Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = nicotinamide adenine nucleotide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2678 KB  
Article
Potassium-Hydroxide-Based Extraction of Nicotinamide Adenine Dinucleotides from Biological Samples Offers Accurate Assessment of Intracellular Redox Status
by Tamas Faludi, Daniel Krakko, Jessica Nolan, Robert Hanczko, Akshay Patel, Zach Oaks, Evan Ruggiero, Joshua Lewis, Xiaojing Wang, Ting-Ting Huang, Ibolya Molnar-Perl and Andras Perl
Int. J. Mol. Sci. 2025, 26(21), 10371; https://doi.org/10.3390/ijms262110371 - 24 Oct 2025
Viewed by 860
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) is a primary electron donor for both antioxidant enzymes, such as glutathione reductase, and pro-oxidant enzymes, such as NADPH oxidases that produce reactive oxygen species (ROS) and nitric oxide synthases that generate nitric oxide [...] Read more.
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) is a primary electron donor for both antioxidant enzymes, such as glutathione reductase, and pro-oxidant enzymes, such as NADPH oxidases that produce reactive oxygen species (ROS) and nitric oxide synthases that generate nitric oxide which act as signaling molecules. Monitoring NADPH levels, NADPH/NADP+ ratio, and especially distinguishing from NADH, provides vital information about cellular redox status, energy generation, survival, lineage specification, and death pathway selection. NADPH detection is key to understanding metabolic reprogramming in cancer, aging, and cardiovascular, hormonal, neurodegenerative, and autoimmune diseases. Liquid chromatography combined with mass spectrometry (LC-MS) is crucial for NADPH detection in redox signaling because it offers the high sensitivity, specificity, and comprehensive profiling needed to quantify this vital but labile redox cofactor in complex biological samples. Using hepatoma cell lines, liver tissues, and primary hepatocytes from mice lacking transaldolase or nicotinamide nucleotide transhydrogenase, or having lupus, this study demonstrates that accurate measurement of NADPH depends on its preservation in reduced form which can be optimally achieved by extraction of metabolites in alkaline solution, such as 0.1 M potassium hydroxide (KOH) in comparison to 80% methanol (MeOH) alone or 40:40:20 methanol/acetonitrile/formic acid solution. While KOH extraction coupled with hydrophilic interaction liquid chromatography (HILIC) and mass spectrometry most reliably detects NADPH, NADP, NADH, NAD, polyamines, and polyols, MeOH extraction is best suited for detection of glutathione and overall discrimination between complex metabolite extracts. This study therefore supports performing parallel KOH and MeOH extractions to enable comprehensive metabolomic analysis of redox signaling. Full article
(This article belongs to the Special Issue ROS Signalling and Cell Turnover)
Show Figures

Figure 1

20 pages, 2219 KB  
Article
Metabolomic Profiling Reveals Distinct Signatures in Primary and Secondary Polycythemia
by Murat Yıldırım, Batuhan Erdoğdu, Selim Sayın, Ozan Kaplan, Emine Koç, Mine Karadeniz, Bülent Karakaya, Mustafa Güney, Mustafa Çelebier and Meltem Aylı
Metabolites 2025, 15(9), 630; https://doi.org/10.3390/metabo15090630 - 22 Sep 2025
Viewed by 1155
Abstract
Background/Objectives: The differential diagnosis between primary polycythemia vera (PV) and secondary polycythemia (SP) presents significant clinical challenges owing to substantial phenotypic overlap. This investigation utilized untargeted metabolomic approaches to elucidate disease-specific metabolic perturbations and evaluate the metabolic consequences of cytoreductive therapeutic interventions. [...] Read more.
Background/Objectives: The differential diagnosis between primary polycythemia vera (PV) and secondary polycythemia (SP) presents significant clinical challenges owing to substantial phenotypic overlap. This investigation utilized untargeted metabolomic approaches to elucidate disease-specific metabolic perturbations and evaluate the metabolic consequences of cytoreductive therapeutic interventions. Methods: Plasma specimens obtained from PV patients (n = 40) and SP patients (n = 25) underwent comprehensive metabolomic profiling utilizing liquid chromatography–mass spectrometry (LC-MS) platforms. Multivariate statistical analyses, including principal component analysis (PCA), were employed in conjunction with pathway enrichment analyses to characterize disease-associated metabolic dysregulation. Additionally, receiving treatment (tPV) (n = 25) and not receiving treatment (ntPV) (n = 15) PV patients were compared to assess therapeutic metabolic effects. Results: Comprehensive metabolomic analysis identified 67 significantly altered metabolites between PV and SP patients, with 36 upregulated and 31 downregulated in PV. Key upregulated metabolites in PV included thyrotropin-releasing hormone, 3-sulfinoalanine, nicotinic acid adenine dinucleotide, and protoporphyrin IX, while 4-hydroxyretinoic acid and deoxyuridine were notably downregulated. Pathway enrichment analysis revealed disruptions in taurine, glutamate, nicotinate, and cysteine metabolism in PV. ntPV patients exhibited higher glucose and octanoyl-CoA levels compared to treated patients, indicating the normalization of glucose and fatty acid metabolism with cytoreductive therapy. ntPV was also associated with altered B-vitamin metabolism, including decreased nicotinic acid adenine dinucleotide and increased nicotinamide ribotide levels. Cross-comparison analysis revealed overlapping pathway enrichment in glutamate metabolism, nicotinate and nicotinamide metabolism, and cysteine metabolism between both comparisons. Conclusions: This study demonstrates that PV and SP exhibit fundamentally distinct metabolic signatures, providing novel insights into disease pathogenesis and potential diagnostic biomarkers. The identification of oxidative stress signatures, disrupted energy metabolism, and altered B-vitamin cofactor pathways distinguishes PV from SP at the molecular level. Cytoreductive therapy significantly normalizes metabolic dysregulation, particularly glucose and nucleotide metabolism, validating current therapeutic approaches while revealing broader systemic treatment effects. The metabolic signatures identified, particularly the combination of deoxyuridine, thyrotropin-releasing hormone, and oxidative stress metabolites, may serve as complementary diagnostic tools to traditional morphological and molecular approaches. These findings advance our understanding of myeloproliferative neoplasm pathophysiology and provide a foundation for developing metabolically targeted therapeutic strategies and precision medicine approaches in PV management. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

26 pages, 2486 KB  
Review
The Pentose Phosphate Pathway: From Mechanisms to Implications for Gastrointestinal Cancers
by Jincheng Qiao, Zhengchen Yu, Han Zhou, Wankun Wang, Hao Wu and Jun Ye
Int. J. Mol. Sci. 2025, 26(2), 610; https://doi.org/10.3390/ijms26020610 - 13 Jan 2025
Cited by 9 | Viewed by 8161
Abstract
The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, [...] Read more.
The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, and tumor microenvironment (TME) of GI cancers by modulating redox homeostasis and providing precursors for nucleotide biosynthesis. Targeting PPP enzymes and their regulatory axis has been a potential strategy in anti-GI cancer therapies. In this review, we summarize the regulatory mechanisms of PPP enzymes, elucidate the relationships between the PPP and TME’s elements, and discuss the therapeutic potential of targeting the PPP in GI cancers. Full article
Show Figures

Figure 1

15 pages, 3162 KB  
Article
4-Pyridone-3-carboxamide-1-β-D-ribonucleoside Reduces Cyclophosphamide Effects and Induces Endothelial Inflammation in Murine Breast Cancer Model
by Paulina Mierzejewska, Agnieszka Denslow, Diana Papiernik, Alicja Zabrocka, Barbara Kutryb-Zając, Karol Charkiewicz, Alicja Braczko, Ryszard T. Smoleński, Joanna Wietrzyk and Ewa M. Słomińska
Int. J. Mol. Sci. 2025, 26(1), 35; https://doi.org/10.3390/ijms26010035 - 24 Dec 2024
Viewed by 1716
Abstract
4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) is a nicotinamide derivative, considered a new oncometabolite. 4PYR formation induced a cytotoxic effect on the endothelium. Elevated blood 4PYR concentration was observed in patients with cancer. Still, little is known about the metabolic and functional effects of 4PYR in this [...] Read more.
4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) is a nicotinamide derivative, considered a new oncometabolite. 4PYR formation induced a cytotoxic effect on the endothelium. Elevated blood 4PYR concentration was observed in patients with cancer. Still, little is known about the metabolic and functional effects of 4PYR in this pathology. The study aimed to investigate whether this toxic accumulation of 4PYR may affect the activity of anticancer therapy with cyclophosphamide in the orthotropic model of breast cancer. Female Balb/c mice were injected with 4T1 breast cancer cells and assigned into three groups: treated with PBS (Control), cyclophosphamide-treated (+CP), 4PYR-treated (+4PYR), and mice treated with both 4PYR and CP(+4PYR+CP) for 28 days. Afterward, blood and serum samples, liver, muscle, spleen, heart, lungs, aortas, and tumor tissue were collected for analysis of concentrations of nucleotides, nicotinamide metabolites, and 4PYR with its metabolites, as well as the liver level of cytochrome P450 enzymes. 4PYR treatment caused elevation of blood 4PYR, its monophosphate and a nicotinamide adenine dinucleotide (NAD+) analog—4PYRAD. Blood 4PYRAD concentration in the +4PYR+CP was reduced in comparison to +4PYR. Tumor growth and final tumor mass were significantly decreased in +CP and did not differ in +4PYR in comparison to Control. However, we observed a substantial increase in these parameters in +4PYR+CP as compared to +CP. The extracellular adenosine deamination rate was measured to assess vascular inflammation, and it was higher in +4PYR than the Control. Treatment with 4PYR and CP caused the highest vascular ATP hydrolysis and adenosine deamination rate. 4PYR administration caused significant elevation of CYP2C9 and reduction in CYP3A4 liver concentrations in both +4PYR and +4PYR+CP as compared to Control and +CP. In additional experiments, we compared healthy mice without cancer, treated with 4PYR (4PYR w/o cancer) and PBS (Control w/o cancer), where 4PYR treatment caused an increase in the serum proinflammatory cytokine expression as compared to Control w/o cancer. 4PYR accumulation in the blood interferes with cyclophosphamide anticancer activity and induces a pro-inflammatory shift of endothelial extracellular enzymes, probably by affecting its metabolism by cytochrome P450 enzymes. This observation may have crucial implications for the activity of various anticancer drugs metabolized by cytochrome P450. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

22 pages, 2227 KB  
Article
Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions
by Divyata Vilas Rane, Laura García-Calvo, Kåre Andre Kristiansen and Per Bruheim
Metabolites 2024, 14(11), 607; https://doi.org/10.3390/metabo14110607 - 9 Nov 2024
Viewed by 2198
Abstract
Background: Nicotinamide adenine dinucleotide (NAD+), its precursors, and its derivatives (collectively NADome) play a crucial role in cellular processes and maintain redox homeostasis. Understanding the dynamics of these metabolic pools and redox reactions can provide valuable insights into metabolic functions, especially [...] Read more.
Background: Nicotinamide adenine dinucleotide (NAD+), its precursors, and its derivatives (collectively NADome) play a crucial role in cellular processes and maintain redox homeostasis. Understanding the dynamics of these metabolic pools and redox reactions can provide valuable insights into metabolic functions, especially cellular regulation and stress response mechanisms. The accurate quantification of these metabolites is challenging due to the interconversion between the redox forms. Methods: Our laboratory previously developed a zwitterionic hydrophilic interaction liquid chromatography (zic-HILIC)–tandem mass spectrometry method for the quantification of five essential pyridine nucleotides, including NAD+ derivatives and it’s reduced forms, with 13C isotope dilution and matrix-matched calibration. In this study, we have improved the performance of the chromatographic method and expanded its scope to twelve analytes for a comprehensive view of NAD+ biosynthesis and utilization. The analytical method was validated and applied to investigate Escherichia coli BL21 under varying oxygen supplies including aerobic, microaerobic, and anaerobic conditions. Conclusions: The intracellular absolute metabolite concentrations ranged over four orders of magnitude with NAD+ as the highest abundant, while its precursors were much less abundant. The composition of the NADome at oxygen-limited conditions aligned more with that in the anaerobic conditions rather than in the aerobic phase. Overall, the NADome was quite homeostatic and E. coli rapidly, but in a minor way, adapted the metabolic activity to the challenging shift in the growth conditions and achieved redox balance. Our findings demonstrate that the zic-HILIC-MS/MS method is sensitive, accurate, robust, and high-throughput, providing valuable insights into NAD+ metabolism and the potential significance of these metabolites in various biological contexts. Full article
(This article belongs to the Section Metabolomic Profiling Technology)
Show Figures

Figure 1

25 pages, 751 KB  
Review
Altered Metabolic Signaling and Potential Therapies in Polyglutamine Diseases
by Alisha Vohra, Patrick Keefe and Prasanth Puthanveetil
Metabolites 2024, 14(6), 320; https://doi.org/10.3390/metabo14060320 - 31 May 2024
Cited by 1 | Viewed by 2325
Abstract
Polyglutamine diseases comprise a cluster of genetic disorders involving neurodegeneration and movement disabilities. In polyglutamine diseases, the target proteins become aberrated due to polyglutamine repeat formation. These aberrant proteins form the root cause of associated complications. The metabolic regulation during polyglutamine diseases is [...] Read more.
Polyglutamine diseases comprise a cluster of genetic disorders involving neurodegeneration and movement disabilities. In polyglutamine diseases, the target proteins become aberrated due to polyglutamine repeat formation. These aberrant proteins form the root cause of associated complications. The metabolic regulation during polyglutamine diseases is not well studied and needs more attention. We have brought to light the significance of regulating glutamine metabolism during polyglutamine diseases, which could help in decreasing the neuronal damage associated with excess glutamate and nucleotide generation. Most polyglutamine diseases are accompanied by symptoms that occur due to excess glutamate and nucleotide accumulation. Along with a dysregulated glutamine metabolism, the Nicotinamide adenine dinucleotide (NAD+) levels drop down, and, under these conditions, NAD+ supplementation is the only achievable strategy. NAD+ is a major co-factor in the glutamine metabolic pathway, and it helps in maintaining neuronal homeostasis. Thus, strategies to decrease excess glutamate and nucleotide generation, as well as channelizing glutamine toward the generation of ATP and the maintenance of NAD+ homeostasis, could aid in neuronal health. Along with understanding the metabolic dysregulation that occurs during polyglutamine diseases, we have also focused on potential therapeutic strategies that could provide direct benefits or could restore metabolic homeostasis. Our review will shed light into unique metabolic causes and into ideal therapeutic strategies for treating complications associated with polyglutamine diseases. Full article
(This article belongs to the Special Issue Cellular Metabolism in Neurological Disorders)
Show Figures

Graphical abstract

27 pages, 2289 KB  
Review
Central Role of β-1,4-GalT-V in Cancer Signaling, Inflammation, and Other Disease-Centric Pathways
by Subroto Chatterjee, Rebecca Yuan, Spriha Thapa and Resham Talwar
Int. J. Mol. Sci. 2024, 25(1), 483; https://doi.org/10.3390/ijms25010483 - 29 Dec 2023
Cited by 6 | Viewed by 5600
Abstract
UDP-Galactose: Glucosylceramide, β-1,4-Galactose transferase-V (β-1,4-GalT-V), is a member of a large glycosyltransferase family, primarily involved in the transfer of sugar residues from nucleotide sugars, such as galactose, glucose mannose, etc., to sugar constituents of glycosphingolipids and glycoproteins. For example, UDP-Galactose: Glucosylceramide, β-1,4-galactosyltransferase (β-1,4-GalT-V), [...] Read more.
UDP-Galactose: Glucosylceramide, β-1,4-Galactose transferase-V (β-1,4-GalT-V), is a member of a large glycosyltransferase family, primarily involved in the transfer of sugar residues from nucleotide sugars, such as galactose, glucose mannose, etc., to sugar constituents of glycosphingolipids and glycoproteins. For example, UDP-Galactose: Glucosylceramide, β-1,4-galactosyltransferase (β-1,4-GalT-V), transfers galactose to glucosylceramide to generate Lactosylceramide (LacCer), a bioactive “lipid second messenger” that can activate nicotinamide adenine dinucleotide phosphate(NADPH) oxidase (NOX-1) to produce superoxide’s (O2) to activate several signaling pathways critical in regulating multiple phenotypes implicated in health and diseases. LacCer can also activate cytosolic phospholipase A-2 to produce eicosanoids and prostaglandins to induce inflammatory pathways. However, the lack of regulation of β-1,4-GalT-V contributes to critical phenotypes central to cancer and cardiovascular diseases, e.g., cell proliferation, migration, angiogenesis, phagocytosis, and apoptosis. Additionally, inflammation that accompanies β-1,4-GalT-V dysregulation accelerates the initiation and progression of cancer, cardiovascular diseases, as well as inflammation-centric diseases, like lupus erythematosus, chronic obstructive pulmonary disease (COPD), and inflammatory bowel diseases. An exciting development in this field of research arrived due to the recognition that the activation of β-1,4-GalT-V is a “pivotal” point of convergence for multiple signaling pathways initiated by physiologically relevant molecules, e.g., growth factors, oxidized-low density lipoprotein(ox- LDL), pro-inflammatory molecules, oxidative and sheer stress, diet, and cigarette smoking. Thus, dysregulation of these pathways may well contribute to cancer, heart disease, skin diseases, and several inflammation-centric diseases in experimental animal models of human diseases and in humans. These observations have been described under post-transcriptional modifications of β-1,4- GalT-V. On the other hand, we also point to the important role of β-1-4 GalT-V-mediated glycosylation in altering the formation of glycosylated precursor forms of proteins and their activation, e.g., β-1 integrin, wingless-related integration site (Wnt)/–β catenin, Frizzled-1, and Notch1. Such alterations in glycosylation may influence cell differentiation, angiogenesis, diminished basement membrane architecture, tissue remodeling, infiltrative growth, and metastasis in human colorectal cancers and breast cancer stem cells. We also discuss Online Mendelian Inheritance in Man (OMIM), which is a comprehensive database of human genes and genetic disorders used to provide information on the genetic basis of inherited diseases and traits and information about the molecular pathways and biological processes that underlie human physiology. We describe cancer genes interacting with the β-1,4-GalT-V gene and homologs generated by OMIM. In sum, we propose that β-1,4-GalT-V gene/protein serves as a “gateway” regulating several signal transduction pathways in oxidative stress and inflammation leading to cancer and other diseases, thus rationalizing further studies to better understand the genetic regulation and interaction of β-1,4-GalT-V with other genes. Novel therapies will hinge on biochemical analysis and characterization of β-1,4-GalT-V in patient-derived materials and animal models. And using β-1,4-GalT-V as a “bonafide drug target” to mitigate these diseases. Full article
(This article belongs to the Special Issue Signaling Pathways in Acute and Chronic Inflammation)
Show Figures

Figure 1

20 pages, 2391 KB  
Review
The Emerging Roles of the Metabolic Regulator G6PD in Human Cancers
by Alfar Ahamed, Rendy Hosea, Shourong Wu and Vivi Kasim
Int. J. Mol. Sci. 2023, 24(24), 17238; https://doi.org/10.3390/ijms242417238 - 7 Dec 2023
Cited by 23 | Viewed by 6789
Abstract
Metabolic reprogramming, especially reprogrammed glucose metabolism, is a well-known cancer hallmark related to various characteristics of tumor cells, including proliferation, survival, metastasis, and drug resistance. Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway (PPP), a branch of [...] Read more.
Metabolic reprogramming, especially reprogrammed glucose metabolism, is a well-known cancer hallmark related to various characteristics of tumor cells, including proliferation, survival, metastasis, and drug resistance. Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway (PPP), a branch of glycolysis, that converts glucose-6-phosphate (G6P) into 6-phosphogluconolactone (6PGL). Furthermore, PPP produces ribose-5-phosphate (R5P), which provides sugar-phosphate backbones for nucleotide synthesis as well as nicotinamide adenine dinucleotide phosphate (NADPH), an important cellular reductant. Several studies have shown enhanced G6PD expression and PPP flux in various tumor cells, as well as their correlation with tumor progression through cancer hallmark regulation, especially reprogramming cellular metabolism, sustaining proliferative signaling, resisting cell death, and activating invasion and metastasis. Inhibiting G6PD could suppress tumor cell proliferation, promote cell death, reverse chemoresistance, and inhibit metastasis, suggesting the potential of G6PD as a target for anti-tumor therapeutic strategies. Indeed, while challenges—including side effects—still remain, small-molecule G6PD inhibitors showing potential anti-tumor effect either when used alone or in combination with other anti-tumor drugs have been developed. This review provides an overview of the structural significance of G6PD, its role in and regulation of tumor development and progression, and the strategies explored in relation to G6PD-targeted therapy. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine: 2nd Edition)
Show Figures

Graphical abstract

16 pages, 1423 KB  
Article
Molecular Taxonomy of South Africa’s Catsharks: How Far Have We Come?
by Michaela van Staden, David A. Ebert, Enrico Gennari, Rob W. Leslie, Meaghen E. McCord, Matthew Parkinson, Ralph G. A. Watson, Sabine Wintner, Charlene da Silva and Aletta E. Bester-van der Merwe
Diversity 2023, 15(7), 828; https://doi.org/10.3390/d15070828 - 1 Jul 2023
Cited by 3 | Viewed by 3003
Abstract
The ability to correctly identify specimens at the species level is crucial for assessing and conserving biodiversity. Despite this, species-specific data are lacking for many of South Africa’s catsharks due to a high level of morphological stasis. As comprehensive and curated DNA reference [...] Read more.
The ability to correctly identify specimens at the species level is crucial for assessing and conserving biodiversity. Despite this, species-specific data are lacking for many of South Africa’s catsharks due to a high level of morphological stasis. As comprehensive and curated DNA reference libraries are required for the reliable identification of specimens from morphologically similar species, this study reviewed and contributed to the availability of cytochrome c oxidase subunit I (COI) and nicotinamide adenine dehydrogenase subunit 2 (NADH2) sequences for South Africa’s catsharks. A molecular taxonomic approach, implementing species delimitation and specimen assignment methods, was used to assess and highlight any taxonomic uncertainties and/or errors in public databases. The investigated species were summarised into 47 molecular operational taxonomic units (MOTUs), with some conflicting specimen assignments. Two Apristurus specimens sampled in this study remained unidentified, revealing the presence of previously undocumented genetic diversity. In contrast, haplotype sharing within Haploblepharus—attributed to nucleotide ambiguities—resulted in the delimitation of three congeners into a single MOTU. This study reveals that molecular taxonomy has the potential to flag undocumented species and/or misidentified specimens, and further highlights the need to implement integrated taxonomic assessments on catsharks that represent an irreplaceable component of biodiversity in the region. Full article
Show Figures

Figure 1

16 pages, 7185 KB  
Article
Effect of Agaricus bisporus Polysaccharides on Human Gut Microbiota during In Vitro Fermentation: An Integrative Analysis of Microbiome and Metabolome
by Hui Duan, Qun Yu, Yang Ni, Jinwei Li and Liuping Fan
Foods 2023, 12(4), 859; https://doi.org/10.3390/foods12040859 - 17 Feb 2023
Cited by 15 | Viewed by 3832
Abstract
Agaricus bisporus polysaccharide (ABP) is an important active component in edible mushrooms, but its interaction with gut microbiota is unclear. Therefore, this study evaluated the effect of ABP on the composition and metabolites of human gut microbiota by in vitro batch fermentation. The [...] Read more.
Agaricus bisporus polysaccharide (ABP) is an important active component in edible mushrooms, but its interaction with gut microbiota is unclear. Therefore, this study evaluated the effect of ABP on the composition and metabolites of human gut microbiota by in vitro batch fermentation. The main degrading bacteria for ABP were Bacteroides, Streptococcus, Enterococcus, Paraprevotella, Bifidobacterium, Lactococcus, Megamonas, and Eubacterium, whose relative abundances increased during 24 h of in vitro fermentation. The short-chain fatty acids (SCFAs) content also increased more than 15-fold, accordingly. Moreover, the effects of ABP on the relative abundance of Bacteroides (Ba.) and Bifidobacterium (Bi.) at the species level were further determined. ABP can enrich Ba. thetaiotaomicron, Ba. intestinalis, Ba. uniformis, and Bi. longum. PICRUSt analysis revealed that the catabolism of ABP was accompanied by changes in the metabolism of carbohydrates, nucleotides, lipids and amino acids, which were also supported by metabonomic results. It is worth mentioning that, after 24 h fermentation, the relative amounts of gamma-aminobutyric acid (GABA), nicotinamide and nicotinamide adenine dinucleotide (NAD+) had 14.43-, 11.34- and 15.36-fold increases, respectively, which were positively related to Bacteroides (Ba. thetaiotaomicron, Ba. intestinalis), Streptococcus, and Bi. longum (|r| > 0.98). These results laid the research foundation for exploring ABP as a potential prebiotic or dietary supplement for the targeted regulation of gut microbiota or metabolites. Full article
Show Figures

Figure 1

18 pages, 3312 KB  
Article
Identification of Protective Amino Acid Metabolism Events in Nursery Pigs Fed Thermally Oxidized Corn Oil
by Yue Guo, Lei Wang, Andrea Hanson, Pedro E. Urriola, Gerald C. Shurson and Chi Chen
Metabolites 2023, 13(1), 103; https://doi.org/10.3390/metabo13010103 - 8 Jan 2023
Cited by 5 | Viewed by 2888
Abstract
Feeding thermally oxidized lipids to pigs has been shown to compromise growth and health, reduce energy digestibility, and disrupt lipid metabolism. However, the effects of feeding oxidized lipids on amino acid metabolism in pigs have not been well defined even though amino acids [...] Read more.
Feeding thermally oxidized lipids to pigs has been shown to compromise growth and health, reduce energy digestibility, and disrupt lipid metabolism. However, the effects of feeding oxidized lipids on amino acid metabolism in pigs have not been well defined even though amino acids are indispensable for the subsistence of energy metabolism, protein synthesis, the antioxidant system, and many other functions essential for pig growth and health. In this study, oxidized corn oil (OCO)-elicited changes in amino acid homeostasis of nursery pigs were examined by metabolomics-based biochemical analysis. The results showed that serum and hepatic free amino acids and metabolites, including tryptophan, threonine, alanine, glutamate, and glutathione, as well as associated metabolic pathways, were selectively altered by feeding OCO, and more importantly, many of these metabolic events possess protective functions. Specifically, OCO activated tryptophan-nicotinamide adenosine dinucleotide (NAD+) synthesis by the transcriptional upregulation of the kynurenine pathway in tryptophan catabolism and promoted adenine nucleotide biosynthesis. Feeding OCO induced oxidative stress, causing decreases in glutathione (GSH)/oxidized glutathione (GSSG) ratio, carnosine, and ascorbic acid in the liver but simultaneously promoted antioxidant responses as shown by the increases in hepatic GSH and GSSG as well as the transcriptional upregulation of GSH metabolism-related enzymes. Moreover, OCO reduced the catabolism of threonine to α-ketobutyrate in the liver by inhibiting the threonine dehydratase (TDH) route. Overall, these protective metabolic events indicate that below a certain threshold of OCO consumption, nursery pigs are capable of overcoming the oxidative stress and metabolic challenges posed by the consumption of oxidized lipids by adjusting antioxidant, nutrient, and energy metabolism, partially through the transcriptional regulation of amino acid metabolism. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Graphical abstract

16 pages, 1401 KB  
Article
Unbalance between Pyridine Nucleotide Cofactors in The SOD1 Deficient Yeast Saccharomyces cerevisiae Causes Hypersensitivity to Alcohols and Aldehydes
by Magdalena Kwolek-Mirek, Sabina Bednarska, Aleksandra Dubicka-Lisowska, Roman Maslanka, Renata Zadrag-Tecza and Pawel Kaszycki
Int. J. Mol. Sci. 2023, 24(1), 659; https://doi.org/10.3390/ijms24010659 - 30 Dec 2022
Cited by 8 | Viewed by 2830
Abstract
Alcohol and aldehyde dehydrogenases are especially relevant enzymes involved in metabolic and detoxification reactions that occur in living cells. The comparison between the gene expression, protein content, and enzymatic activities of cytosolic alcohol and aldehyde dehydrogenases of the wild-type strain and the Δ [...] Read more.
Alcohol and aldehyde dehydrogenases are especially relevant enzymes involved in metabolic and detoxification reactions that occur in living cells. The comparison between the gene expression, protein content, and enzymatic activities of cytosolic alcohol and aldehyde dehydrogenases of the wild-type strain and the Δsod1 mutant lacking superoxide dismutase 1, which is hypersensitive to alcohols and aldehydes, shows that the activity of these enzymes is significantly higher in the Δsod1 mutant, but this is not a mere consequence of differences in the enzymatic protein content nor in the expression levels of genes. The analysis of the NAD(H) and NADP(H) content showed that the higher activity of alcohol and aldehyde dehydrogenases in the Δsod1 mutant could be a result of the increased availability of pyridine nucleotide cofactors. The higher level of NAD+ in the Δsod1 mutant is not related to the higher level of tryptophan; in turn, a higher generation of NADPH is associated with the upregulation of the pentose phosphate pathway. It is concluded that the increased sensitivity of the Δsod1 mutant to alcohols and aldehydes is not only a result of the disorder of redox homeostasis caused by the induction of oxidative stress but also a consequence of the unbalance between pyridine nucleotide cofactors. Full article
Show Figures

Figure 1

11 pages, 340 KB  
Article
Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma
by Sunny Li-Yun Chang, Po-Jen Yang, Yen-You Lin, Ya-Jing Jiang, Po-I Liu, Chang-Lun Huang, Shun-Fa Yang and Chih-Hsin Tang
Int. J. Environ. Res. Public Health 2022, 19(22), 15172; https://doi.org/10.3390/ijerph192215172 - 17 Nov 2022
Cited by 4 | Viewed by 2245
Abstract
Lung adenocarcinoma (LUAD) is the most common histologic type of lung cancer. Mutations of the epidermal growth factor receptor (EGFR) gene are among the most common genetic alterations in LUAD and are the targets of EGFR tyrosine kinase inhibitors. The enzyme visfatin is [...] Read more.
Lung adenocarcinoma (LUAD) is the most common histologic type of lung cancer. Mutations of the epidermal growth factor receptor (EGFR) gene are among the most common genetic alterations in LUAD and are the targets of EGFR tyrosine kinase inhibitors. The enzyme visfatin is involved in the generation of the oxidized form of nicotinamide adenine dinucleotide (NAD+) and regulation of intracellular adenosine triphosphate (ATP), critical processes in cancer cell survival and growth. This study explored the relationship between visfatin single nucleotide polymorphisms (SNPs) with EGFR status and the clinicopathologic development of LUAD in a cohort of 277 Taiwanese men and women with LUAD. Allelic discrimination of four visfatin SNPs rs11977021, rs61330082, rs2110385 and rs4730153 was determined using a TaqMan Allelic Discrimination assay. We observed higher prevalence rates of advanced (T3/T4) tumors and distant metastases in EGFR wild-type patients carrying the rs11977021 CT + TT and rs61330082 GA + AA genotypes, respectively, compared with patients carrying the CC and GG genotypes. EGFR wild-type patients carrying the rs11977021 CT + TT genotypes were also more likely to develop severe (stage III/IV) malignancy compared with patients carrying the CC genotype. An analysis that included all patients found that the association persisted between the rs11977021 CT + TT and rs61330082 GA + AA genotypes and the development of T3/T4 tumors compared with patients carrying the rs11977021 CC and rs61330082 GG genotypes. In conclusion, these data indicate that visfatin SNPs may help to predict tumor staging in LUAD, especially in patients with EGFR wild-type status. Full article
17 pages, 1981 KB  
Article
Swim Training Affects on Muscle Lactate Metabolism, Nicotinamide Adenine Dinucleotides Concentration, and the Activity of NADH Shuttle Enzymes in a Mouse Model of Amyotrophic Lateral Sclerosis
by Karol Cieminski, Damian Jozef Flis, Katarzyna Patrycja Dzik, Jan Jacek Kaczor, Mariusz Roman Wieckowski, Jedrzej Antosiewicz and Wieslaw Ziolkowski
Int. J. Mol. Sci. 2022, 23(19), 11504; https://doi.org/10.3390/ijms231911504 - 29 Sep 2022
Cited by 10 | Viewed by 3381
Abstract
In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) [...] Read more.
In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods. In the untrained terminal ALS group, there were decreased blood lactate levels (p < 0.001) and increased skeletal muscle lactate levels (p < 0.05) as compared with a WT group of mice. The amount of nicotinamide adenine dinucleotides in the ALS groups were also significantly reduced as well as LDH activity and the level of MCT1. Swim training increased lactate levels in the blood (p < 0.05 vs. ALS TERMINAL untrained). In addition, cytosolic MDH activity and the cMDH/LDH 2.1 ratio were significantly higher in trained vs. untrained mice (p < 0.05). The data indicate significant dysfunction of lactate metabolism in ALS mice, associated with a reduction in muscle anaerobic metabolism and NADH transporting enzymes, as well as swim-induced compensation of energy demands in the ALS mice. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis as a Systemic Disease)
Show Figures

Figure 1

18 pages, 1323 KB  
Review
Glucose 6-P Dehydrogenase—An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise
by Esther García-Domínguez, Aitor Carretero, Aurora Viña-Almunia, Julio Domenech-Fernandez, Gloria Olaso-Gonzalez, Jose Viña and Mari Carmen Gomez-Cabrera
Cells 2022, 11(19), 3041; https://doi.org/10.3390/cells11193041 - 28 Sep 2022
Cited by 26 | Viewed by 9075
Abstract
Hypomorphic Glucose 6-P dehydrogenase (G6PD) alleles, which cause G6PD deficiency, affect around one in twenty people worldwide. The high incidence of G6PD deficiency may reflect an evolutionary adaptation to the widespread prevalence of malaria, as G6PD-deficient red blood cells (RBCs) are hostile to [...] Read more.
Hypomorphic Glucose 6-P dehydrogenase (G6PD) alleles, which cause G6PD deficiency, affect around one in twenty people worldwide. The high incidence of G6PD deficiency may reflect an evolutionary adaptation to the widespread prevalence of malaria, as G6PD-deficient red blood cells (RBCs) are hostile to the malaria parasites that infect humans. Although medical interest in this enzyme deficiency has been mainly focused on RBCs, more recent evidence suggests that there are broader implications for G6PD deficiency in health, including in skeletal muscle diseases. G6PD catalyzes the rate-limiting step in the pentose phosphate pathway (PPP), which provides the precursors of nucleotide synthesis for DNA replication as well as reduced nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is involved in the detoxification of cellular reactive oxygen species (ROS) and de novo lipid synthesis. An association between increased PPP activity and the stimulation of cell growth has been reported in different tissues including the skeletal muscle, liver, and kidney. PPP activity is increased in skeletal muscle during embryogenesis, denervation, ischemia, mechanical overload, the injection of myonecrotic agents, and physical exercise. In fact, the highest relative increase in the activity of skeletal muscle enzymes after one bout of exhaustive exercise is that of G6PD, suggesting that the activation of the PPP occurs in skeletal muscle to provide substrates for muscle repair. The age-associated loss in muscle mass and strength leads to a decrease in G6PD activity and protein content in skeletal muscle. G6PD overexpression in Drosophila Melanogaster and mice protects against metabolic stress, oxidative damage, and age-associated functional decline, and results in an extended median lifespan. This review discusses whether the well-known positive effects of exercise training in skeletal muscle are mediated through an increase in G6PD. Full article
(This article belongs to the Special Issue Redox Control of Cell Signaling in Cardiac and Skeletal Muscle)
Show Figures

Graphical abstract

Back to TopTop