analysis
3.3. Peptide Profiles
3.4. Antioxidant Activity
3.5. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Obermaier, O.; Čejna, V. Jak Poznáme Kvalitu? Sýry A Tvarohy [How Do You Recognize Quality? Cheeses and Cottage Cheeses]; Sdružení Českých Spotřebitelů Pro Českou Technologickou Platformu Pro Potraviny [Association of Czech Consumers for the Czech Technology Platform for Food]: Prague, Czech Republic, 2013; p. 11. [Google Scholar]
- Kabelová, I.; Dvořáková, M.; Čížková, H.; Dostálek, P.; Melzoch, K. Determination of free amino acids in cheeses from the Czech market. Czech J. Food Sci. 2009, 27, 143–150. [Google Scholar] [CrossRef]
- Čurda, L.; Štětina, J. Reformulating dairy products. In Food Reformulation. Assessment of Possibilities for Reformulation of Main Food Products, 1st ed.; Rajchl, A., Ed.; Federation of the Food and Drink Industries of the Czech Republic: Prague, Czech Republic, 2020; pp. 73–83. [Google Scholar]
- NutriDatabaze.cz. Czech Food Composition Database, Version 9.24. Available online: http://www.nutridatabaze.cz/ (accessed on 25 March 2025).
- Čurda, L.; Štětina, J. Results of 19th National Cheese Competition. In Milk and Cheeses, Proceedings of the National Cheese Shows. Show Results and Conference Proceedings, Praha, Czech Republic, 21–22 October 2008; Českomoravský svaz mlékárenský: Prague, Czech Republic, 2009; pp. 7–10. [Google Scholar]
- Ledabyl, K. Researches into the Technology of Zlato Cheese; Zpravy Vyzkumneho Ustavu Pro Mleko a Vejce: Prague, Czech Republic, 1956; pp. 18–26. [Google Scholar]
- Ledabyl, K. Study of the Manufacture of Zlato Cheese with 50% Fat in the Dry Matter; Zpravy Vyzkumneho Ustavu Pro Mleko a Vejce: Prague, Czech Republic, 1957; pp. 85–103. [Google Scholar]
- Dolezalek, J.; Brezina, P.; Hladik, J.; Konradova, B. Effect of technological factors on the formation of flavour compounds during ripening of Zlato cheese. In Zbornik Prednasok z II. Sympozia o Aromatickych Latkach v Pozivatinach; Slovenska Chemicka Spolocnost’pri SAV: Bratislava, Slovakia, 1973; pp. 115–118. [Google Scholar]
- Dolezalek, J.; Hladik, J.; Konradova, B.; Matousek, J. Influence of heat treatment on ripening and quality of Zlato cheese. In Proceedings of XX International Dairy Congress; Paris, France, 26–30 June 1978, pp. 622–623.
- Dolezalek, J.; Hladik, J.; Studenovsky, J.; Brezina, P. The effect of microbial rennet on ripening and quality of Zlato cheese. XIX Int. Dairy Congr. 1974, 1, 690. [Google Scholar]
- Hanušová, K.; Dobiáš, J.; Voldřich, M. Effect of Packaging Films Releasing Antimicrobial Agents on Stability of Food Products. Czech J. Food Sci. 2009, 27, S347–S349. [Google Scholar] [CrossRef]
- Hanušová, K.; Dobiáš, J.; Voldřich, M. Assessment of functional properties and antimicrobial efficiency of polymer films with lacquer layer containing natamycin in cheese packaging. J. Food Nutr. Res. 2012, 51, 145–155. [Google Scholar]
- TRUEFOOD. Publishable Final Activity Report; ContractN FOOD-CT; CORDIS: Luxembourg, 2006. [Google Scholar]
- Korhonen, H. Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 2009, 1, 177–187. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, M.; Dong, W.; Yan, G.; Shi, Y.; Huang, A.; Wang, X. Peptide Profile Changes in Buffalo Milk Cheese During Different Storage Periods and Characterization of Novel Bioactive Peptides through Peptidomics. J. Agric. Food Chem. 2025, 73, 571–583. [Google Scholar] [CrossRef]
- Yang, W. Evaluation of the antioxidant activity and identification of potential antioxidant peptides in commercially available probiotic Cheddar cheese. LWT 2024, 205, 116486. [Google Scholar] [CrossRef]
- Uzunsoy, I. Antimicrobial and antioxidant activities of water-soluble extracts of Camis cheeses produced by different traditional methods. Food Sci. Nutr. 2024, 12, 6699–6710. [Google Scholar] [CrossRef]
- Bezerra, D.A.F.V.A.; Souza, K.M.S.; Sales, D.C.; Araújo, E.O.M.; Urbano, S.A.; Cipolat-Gotet, C.; Anaya, K.; Ribeiro, C.V.D.M.; Porto, A.L.F.; Rangel, A.H.N. Effect of ripening time on the content of bioactive peptides and fatty acids profile of Artisanal Coalho cheese. PLoS ONE 2024, 19, e0306552. [Google Scholar] [CrossRef]
- Öztürk, H.İ.; Oraç, A.; Akın, N. Characterization of bioactive peptides derived from goatskin Tulum cheese of the Ereğli region at different stages of ripening. Food Res. Int. 2022, 162, 112124. [Google Scholar] [CrossRef]
- Yang, W.; Hao, X.; Zhang, X.; Zhang, G.; Li, X.; Liu, L.; Sun, Y.; Pan, Y. Identification of antioxidant peptides from cheddar cheese made with Lactobacillus helveticus. LWT 2021, 141, 110866. [Google Scholar] [CrossRef]
- Solieri, L.; Baldaccini, A.; Martini, S.; Bianchi, A.; Pizzamiglio, V.; Tagliazucchi, D. Peptide Profiling and Biological Activities of 12-Month Ripened Parmigiano Reggiano Cheese. Biology 2020, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Ramos, L.; Arrieta Baez, D.; Dávila Ortiz, G.; Carlos Ruiz Ruiz, J.; Manuel Toledo López, V. Antioxidant and antihypertensive activity of Gouda cheese at different stages of ripening. Food Chem. X 2022, 14, 100284. [Google Scholar] [CrossRef]
- Helal, A.; Tagliazucchi, D. Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties. Biology 2023, 12, 78. [Google Scholar] [CrossRef]
- Kurbanova, M.; Voroshilin, R.; Kozlova, O.; Atuchin, V. Effect of Lactobacteria on Bioactive Peptides and Their Sequence Identification in Mature Cheese. Microorganisms 2022, 10, 2068. [Google Scholar] [CrossRef]
- Iwaniak, A.; Mogut, D.; Minkiewicz, P.; Żulewska, J.; Darewicz, M. An integrated approach to the analysis of antioxidative peptides derived from Gouda cheese with a modified β-casein content. Sci. Rep. 2022, 12, 13314. [Google Scholar] [CrossRef]
- El-Dieb, S.; Abd El-Fattah, A.; Abdel Sattar, A.F.; Elkashef, H. Screening of Bioactive Peptides and γ-aminobutyric Acid as Functional Ingredients in Some Commercial Ripened Cheese. Egypt. J. Chem. 2025, 68, 577–584. [Google Scholar] [CrossRef]
- Kocak, A.; Sanli, T.; Anli, E.A.; Hayaloglu, A.A. Role of using adjunct cultures in release of bioactive peptides in white-brined goat-milk cheese. LWT 2020, 123, 109127. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Latimer, G.W., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2012. [Google Scholar]
- FIL-IDF (Ed.) IDF Factsheet 18/2021. Cheese and Varieties Part II: Cheese Styles; FIL-IDF: Brussels, Belgium, 2021; p. 5. [Google Scholar]
- CXS 283-1978; CODEX STAN A-6-1973; General Standard for Cheese. Food and Agriculture Organization, World Health Organization: Geneva, Switzerland, 2022; p. 6.
- Christensen, T.M.I.E.; Bech, A.M.; Werner, H. Methods for crude fractionation (extraction and precipitation) of nitrogen components in cheese. Bull. IDF 1991, 261, 4–9. [Google Scholar]
- Kuchroo, C.N.; Fox, P.F. Soluble nitrogen in Cheddar cheese: Comparison of extraction procedures. Milchwissenschaft 1982, 37, 331–335. [Google Scholar]
- Gonzalez De Llano, D.; Polo, M.C.; Ramos, M. Study of Proteolysis in Artisanal Cheeses: High Performance Liquid Chromatography of Peptides. J. Dairy Sci. 1995, 78, 1018–1024. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Hanušová, K.; Šťastná, M.; Votavová, L.; Klaudisová, K.; Dobiáš, J.; Voldřich, M.; Marek, M. Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: Nisin and natamycin migration, efficiency in cheese packaging. J. Food Eng. 2010, 99, 491–496. [Google Scholar] [CrossRef]
- Hinrichs, J. Mediterranean milk and milk products. Eur. J. Nutr. 2004, 43, i12–i17. [Google Scholar] [CrossRef]
- Coker, C.J.; Crawford, R.A.; Johnston, K.A.; Singh, H.; Creamer, L.K. Towards the classification of cheese variety and maturity on the basis of statistical analysis of proteolysis data—A review. Int. Dairy J. 2005, 15, 631–643. [Google Scholar] [CrossRef]
- Kawabata, S.; Vassal, L.; Le Bars, D.; Cesselin, B.; Nardi, M.; Gripon, J.C.; Chapot-Chartier, M.P. Phage-induced lysis of Lactococcus lactis during Saint-Paulin cheese ripening and its impact on proteolysis. Lait 1997, 77, 229–239. [Google Scholar] [CrossRef]
- Vázquez, L.; Srednik, M.E.; Rodríguez, J.; Flórez, A.B.; Mayo, B. Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. Int. J. Mol. Sci. 2023, 24, 11657. [Google Scholar] [CrossRef]
- Pritchard, S.R.; Phillips, M.; Kailasapathy, K. Identification of bioactive peptides in commercial Cheddar cheese. Food Res. Int. 2010, 43, 1545–1548. [Google Scholar] [CrossRef]
- Timón, M.L.; Andrés, A.I.; Otte, J.; Petrón, M.J. Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Res. Int. 2019, 120, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Short communication: Effect of genetic type on antioxidant activity of Caciocavallo cheese during ripening. J. Dairy Sci. 2015, 98, 3690–3694. [Google Scholar] [CrossRef] [PubMed]
- Besle, J.M.; Viala, D.; Martin, B.; Pradel, P.; Meunier, B.; Berdagué, J.L.; Fraisse, D.; Lamaison, J.L.; Coulon, J.B. Ultraviolet-absorbing compounds in milk are related to forage polyphenols. J. Dairy Sci. 2010, 93, 2846–2856. [Google Scholar] [CrossRef] [PubMed]
- Di Trana, A.; Di Rosa, A.R.; Addis, M.; Fiori, M.; Di Grigoli, A.; Morittu, V.M.; Spina, A.A.; Claps, S.; Chiofalo, V.; Licitra, G.; et al. The Quality of Five Natural, Historical Italian Cheeses Produced in Different Months: Gross Composition, Fat-Soluble Vitamins, Fatty Acids, Total Phenols, Antioxidant Capacity, and Health Index. Animals 2022, 12, 199. [Google Scholar] [CrossRef]
Parameter | p-Value a | Valid N | Average ± SD |
---|---|---|---|
General parameters | |||
Weight (g) | 0.998 | 3 | 1457.5 ± 101.01 |
Diameter | --- | 3 | 19.0 ± 0.0 |
aw | 0.000 | 6 | 0.938 ± 0.0052 |
Moisture (%) | 0.034 * | 6 | 45.29 ± 1.519 |
Dry matter (%) | 0.000 *** | 6 | 54.71 ± 1.519 |
Fat Dry Basis (%) | 0.129 | 6 | 48.07 ± 5.890 |
Fat Wet Basis (%) | 0.187 | 6 | 26.28 ± 3.181 |
MFFB (%) | 0.040 * | 6 | 61.56 ± 3.434 |
FDM (%) | 0.129 | 6 | 48.07 ± 5.890 |
pH Surface | 0.5861 | 15 | 5.347 ± 0.146 |
pH Center | 0.019 * | 15 | 5.200 ± 0.193 |
Texture α | |||
Hardness (N) | 0.008 ** | 9 | 4.861 ± 0.887 |
TPA β | |||
Hardness (N) | 0.000 *** | 30 | 20.78 ± 9.653 |
Cohesiveness | 0.000 *** | 30 | 0.2254 ± 0.2630 |
Adhesiveness (J) | 0.058 | 30 | −0.0014 ± 0.00285 |
Adhesiveness force (N) | 0.000 *** | 30 | −0.5874 ± 0.3793 |
Color | |||
L * | 0.198 | 16 | 85.84 ± 3.073 |
a * | 0.759 | 16 | 0.939 ± 0.310 |
b * | 0.380 | 16 | 17.18 ± 1.768 |
Chroma | 0.377 | 16 | 17.21 ± 1.780 |
hue | 0.537 | 16 | 86.89 ± 0.940 |
DPPH b | |||
NPN d | 0.644 | 6 | 657.90 ± 39.15 |
EtOH-SN e | 0.307 | 6 | 278.33 ± 91.33 |
ABTS b | |||
NPN d | 0.003 ** | 6 | 61.05 ± 29.47 |
EtOH-SN e | 0.139 | 5 | 1587.28 ± 356.19 |
TPC c | |||
NPN d | 0.285 | 6 | 153.16 ± 33.70 |
EtOH-SN e | 0.003 ** | 6 | 61.05 ± 29.47 |
RT [min] | Peak Code | EtOH-SN a | NPN b | RT [min] | Peak Code | EtOH-SN a | NPN b |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||||
0.711 | P2 | 0.19 ± 0.06 | 0.15 ± 0.07 | 42.788 | P70 | 0.06 ± 0.05 | |
0.981 | P4 | 0.40 ± 0.09 | 0.10 ± 0.06 | 43.971 | P72 | 0.10 ± 0.04 | 0.01 ± 0.01 |
1.181 | P5 | 2.18 ± 0.39 | 0.24 ± 0.08 | 44.212 | P73 | 0.08 ± 0.04 | |
1.349 | P7 | 2.67 ± 0.36 | 1.05 ± 0.58 | 44.902 | P75 | 0.03 ± 0.02 | |
1.876 | P9 | 6.76 ± 1.68 | 2.31 ± 0.53 | 45.406 | P76 | 0.07 ± 0.03 | 0.002 ± 0.001 |
2.384 | P10 | 0.07 ± 0.07 | 0.12 ± 0.03 | 46.249 | P77 | 0.20 ± 0.06 | |
2.663 | P13 | 0.21 ± 0.21 | 72.93 ± 8.39 | 46.663 | P78 | 0.31 ± 0.24 | 0.10 ± 0.01 |
3.990 | P15 | 7.91 ± 13.57 | 47.299 | P81 | 0.33 ± 0.08 | 0.07 ± 0.01 | |
9.456 | P16 | 0.91 ± 0.49 | 0.13 ± 0.14 | 48.204 | P82 | 0.04 ± 0.03 | |
11.248 | P17 | 0.14 ± 0.08 | 0.00 ± 0.00 | 48.907 | P83 | 0.99 ± 0.41 | |
11.160 | P18 | 0.05 ± 0.01 | 49.361 | P84 | 2.24 ± 2.51 | ||
11.636 | P19 | 0.75 ± 0.31 | 0.17 ± 0.04 | 49.714 | P85 | 1.30 ± 0.28 | |
13.289 | P20 | 1.53 ± 1.65 | 50.136 | P86 | 1.40 ± 0.52 | 0.86 ± 0.29 | |
15.104 | P21 | 0.005 ± 0.003 | 50.547 | P87 | 1.92 ± 2.47 | ||
18.149 | P24 | 1.27 ± 0.16 | 51.199 | P88 | 0.12 ± 0.06 | ||
19.815 | P26 | 0.042 ± 0.002 | 53.579 | P93 | 2.17 ± 0.83 | ||
21.308 | P30 | 0.31 ± 0.26 | 53.337 | P94 | 0.35 ± 0.22 | ||
22.642 | P32 | 0.05 ± 0.03 | 0.19 ± 0.10 | 53.614 | P95 | 0.25 ± 0.09 | |
24.334 | P34 | 14.08 ± 2.85 | 2.21 ± 0.36 | 53.894 | P97 | 1.35 ± 0.47 | |
26.247 | P36 | 0.02 ± 0.02 | 54.244 | P98 | 8.06 ± 1.28 | 0.12 ± 0.04 | |
27.404 | P39 | 0.02 ± 0.00 | 54.521 | P99 | 0.18 ± 0.01 | 0.01 ± 0.00 | |
28.593 | P42 | 0.59 ± 0.19 | 0.04 ± 0.00 | 55.137 | P102 | 0.17 ± 0.14 | 0.02 ± 0.00 |
33.834 | P52 | 0.17 ± 0.08 | 55.258 | P104 | 0.19 ± 0.04 | ||
34.209 | P53 | 0.01 ± 0.00 | 55.696 | P107 | 5.14 ± 2.83 | 0.01 ± 0.01 | |
35.879 | P56 | 1.50 ± 0.57 | 56.176 | P108 | 0.80 ± 0.47 | 0.02 ± 0.01 | |
36.399 | P57 | 8.62 ± 1.11 | 56.583 | P109 | 0.14 ± 0.03 | 0.01 ± 0.01 | |
37.190 | P58 | 0.32 ± 0.09 | 56.862 | P110 | 7.94 ± 2.67 | 0.12 ± 0.06 | |
37.839 | P60 | 0.12 ± 0.02 | 0.02 ± 0.01 | 57.326 | P113 | 2.55 ± 2.97 | |
38.176 | P61 | 2.59 ± 0.45 | 0.01 ± 0.01 | 57.481 | P114 | 0.10 ± 0.05 | |
38.564 | P62 | 0.02 ± 0.03 | 57.662 | P115 | 1.34 ± 0.95 | ||
39.812 | P63 | 0.002 ± 0.001 | 57.736 | P116 | 4.05 ± 1.13 | 1.66 ± 0.56 | |
40.583 | P64 | 0.12 ± 0.18 | 58.061 | P117 | 0.36 ± 0.22 | ||
41.747 | P66 | 0.01 ± 0.01 | 59.166 | P119 | 0.21 ± 0.07 | 0.04 ± 0.03 | |
42.087 | P67 | 0.05 ± 0.01 | 59.811 | P120 | 0.32 ± 0.12 | 0.15 ± 0.14 | |
42.587 | P69 | 0.32 ± 0.39 | 59.996 | P121 | 0.28 ± 0.18 | ||
EtOH-SN a | NPN b | ||||||
Total Hydrophilic peptides (HI) | 18.63 ± 0.58 | 86.12 ± 3.85 | |||||
Total Hydrophobic peptides (HO) | 72.13 ± 6.04 | 13.86 ± 3.85 | |||||
Ratio HO/HI | 3.87 ± 0.22 | 0.16 ± 0.05 |
Parameter | p-Value a | Fraction | |
---|---|---|---|
NPN µ | EtOH-SN π | ||
DPPH α | 0.000 *** | 657.90 b | 287.64 a |
ABTS α | 0.000 *** | 61.05 a | 1587.28 b |
TPC β | 0.000 *** | 153.16 b | 59.21 a |
Peak Code | DPPH | ABTS | TPC | |||
---|---|---|---|---|---|---|
NPN | EtOH-SN | NPN | EtOH-SN | NPN | EtOH-SN | |
P2 | −0.009 | −1.000 ** | −0.679 | |||
P5 | −0.786 | −0.632 | −0.998 * | |||
P7 | −0.757 | −0.667 | −1.000 ** | |||
P18 | 0.066 | 0.999 * | 0.720 | |||
P21 | 0.030 | 1.000 ** | 0.694 | |||
P25 | −0.046 | −1.000 ** | −0.705 | |||
P34 | −0.783 | −0.636 | −0.998 * | |||
P37 | −0.785 | −0.634 | −0.998 * | |||
P38 | 0.998 * | −0.044 | 0.698 | |||
P58 | −1.000 ** | −0.009 | −0.734 | |||
P70 | −0.694 | 0.973 | 1.000 ** | |||
P71 | 0.744 | 0.681 | 1.000 ** | |||
P77 | −0.999 * | −0.067 | −0.773 | |||
P79 | 0.725 | −0.962 | −0.998 * | |||
P86 | −0.999 * | 0.539 | 0.705 | |||
P91 | −0.999 * | 0.468 | 0.644 | |||
P98 | −0.714 | −0.713 | −0.999 * | |||
P102 | −0.749 | −0.676 | −1.000 ** | |||
P108 | −0.565 | 0.998 * | 0.989 | |||
P111 | −0.998 * | 0.040 | −0.701 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-del-Campo, S.T.; Pérez-Alva, A.; Sunny-Marottickal, S.; Freyová, M.; Kudera, T.; Klojdova, I.; Baigts-Allende, D.K. Blaťácké Zlato Cheese: A Screenshot of Its Biofunctional and Physicochemical Characteristics. Foods 2025, 14, 2208. https://doi.org/10.3390/foods14132208
Martín-del-Campo ST, Pérez-Alva A, Sunny-Marottickal S, Freyová M, Kudera T, Klojdova I, Baigts-Allende DK. Blaťácké Zlato Cheese: A Screenshot of Its Biofunctional and Physicochemical Characteristics. Foods. 2025; 14(13):2208. https://doi.org/10.3390/foods14132208
Chicago/Turabian StyleMartín-del-Campo, Sandra T., Alexa Pérez-Alva, Sheba Sunny-Marottickal, Michaela Freyová, Tomáš Kudera, Iveta Klojdova, and Diana K. Baigts-Allende. 2025. "Blaťácké Zlato Cheese: A Screenshot of Its Biofunctional and Physicochemical Characteristics" Foods 14, no. 13: 2208. https://doi.org/10.3390/foods14132208
APA StyleMartín-del-Campo, S. T., Pérez-Alva, A., Sunny-Marottickal, S., Freyová, M., Kudera, T., Klojdova, I., & Baigts-Allende, D. K. (2025). Blaťácké Zlato Cheese: A Screenshot of Its Biofunctional and Physicochemical Characteristics. Foods, 14(13), 2208. https://doi.org/10.3390/foods14132208