Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (140)

Search Parameters:
Keywords = nitrate isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 289
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 1897 KiB  
Article
Dual Mechanisms of Nitrate in Alleviating Ammonium Toxicity: Enhanced Photosynthesis and Optimized Ammonium Utilization in Orychophragmus violaceus
by Kaiyan Zhang, Haitao Li, Hongtao Hang, Xinhua He and Yanyou Wu
Agronomy 2025, 15(8), 1789; https://doi.org/10.3390/agronomy15081789 - 25 Jul 2025
Viewed by 232
Abstract
Ammonium (NH4+) toxicity impairs plant growth, but nitrate (NO3) can mitigate this effect through unresolved mechanisms. Using leaf δ13C values (photosynthetic capacity) and a bidirectional 15N tracer (NH4+ assimilation efficiency and source [...] Read more.
Ammonium (NH4+) toxicity impairs plant growth, but nitrate (NO3) can mitigate this effect through unresolved mechanisms. Using leaf δ13C values (photosynthetic capacity) and a bidirectional 15N tracer (NH4+ assimilation efficiency and source utilization), this study investigated these mechanisms in 35-day-old Orychophragmus violaceus plantlets grown in modified Murashige and Skoog media under varying NH4+:NO3 ratios. 15N isotope fractionation during NH4+ (same fixed 20 mM NH4Cl) assimilation decreased with increasing NO3 supply (10, 20, and 40 mM NaNO3). Under 20 mM NH4+15N = −2.64‰) at two 15NO3-labels (δ15N-NO3 = 8.08‰, low 15N, L) and (δ15N-NO3 = 22.67‰, high 15N, H), increasing NO3 concentrations enhanced NO3 assimilation, alleviating acidic stress from NH4+ and improving photosynthesis. Higher NO3 levels also increased NH4+ utilization efficiency, reducing futile NH4+ cycling and decreasing associated 15N fractionation during assimilation. Our results demonstrate that NO3 alleviates NH4+ toxicity primarily by enhancing photosynthetic performance and optimizing NH4+ utilization efficiency. Full article
Show Figures

Figure 1

34 pages, 8503 KiB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 445
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 3168 KiB  
Article
Ammonium-Generating Microbial Consortia in Paddy Soil Revealed by DNA-Stable Isotope Probing and Metatranscriptomics
by Chao-Nan Wang, Yoko Masuda and Keishi Senoo
Microorganisms 2025, 13(7), 1448; https://doi.org/10.3390/microorganisms13071448 - 21 Jun 2025
Viewed by 496
Abstract
Rice paddy fields are sustainable agricultural systems as soil microorganisms help maintain nitrogen fertility through generating ammonium. In these soils, dissimilatory nitrate reduction to ammonium (DNRA), nitrogen fixation, and denitrification are closely linked. DNRA and denitrification share the same initial steps and nitrogen [...] Read more.
Rice paddy fields are sustainable agricultural systems as soil microorganisms help maintain nitrogen fertility through generating ammonium. In these soils, dissimilatory nitrate reduction to ammonium (DNRA), nitrogen fixation, and denitrification are closely linked. DNRA and denitrification share the same initial steps and nitrogen gas, the end product of denitrification, can serve as a substrate for nitrogen fixation. However, the microorganisms responsible for these three reductive nitrogen transformations, particularly those focused on ammonium generation, have not been comprehensively characterized. In this study, we used stable isotope probing with 15NO3, 15N2O, and 15N2, combined with 16S rRNA high-throughput sequencing and metatranscriptomics, to identify ammonium-generating microbial consortia in paddy soils. Our results revealed that several bacterial families actively contribute to ammonium generation under different nitrogen substrate conditions. Specifically, Geobacteraceae (N2O and +N2), Bacillaceae (+NO3 and +N2), Rhodocyclaceae (+N2O and +N2), Anaeromyxobacteraceae (+NO3 and +N2O), and Clostridiaceae (+NO3 and +N2) were involved. Many of these bacteria participate in key ecological processes typical of paddy environments, including iron or sulfate reduction and rice straw decomposition. This study revealed the ammonium-generating microbial consortia in paddy soil that contain several key bacterial drivers of multiple reductive nitrogen transformations and suggested their diverse functions in paddy soil metabolism. Full article
Show Figures

Figure 1

20 pages, 30581 KiB  
Article
Hydrochemical Characteristics, Controlling Factors, and High Nitrate Hazards of Shallow Groundwater in an Urban Area of Southwestern China
by Chang Yang, Si Chen, Jianhui Dong, Yunhui Zhang, Yangshuang Wang, Wulue Kang, Xingjun Zhang, Yuanyi Liang, Dunkai Fu, Yuting Yan and Shiming Yang
Toxics 2025, 13(6), 516; https://doi.org/10.3390/toxics13060516 - 19 Jun 2025
Viewed by 350
Abstract
Groundwater nitrate (NO3) contamination has emerged as a critical global environmental issue, posing serious human health risks. This study systematically investigated the hydrochemical processes, sources of NO3 pollution, the impact of land use on NO3 pollution, [...] Read more.
Groundwater nitrate (NO3) contamination has emerged as a critical global environmental issue, posing serious human health risks. This study systematically investigated the hydrochemical processes, sources of NO3 pollution, the impact of land use on NO3 pollution, and drinking water safety in an urban area of southwestern China. Thirty-one groundwater samples were collected and analyzed for major hydrochemical parameters and dual isotopic composition of NO315N-NO3 and δ18O-NO3). The groundwater samples were characterized by neutral to slightly alkaline nature, and were dominated by the Ca-HCO3 type. Hydrochemical analysis revealed that water–rock interactions, including carbonate dissolution, silicate weathering, and cation exchange, were the primary natural processes controlling hydrochemistry. Additionally, anthropogenic influences have significantly altered NO3 concentration. A total of 19.35% of the samples exceeded the Chinese guideline limit of 20 mg/L for NO3. Isotopic evidence suggested that primary sources of NO3 in groundwater include NH4+-based fertilizer, soil organic nitrogen, sewage, and manure. Spatial distribution maps indicated that the spatial distribution of NO3 concentration correlated strongly with land use types. Elevated NO3 levels were observed in areas dominated by agriculture and artificial surfaces, while lower concentrations were associated with grass-covered ridge areas. The unabsorbed NH4+ from nitrogen fertilizer entered groundwater along with precipitation and irrigation water infiltration. The direct discharge of domestic sewage and improper disposal of livestock manure contributed substantially to NO3 pollution. The nitrogen fixation capacity of the grassland ecosystem led to a relatively low NO3 concentration in the ridge region. Despite elevated NO3 and F concentrations, the entropy weighted water quality index (EWQI) indicated that all groundwater samples were suitable for drinking. This study provides valuable insights into NO3 source identification and hydrochemical processes across varying land-use types. Full article
Show Figures

Figure 1

26 pages, 2710 KiB  
Article
From Contamination to Conservation: A Hydrochemical and Isotopic Evaluation of Groundwater Quality in the Semi-Arid Guire Basin (Morocco)
by Hanane Marzouki, Nouayti Nordine, El Mustapha Azzirgue, Joaquim C. G. Esteves da Silva and El Khalil Cherif
Water 2025, 17(11), 1688; https://doi.org/10.3390/w17111688 - 3 Jun 2025
Cited by 2 | Viewed by 678
Abstract
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ [...] Read more.
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ2H, δ13C), multivariate statistical, and Geographic Information System (GIS) analyses alongside the Water Quality Index (WQI). Sixteen wells were monitored for physicochemical parameters (pH: 7–7.9; EC: 480–3004 μS/cm; BOD5: 1.03–30.5 mg/L; COD: 10.2–45.75 mg/L) and major ions, revealing widespread exceedances of Moroccan standards for Cl, HCO3, Mg2+, Ca2+, and NH4+. WQI classified 81% of samples as “Poor” to “Unsuitable for drinking” (WQI: 51–537), driven by elevated Cl, Na+, and SO42− from Triassic evaporite dissolution and NO3 (up to 45 mg/L) from agricultural runoff. Stable isotopes (δ18O: −7.73‰ to −5.08‰; δ2H: −66.14‰ to −44.20‰) indicate Atlantic-influenced recharge at 900–2200 m altitudes, with a δ18O-δ2H slope of 5.93 reflecting evaporation during infiltration. Strontium (Sr2+/Ca2+: 0.0024–0.0236) and bromide (Br/Cl: 8.47 × 10−5–9.88 × 10−4) ratios further confirm evaporitic dominance over anthropogenic contamination. This work provides actionable insights for policymakers, advocating for targeted restrictions on fertilizers, enhanced monitoring near evaporite zones, and artificial recharge initiatives. By linking geogenic/anthropogenic contamination to governance strategies, this study advances sustainable groundwater management in semi-arid regions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 4165 KiB  
Article
Using Geochemistry, Stable Isotopes and Statistical Tools to Estimate the Sources and Transformation of Nitrate in Groundwater in Jinan Spring Catchment, China
by Kairan Wang, Mingyuan Fan, Zhen Wu, Xin Zhang, Hongbo Wang, Xuequn Chen and Mingsen Wang
Toxics 2025, 13(5), 393; https://doi.org/10.3390/toxics13050393 - 14 May 2025
Viewed by 450
Abstract
Nitrate (NO3) pollution resulting from anthropogenic activities represents one of the most prevalent environmental issues in karst spring catchments of northern China. In June 2021, a comprehensive study was conducted in the Jinan Spring Catchment (JSC), where 30 groundwater and [...] Read more.
Nitrate (NO3) pollution resulting from anthropogenic activities represents one of the most prevalent environmental issues in karst spring catchments of northern China. In June 2021, a comprehensive study was conducted in the Jinan Spring Catchment (JSC), where 30 groundwater and surface water samples were collected. The sources and spatial distribution of nitrate pollution were systematically investigated through hydrochemical analysis combined with dual-isotope tracing techniques (δ15NNO3 and δ18ONO3). Analytical results revealed that the predominant anion and cation sequences were HCO3 > SO42− > Cl > NO3 and Ca2+ > Na+ > Mg2+ > K+, respectively, with HCO3·SO4-Ca identified as the primary hydrochemical type. Notably, the average NO3 concentration in groundwater (46.62 mg/L) significantly exceeded that in surface water (4.96 mg/L). Among the water samples, 11 locations exhibited substantial nitrate pollution, demonstrating an exceedance rate of 42%. Particularly, the NO3-N concentrations in both the upstream recharge area and downstream drainage area were markedly higher than those in the runoff area. The spatial distribution of NO3 concentrations was primarily influenced by mixing processes, with no significant evidence of denitrification observed. The isotopic compositions ranged from −1.42‰ to 12.79‰ for δ15NNO3 and 0.50‰ to 15.63‰ for δ18ONO3. Bayesian isotope mixing model (MixSIAR) analysis indicated that domestic sewage and manure constituted the principal nitrate sources, contributing 37.1% and 56.9% to groundwater and surface water, respectively. Secondary sources included soil organic nitrogen, rainfall and fertilizer NH4+, and chemical fertilizers, while atmospheric deposition showed the lowest contribution rate. Additionally, potential mixing of soil organic nitrogen with chemical fertilizer was identified. Full article
Show Figures

Figure 1

22 pages, 3617 KiB  
Review
Groundwater Vulnerability in the Kou Sub-Basin, Burkina Faso: A Critical Review of Hydrogeological Knowledge
by Tani Fatimata Andréa Coulidiati, Angelbert Chabi Biaou, Moussa Diagne Faye, Roland Yonaba, Elie Serge Gaëtan Sauret, Nestor Fiacre Compaoré and Mahamadou Koïta
Water 2025, 17(9), 1317; https://doi.org/10.3390/w17091317 - 28 Apr 2025
Cited by 1 | Viewed by 1302
Abstract
Groundwater resources in the Kou sub-basin of southwestern Burkina Faso play a critical role in supporting domestic water supply, agriculture, and industry in and around Bobo-Dioulasso, the second-largest city in Burkina Faso. This study synthesizes over three decades of research on groundwater vulnerability, [...] Read more.
Groundwater resources in the Kou sub-basin of southwestern Burkina Faso play a critical role in supporting domestic water supply, agriculture, and industry in and around Bobo-Dioulasso, the second-largest city in Burkina Faso. This study synthesizes over three decades of research on groundwater vulnerability, recharge mechanisms, hydrochemistry, and residence time across the region’s sedimentary aquifers. The Kou basin hosts a complex stratified system of confined and unconfined aquifers, where hydrochemical analyses reveal predominantly Ca–Mg–HCO3 facies, alongside local nitrate (0–860 mg/L), iron (0–2 mg/L) and potassium (<6.5 mg/L–190 mg/L) contamination. Vulnerability assessments—using parametric (DRASTIC, GOD, APSU) and numerical (MODFLOW/MT3D) models—consistently indicate moderate to high vulnerability, especially in alluvial and urban/peri-urban areas. Isotopic results show a deep recharge for a residence time greater than 50 years with deep groundwater dating from 25,000 to 42,000 years. Isotopic data confirm a vertically stratified system, with deep aquifers holding fossil water and shallow units showing recent recharge. Recharge estimates vary significantly (0–354 mm/year) depending on methodology, reflecting uncertainties in climatic, geological, and anthropogenic parameters. This review highlights major methodological limitations, including inconsistent data quality, limited spatial coverage, and insufficient integration of socio-economic drivers. To ensure long-term sustainability, future work must prioritize high-resolution hydrogeological mapping, multi-method recharge modeling, dynamic vulnerability assessments, and strengthened groundwater governance. This synthesis provides a critical foundation for improving water resource management in one of Burkina Faso’s most strategic aquifer systems. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 5008 KiB  
Article
Tracking Nitrate Sources in the Lower Kagera River in the Lake Victoria Basin: Insights from Hydrochemistry, Isotopes, and the MixSIAR Model
by Catherine Mathenge, Stephen Mureithi, Pascal Boeckx, Benjamin Nyilitya and Cargele Masso
Hydrology 2025, 12(4), 84; https://doi.org/10.3390/hydrology12040084 - 11 Apr 2025
Cited by 1 | Viewed by 745
Abstract
Nitrate contamination poses a significant global environmental threat, impacting the water quality in surface and groundwater systems. Despite its considerable impact, there remains a lack of comprehensive understanding of nitrate sources and discharge patterns, particularly in the Lake Victoria basin of East Africa. [...] Read more.
Nitrate contamination poses a significant global environmental threat, impacting the water quality in surface and groundwater systems. Despite its considerable impact, there remains a lack of comprehensive understanding of nitrate sources and discharge patterns, particularly in the Lake Victoria basin of East Africa. To address this gap, a study was conducted in the Kagera River basin, responsible for 33% of Lake Victoria’s surface inflow. This study utilized δ15N and δ18O isotope analysis in nitrate, hydrochemistry, and the Bayesian mixing model (MixSIAR) to identify and quantify nitrate sources. Spatiotemporal data were collected across three seasons: long rains, dry season, and short rains, in areas with diverse land uses. Nitrate isotopic data from water and potential sources were integrated into a Bayesian mixing model to determine the relative contributions of various nitrate sources. Notable spatial variations were observed at sampling sites with concentrations ranging from 0.004 to 3.31 mg L−1. Spatially and temporally, δ15N-NO3 values ranged from +6.0% to +10.2‰, whereas δ18O-NO3 displayed significant spatial differences with mean ranges from −1% to +7‰. MixSIAR analysis revealed important contributions from manure and sewage sources ranging between 49% and 73%. A boron analysis revealed manure was the main source of nitrates in the manure and sewage. These results show that it is necessary to implement improved manure and sewage management practices, especially through proper waste treatment and disposal systems, to enable informed policy decisions to enhance nitrogen management strategies in riparian East Africa, and to safeguard the region’s water resources and ecosystems. Full article
Show Figures

Figure 1

15 pages, 2694 KiB  
Article
Nitrate δ15N and δ18O Values Reveal Mariculture Impacts on Nitrogen Cycling in Sansha Bay, SE China
by Jianpeng Li, Xuan Lu, Qingmei Zhu, Yanpei Zhuang, Wei Yang and Di Qi
J. Mar. Sci. Eng. 2025, 13(2), 343; https://doi.org/10.3390/jmse13020343 - 13 Feb 2025
Cited by 1 | Viewed by 868
Abstract
Global fisheries’ production has intensified rapidly over recent decades, making significant contributions to food security and economic development. However, this growth has exerted pressure on marine ecosystems and altered coastal nitrogen cycling. This study focused on Sansha Bay, an important aquaculture harbor in [...] Read more.
Global fisheries’ production has intensified rapidly over recent decades, making significant contributions to food security and economic development. However, this growth has exerted pressure on marine ecosystems and altered coastal nitrogen cycling. This study focused on Sansha Bay, an important aquaculture harbor in SE China, with measurements of environmental parameters and nitrate N–O isotopic compositions, to explore the impact of distinct mariculture types on nitrogen cycling in a coastal farming bay. The mean nitrate concentration was 120.7 ± 24.2 μmol dm−3, with a mean N/P ratio of 69.6 ± 19.6, indicating that the water column is in a state of eutrophication. Different aquaculture practices influence the nutrient status of water, with mixed farming (shellfish, seaweed, and fish) increasing nitrate concentrations and reducing N/P ratios, while seaweed farming reduces nitrate concentrations and increases N/P ratios. In spring, the average δ15N and δ18O values of nitrate in the water column were 8.4‰ and 8.7‰, respectively, compared with values of 9.8‰ and 4‰ recorded previously in winter. Such variation may be attributed to the greater influence of seaweed farming in spring when nitrate cycling is driven mainly by assimilation. In terms of aquaculture type, nitrate assimilation was stronger in seaweed farming zones, and nitrification was more pronounced in mixed farming zones. Overall, the results demonstrate that different mariculture types in Sansha Bay influence nitrogen cycling in the water body, with seaweed-based aquaculture systems contributing to the sustainable development of marine aquaculture by effectively mitigating eutrophication. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

33 pages, 8519 KiB  
Article
Comprehensive Assessment of the Jebel Zaghouan Karst Aquifer (Northeastern Tunisia): Availability, Quality, and Vulnerability, in the Context of Overexploitation and Global Change
by Emna Gargouri-Ellouze, Fairouz Slama, Samiha Kriaa, Ali Benhmid, Jean-Denis Taupin and Rachida Bouhlila
Water 2025, 17(3), 407; https://doi.org/10.3390/w17030407 - 1 Feb 2025
Cited by 1 | Viewed by 2081
Abstract
Karst aquifers in the Mediterranean region are crucial for water supply and agriculture but are increasingly threatened by climate change and overexploitation. The Jebel Zaghouan aquifer, historically significant for supplying Carthage and Tunis, serves as the focus of this study, which aims to [...] Read more.
Karst aquifers in the Mediterranean region are crucial for water supply and agriculture but are increasingly threatened by climate change and overexploitation. The Jebel Zaghouan aquifer, historically significant for supplying Carthage and Tunis, serves as the focus of this study, which aims to evaluate its availability, quality, and vulnerability to ensure its long-term sustainability. To achieve this, various methods were employed, including APLIS and COP for recharge assessment and vulnerability mapping, SPEI and SGI drought indices, and stable and radioactive isotope analysis. The findings revealed severe groundwater depletion, primarily caused by overexploitation linked to urban expansion. Minimal recharge was observed, even during wet periods. APLIS analysis indicated moderate infiltration rates, consistent with prior reservoir models and the MEDKAM map. Isotopic analysis highlighted recharge from the Atlantic and mixed rainfall, while Tritium and Carbon-14 dating showed a mix of ancient and recent water, emphasizing the aquifer’s complex hydrodynamics. COP mapping classified 80% of the area as moderately vulnerable. Monitoring of nitrate levels indicated fluctuations, with peaks during wet years at Sidi Medien Spring, necessitating control measures to safeguard water quality amid agricultural activities. This study provides valuable insights into the aquifer’s dynamics, guiding sustainable management and preservation efforts. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

14 pages, 1804 KiB  
Article
Sink–Source Characteristics of Carbon and Nitrogen in Four Typical Urban Water Bodies Within a Medium-Sized City of East China
by Shaowen Xie, Shengnan Yang, Yanghui Deng, Haofan Xu, Yanbo Zhou, Shujuan Liu, Hongyi Zhou, Fen Yang and Chaoyang Wei
Appl. Sci. 2025, 15(3), 1434; https://doi.org/10.3390/app15031434 - 30 Jan 2025
Viewed by 771
Abstract
The urban water environment, an integral component of the terrestrial hydrosphere, is closely linked to human activities and serves as a fundamental resource for industrial and agricultural development. Sedimentary organic matter in water bodies contains rich biological, physical, and chemical information, playing a [...] Read more.
The urban water environment, an integral component of the terrestrial hydrosphere, is closely linked to human activities and serves as a fundamental resource for industrial and agricultural development. Sedimentary organic matter in water bodies contains rich biological, physical, and chemical information, playing a central role in nutrient cycling and serving as a primary reservoir for nutrient accumulation. This study assesses the water quality, chemical indicators, and sediment productivity of four typical urban water bodies (Canal, Pond, Lake, and River) in Shaoxing City, eastern China. The results show that artificial water bodies, particularly canals, have higher dissolved oxygen (DO) compared to natural water bodies. Stationary water bodies, such as lakes and ponds, generally have higher total dissolved solids (TDS) and electrical conductivity (EC) than flowing water bodies like rivers and canals. All four urban water body types slightly exceed China’s Class-V water quality standard for total nitrogen (TN), with canals, lakes, ponds, and rivers averaging 1.29, 1.22, 1.23, and 1.23 times the standard, respectively. Ponds exhibit the highest total dissolved nitrogen (TDN) content, while ammonium (NH4+–N) and nitrate (NO3–N) levels are relatively consistent across the bodies, except for lower NO3–N in lakes. Higher organic matter in canals and lakes, indicated by chlorophyll-a (Chl-a) and permanganate index (CODMn), suggests greater eutrophication compared to ponds and rivers. Sediment total organic nitrogen (TON) content is relatively uniform across all water bodies, with slightly higher values in lakes and rivers. Total organic carbon (TOC) content is highest in lake sediments, 1.51 times that of canals. Carbon/nitrogen (C/N) ratios vary, with ponds and lakes showing the highest averages. Source quantification using isotopic analysis (δ13C and δ15N values) indicates that phytoplankton is the primary sedimentary organic matter source in rivers and canals, while terrestrial sources are significant in lakes and ponds. Sewage notably contributes to rivers and canals. These findings highlight the need for targeted pollution control strategies, focusing on phytoplankton and sewage as key sedimentary organic matter sources to mitigate eutrophication and enhance water quality in urban environments. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

18 pages, 8115 KiB  
Article
A Strong Link Between Oceanographic Conditions and Zooplankton δ13C and δ15N Values in the San Jorge Gulf, Argentina
by David Edgardo Galván, Manuela Funes, Flavio Emiliano Paparazzo, Virginia Alonso Roldán, Carla Derisio, Juan Pablo Pisoni, Brenda Temperoni, Daniela Alejandra del Valle, Valeria Segura and Seth D. Newsome
Biology 2024, 13(12), 990; https://doi.org/10.3390/biology13120990 - 29 Nov 2024
Viewed by 1062
Abstract
Maps of (baseline) δ13C and δ15N values of primary producers or consumers near the base of food webs provide crucial information for interpreting patterns in the isotopic composition of consumers that occupy higher trophic levels. In marine systems, understanding [...] Read more.
Maps of (baseline) δ13C and δ15N values of primary producers or consumers near the base of food webs provide crucial information for interpreting patterns in the isotopic composition of consumers that occupy higher trophic levels. In marine systems, understanding how oceanographic variables influence these values enables the creation of dynamic isoscapes across time and space, providing insights into how ecosystems function. The San Jorge Gulf (SJG) in the southwest Atlantic Ocean (45° S–47° S) is an area of particular importance, as it is located on one of the most productive continental shelves in the world, supporting large fisheries and marine mammal and seabird populations. We reconstructed spatial variation in zooplankton δ13C and δ15N values across SJG and investigated their relationship with physical and chemical oceanographic conditions. During cruises in the austral spring of 2016 and 2017, we collected medium-sized copepods whose isotopic composition integrate short-term (days to weeks) variation in oceanographic conditions recorded by phytoplankton at the base of the food web. We also collected data on water column depth, surface and bottom temperatures, water column stability, and macronutrient (nitrate, phosphate, and silicic acid) concentrations. The results revealed significant variation in both δ13C and δ15N values of up to 7-8‰ over a relatively small spatial scale (200–300 km). Copepod δ13C values were lower at the center of the SJG, showing an inverse correlation with water column stability, surface nitrate concentration, and water column depth. δ15N values showed a strong and negative relationship with surface nitrate concentration and water column stability, increasing from south to north in the SJG. δ15N values also showed a positive relationship with surface silicic acid concentration. These spatial patterns in nutrient dynamics and copepod carbon and nitrogen isotope values are interpreted in the context of the dominant northward current and temporal development of the frontal systems in the SJG. Full article
(This article belongs to the Special Issue Applications of Stable Isotope Analysis in Ecology)
Show Figures

Figure 1

15 pages, 3654 KiB  
Article
Sources and Transformation of Nitrate in Shallow Groundwater in the Three Gorges Reservoir Area: Hydrogeochemistry and Isotopes
by Xing Wei, Yulin Zhou, Libo Ran, Mengen Chen, Jianhua Zou, Zujin Fan and Yanan Fu
Water 2024, 16(22), 3299; https://doi.org/10.3390/w16223299 - 17 Nov 2024
Cited by 2 | Viewed by 1412
Abstract
Nitrate is among the most widely occurring contaminants in groundwater on a global scale, posing a serious threat to drinking water supplies. With the advancement of urbanization and mountainous agriculture, the nitrate in the groundwater of Wanzhou District in the Three Gorges Reservoir [...] Read more.
Nitrate is among the most widely occurring contaminants in groundwater on a global scale, posing a serious threat to drinking water supplies. With the advancement of urbanization and mountainous agriculture, the nitrate in the groundwater of Wanzhou District in the Three Gorges Reservoir Area has formed a complex combination of pollution sources. To more accurately identify the sources of nitrate in groundwater, this study integrates hydrochemical methods and environmental isotope techniques to analyze the sources and transformation processes in shallow groundwater nitrate under different land-use types. Furthermore, the Bayesian isotope mixing model (MixSAIR) is employed to calculate the contribution rates in various nitrate sources. The results indicate that nitrate is the primary form of inorganic nitrogen in shallow groundwater within the study area, with nitrate concentrations in cultivated groundwater generally higher than those in construction land and forest land. The transformation process of nitrate is predominantly nitrification, with little to no denitrification observed. In cultivated shallow groundwater, nitrate mainly originates from chemical fertilizers (36.3%), sewage and manure (35.4%), and soil organic nitrogen (24.7%); in forested areas, nitrate primarily comes from atmospheric precipitation (35.3%), chemical fertilizers (31.3%), and soil organic nitrogen (22.1%); while in constructed areas, nitrate mainly derives from chemical fertilizers (46.0%) and sewage and manure (32.2%). These results establish a scientific foundation for formulating groundwater pollution control and management strategies in the region and serve as a reference for identifying nitrate sources in groundwater in regions with comparable hydrogeological features and pollution profiles. Full article
Show Figures

Figure 1

11 pages, 586 KiB  
Article
Newly Established Blueberry Plants: The Role of Inorganic Nitrogen Forms in Nitrogen and Calcium Absorption
by María Ignacia Arias, Adriana Nario, Krystel Rojas, Poulette Blanc and Claudia Bonomelli
Horticulturae 2024, 10(11), 1168; https://doi.org/10.3390/horticulturae10111168 - 4 Nov 2024
Viewed by 1607
Abstract
Efficient nitrogen (N) management is crucial for maximizing the growth of young blueberry plants (Vaccinium corymbosum). This study evaluates the effects of the N fertilization form (ammonium, NH4+; nitrate, or NO3) and application timing on [...] Read more.
Efficient nitrogen (N) management is crucial for maximizing the growth of young blueberry plants (Vaccinium corymbosum). This study evaluates the effects of the N fertilization form (ammonium, NH4+; nitrate, or NO3) and application timing on the blueberries’ establishment, N and Ca absorption, and N distribution. The experiment was conducted in the southern hemisphere, in Chile, from October 2023 to January 2024. Six-month-old blueberry cv. Blue Ribbon plants were cultivated in pots. NH4+ and NO3 were used as full or split-dose applications using the 15N isotopic dilution technique. Plant leaves, stems, root growth, and biomass, as well as their N and Ca contents, were measured. Our results showed that 90 days after nitrogen application, blueberry plants obtained the lowest biomass in their leaves, stems, and roots when NO3 was applied in T1 or T1T2. The same pattern was observed for N and Ca contents, hence for N recovery. During the first period (T1) of application, heavy rain (100 mm) was registered over the course of a few days and caused leaching. Therefore, applying nitrate to young blueberry plants cultivated in areas with spring rainfall and low temperatures would not be recommended because the leaching losses and lower growth conditions, such as low temperatures and high precipitation, led to reduced transpiration, resulting in lower calcium and nitrogen contents. These confirm that N fertilization management (form and timing) can ensure a better establishment for young blueberry plants, optimizing their growth and sustainable production by minimizing nitrogen losses. Full article
(This article belongs to the Special Issue The Effects of Fertilizers on Fruit Production)
Show Figures

Figure 1

Back to TopTop