Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = nickel–titanium file

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2021 KiB  
Article
Evaluation of Pre-Sterilization Cleaning Protocols on Endodontic Files Using SEM: Effects on Elemental Composition and Surface Roughness
by Rahaf A. Almohareb, Reem M. Barakat, Hadeel Alzahrani, Raghad Alkhattabi, Renad Alsaeed, Sarah Faludah and Reem Alsaqat
Crystals 2025, 15(8), 684; https://doi.org/10.3390/cryst15080684 - 27 Jul 2025
Viewed by 197
Abstract
This study evaluated the efficacy of various cleaning protocols on two nickel–titanium (NiTi) file systems—RaCe EVO(RE) and EdgeFile X7(EE)—using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Eighty-four NiTi files (42RE, 42EE) were divided into seven groups (n = 12), including a [...] Read more.
This study evaluated the efficacy of various cleaning protocols on two nickel–titanium (NiTi) file systems—RaCe EVO(RE) and EdgeFile X7(EE)—using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Eighty-four NiTi files (42RE, 42EE) were divided into seven groups (n = 12), including a group with unused, sterilized files and a group of used files without cleaning. The remaining files were subjected to simulated clinical use, followed by different cleaning methods, such as soaking in sodium hypochlorite (NaOCl), ethanol wiping (with or without magnification), enzymatic spray, and enzymatic solution. SEM images were imported into ImageJ to quantify surface changes, while EDX assessed elemental composition. The p-value was set to ≤0.05 for significance. Apart from the unused files, calcium and phosphorus—indicators of dentin debris—were present in all groups, especially those cleaned with enzymatic spray (p ≤ 0.0001). Their percentage in RE files soaked in NaOCl or wiped with ethanol was statistically lower than the positive control (p ≤ 0.0001). Post-use, all files showed significantly higher surface asymmetry in Groups 2 and 6 (p = 0.001). Cleaning efficacy depends on the type of NiTi file. RE files responded well to both wiping and soaking, while EE required soaking for effective debris removal. Enzymatic spray was ineffective. Full article
Show Figures

Figure 1

12 pages, 2589 KiB  
Article
Understanding Cyclic Fatigue in Three Nickel–Titanium Pediatric Files: An In Vitro Study for Enhanced Patient Care
by Alwaleed Abushanan, Rajashekhara Bhari Sharanesha, Fahd Aljarbou, Hadi Alamri, Mohammed Hamad Almasud, Abdulfatah AlAzmah, Sara Alghamdi and Mubashir Baig Mirza
Medicina 2025, 61(5), 830; https://doi.org/10.3390/medicina61050830 - 30 Apr 2025
Cited by 1 | Viewed by 389
Abstract
Background and Objectives: Nickel–titanium (Niti) instruments have enhanced root canal cleaning in primary teeth, but file fractures are still common. Materials and Methods: This study evaluated the cyclic fatigue resistance of 120 Niti files from four different systems, A: Kedo SG (n [...] Read more.
Background and Objectives: Nickel–titanium (Niti) instruments have enhanced root canal cleaning in primary teeth, but file fractures are still common. Materials and Methods: This study evaluated the cyclic fatigue resistance of 120 Niti files from four different systems, A: Kedo SG (n = 30); B: Neoendo Pedoflex (n = 30); C: Pedoflex Waldent files (n = 30); and D: Vortex Blue files (n = 30). All the files had similar tip diameters (0.25 mm) and tapers (0.4%) and underwent heat treatment during manufacturing. Cyclic fatigue tests showed notable variations in cycles to fracture (NCF) across groups. All fracture surfaces of the files were assessed through scanning electron microscopy. Results: The mean values achieved in the experimental groups (A, B, C) were less than those in the control Group D (976.90 ± 1085.19). Files in Group A demonstrated the highest NCF (697.01 ± 420.09), while Pedoflex files in Group C showed the lowest values (203.88 ± 155.46). Statistical analysis using the Mann–Whitney test revealed significant differences between Group C and Groups A, B, and D and no differences among Groups A, B, and D. Conclusions: These findings suggest that Kedo SG and Neoendo Pedoflex files offer comparable cyclic fatigue resistance to Vortex Blue files. In contrast, Pedoflex Waldent files exhibit lower resistance to fracture. Full article
(This article belongs to the Special Issue Current and Future Trends in Dentistry and Oral Health)
Show Figures

Figure 1

10 pages, 4772 KiB  
Article
Effectiveness of Nickel–Titanium Files for Retreatment of Molars Filled with Single-Cone Hydraulic Technique Using Bioceramic Sealers: An In Vitro Study
by Jane Lee, Hyeon-Cheol Kim, Timothy Kirkpatrick, David E. Jaramillo, Sang Won Kwak and Ji Wook Jeong
Materials 2025, 18(6), 1265; https://doi.org/10.3390/ma18061265 - 13 Mar 2025
Viewed by 848
Abstract
Recently, the single-cone hydraulic canal filling technique using bioceramic sealers was found to hinder retreatment due to the mechanical properties of the bioceramic sealers. This study assessed the effectiveness of four nickel–titanium rotary files in removing gutta-percha and bioceramic sealer from molar root [...] Read more.
Recently, the single-cone hydraulic canal filling technique using bioceramic sealers was found to hinder retreatment due to the mechanical properties of the bioceramic sealers. This study assessed the effectiveness of four nickel–titanium rotary files in removing gutta-percha and bioceramic sealer from molar root canals in vitro. Eighty-eight root canals from extracted molars were instrumented with Vortex Blue rotary files and filled with gutta-percha and bioceramic sealer using a single-cone technique. After 30 days, the filled canals were randomly divided into four groups according to the file used for re-instrumentation: ProTaper Gold (PTG), Endo ReStart (ERS), XP-3D Shaper (XPD), and HyFlex Remover (HFR). This study assessed whether root canal filling material removal and patency were achieved within a 10-min time frame, recording the time required in seconds. The rate of regaining patency and the time required to achieve patency were compared among groups using a generalized linear model. Scanning electron microscopy was used to evaluate the mechanical changes to the files after use. The patency rate of XPD and HFR was significantly higher than PTG. ERS and XPD demonstrated shorter patency times than HFR and significantly shorter patency times than PTG. SEM images revealed a varied range of reverse windings across file groups. PTG and ERS exhibited microcracks and fractured tips, while XPD and HFR did not display these mechanical alterations. The four file systems in this study displayed varying levels of effectiveness in the retreatment of root canals filled with bioceramic sealers. Full article
(This article belongs to the Special Issue Properties of Dental Restorative Materials (Volume II))
Show Figures

Figure 1

16 pages, 5119 KiB  
Article
A Comparative Analysis of ProTaper Ultimate and Five Multifile Systems: Design, Metallurgy, and Mechanical Performance
by Jorge N. R. Martins, Emmanuel João Nogueira Leal Silva, Victor Talarico Leal Vieira, Rui Pereira da Costa, Abayomi O. Baruwa, Francisco Manuel Braz Fernandes and Marco Aurélio Versiani
Materials 2025, 18(6), 1260; https://doi.org/10.3390/ma18061260 - 13 Mar 2025
Viewed by 915
Abstract
The present research compared the design, metallurgical properties, and mechanical characteristics of the ProTaper Ultimate instruments with five multifile systems. A total of 469 new nickel–titanium rotary finishing instruments, all 25 mm in length but varying in size, taper, and metal alloy composition, [...] Read more.
The present research compared the design, metallurgical properties, and mechanical characteristics of the ProTaper Ultimate instruments with five multifile systems. A total of 469 new nickel–titanium rotary finishing instruments, all 25 mm in length but varying in size, taper, and metal alloy composition, from six different multifile systems (ProTaper Ultimate, ProTaper Next, ProFile, Mtwo, EndoSequence, and GT Series X), were inspected for irregularities and analyzed for their spiral density (spirals per millimetre), blade design, surface finishing, alloy composition, phase transformation temperatures, and mechanical performance (microhardness, torsional, and bending resistance tests). Group comparisons were performed using Kruskal–Wallis and one-way ANOVA with post hoc Tukey’s tests (α = 5%). ProFile instruments exhibited a greater number of spirals and a higher density of spirals per millimetre compared to the other systems. Microscopic analysis revealed distinct tip geometries and blade designs among tested instruments. All of them displayed parallel marks from the machining process, but the EndoSequence system had the smoothest surface finish. The alloys of all instruments consisted of an almost equiatomic ratio of nickel to titanium. At the testing temperature, the ProTaper Ultimate system exhibited a complete R-phase crystallographic arrangement, while the ProFile and Mtwo systems were fully austenitic. The ProTaper Ultimate F2, F3, and FX instruments demonstrated the highest maximum torque values (1.40, 1.45, and 3.55 N.cm, respectively) and the lowest maximum bending loads (202.7, 254.9, and 408.4 gf, respectively). EndoSequence instruments showed the highest angles of rotation, while the highest microhardness values were recorded for GT Series X (407.1 HVN) and ProTaper Next (425.0 HVN) instruments. The ProTaper Ultimate system showed a high spiral density per millimetre and a complete R-phase crystallographic arrangement at room temperature, which significantly contributed to its superior flexibility and torsional strength when compared to the other tested systems. Full article
(This article belongs to the Special Issue Development and Research of New Dental Materials)
Show Figures

Figure 1

17 pages, 6079 KiB  
Article
Retrieval of AH Plus Bioceramic and Ceraseal Versus AH Plus in Endodontic Retreatment
by Eurok Shim, Jee Woo Son, Jiyoung Kwon, Hyun-Jung Kim, Ji-Hyun Jang, Seok Woo Chang and Soram Oh
J. Clin. Med. 2025, 14(6), 1826; https://doi.org/10.3390/jcm14061826 - 8 Mar 2025
Viewed by 1029
Abstract
Background/Objectives: Since biomineralization by calcium silicate-based sealers (CSBSs) was reported, retrieving canal filling materials may be challenging during endodontic retreatment due to their adhesion to dentin. This study aimed to evaluate the possibility of removing residual mineral deposits from two kinds of CSBSs [...] Read more.
Background/Objectives: Since biomineralization by calcium silicate-based sealers (CSBSs) was reported, retrieving canal filling materials may be challenging during endodontic retreatment due to their adhesion to dentin. This study aimed to evaluate the possibility of removing residual mineral deposits from two kinds of CSBSs compared to the AH Plus Jet (AHJ). Methods: Root canals of mandibular premolars were prepared, obturated with the sealer-based obturation method using a WOG medium gutta-percha cone and one of the following sealers: AHJ, AH Plus Bioceramic (AHB), and Ceraseal (CER) (n = 12/group). After 3 weeks, endodontic retreatment was conducted with the WOG files, followed by instrumentation with XP-endo Finisher (XPF). Micro-computed tomography scanning was obtained after canal filling, after retreatment with WOG, and after the use of XPF. The percentage of the removed filling volume was calculated. One-way ANOVA with Tukey’s test and a non-parametric test with Bonferroni’s correction were performed. Root canal dentin after retreatment was examined using a scanning electron microscope (SEM). Results: After supplementary instrumentation with XPF, the mean residual filling volumes for the AHJ, AHB, and CER groups were 1.35 mm3, 0.55 mm3, and 0.82 mm3, respectively. The AHJ group showed greater residual volume compared to the AHB group (p < 0.05). The AHB and CER groups demonstrated higher mean percentages of removed filling volume at 94.8%, and 92.5%, respectively, compared to 87.1% for the AHJ group (p < 0.05). More mineral deposits were observed in the CER group with SEM. Conclusions: AHB and CER are retrievable during endodontic retreatment, with CER preferable due to greater mineral deposits in dentinal tubules. Full article
(This article belongs to the Special Issue Current Advances in Endodontics and Dental Traumatology)
Show Figures

Figure 1

12 pages, 2097 KiB  
Article
Temperature-Dependent Effects on Cyclic Fatigue Resistance in Three Reciprocating Endodontic Systems: An In Vitro Study
by Marcela Salamanca Ramos, José Aranguren, Giulia Malvicini, Cesar De Gregorio, Carmen Bonilla and Alejandro R. Perez
Materials 2025, 18(5), 952; https://doi.org/10.3390/ma18050952 - 21 Feb 2025
Viewed by 589
Abstract
This study aimed to analyze the effect of 1% sodium hypochlorite (NaOCl) solution at different temperatures on endodontic file resistance to cyclic fatigue. A total of 90 files, Reciproc NiTi M-Wire® (REC) (n = 30), WaveOne Gold® (WOG) (n = 30), [...] Read more.
This study aimed to analyze the effect of 1% sodium hypochlorite (NaOCl) solution at different temperatures on endodontic file resistance to cyclic fatigue. A total of 90 files, Reciproc NiTi M-Wire® (REC) (n = 30), WaveOne Gold® (WOG) (n = 30), and Reciproc Blue® (RB) (n = 30) were activated under constant irrigation with 1% NaOCl at 5, 37, and 60 °C in a stainless-steel artificial canal (curvature angle = 60°; radius = 5 mm). The time to the fracture and the maximum and minimum load were recorded for each instrument, and data were subjected to statistical analysis. A higher number of cycles to fracture at 5 °C was observed between WOG and RB compared to the REC system (p < 0.05). The RB files were more resistant to cyclic fatigue fracture at 60 °C than WOG and REC (p < 0.05). No statistically significant differences were found between the mean values of the three file types used at 37 °C. The high temperature of NaOCl significantly affects the lifespan of endodontic files, making them more prone to fractures due to cyclic fatigue. The files manufactured with heat treatment showed a longer life than M-wire reciproc files. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (3rd Edition))
Show Figures

Figure 1

11 pages, 1160 KiB  
Article
Evaluation and Comparison of Manual and Mechanical Endodontic Instrumentation Completed by Undergraduate Dental Students on Endodontic Blocks
by António Ginjeira, Abayomi O. Baruwa and Karla Baumotte
Dent. J. 2024, 12(11), 363; https://doi.org/10.3390/dj12110363 - 14 Nov 2024
Cited by 1 | Viewed by 2057
Abstract
Background: The shaping of root canal space was completed using manual stainless steel files in earlier decades and with the advent of mechanical nickel–titanium (NiTi) instruments, there is potential for more efficient root canal preparation. Despite the advantages of NiTi instruments, their adoption [...] Read more.
Background: The shaping of root canal space was completed using manual stainless steel files in earlier decades and with the advent of mechanical nickel–titanium (NiTi) instruments, there is potential for more efficient root canal preparation. Despite the advantages of NiTi instruments, their adoption in undergraduate dental education remains limited. The aim of this study was to evaluate three root canal instrumentation techniques, manual instrumentation using stainless steel hand files, continuous rotation employing ProTaper Gold (PTG) files, and reciprocation with WaveOne Gold (WOG) files, on endodontic resin blocks to assess the quality of preparation and the time required for instrumentation. Methods: A total of 36 third-year dental students, all lacking prior experience in root canal procedures, were divided into six groups to prepare 108 resin endodontic blocks with each student preparing 3 blocks. Images were captured at the preoperative, intraoperative, and postoperative stages to facilitate comparisons and measurements of the prepared blocks to assess the degree of resin removal, apical deviation, and mid-cervical wear. Furthermore, questionnaires were distributed to assess the students’ experiences and satisfaction with the techniques. The Friedman test, Wilcoxon test with Bonferroni correction, and Kruskal–Wallis test with Mann–Whitney U test were used to analyse and compare techniques, with the level of significance set at p < 0.05. Results: Instrumentation with PTG exhibited significantly reduced apical deviation (0.073 ± 0.003) compared to both the WOG and manual instrumentations (p < 0.001). Significant differences in mid-cervical wear were observed only between PTG and the manual instrumentation. In terms of resin removal, the manual instrumentation displayed greater variability and was five times slower to complete the instrumentation. In total, 90% of students favoured mechanical instrumentation, with substantial preferences for them over manual techniques. Conclusions: Mechanical instrumentation techniques, notably with the PTG system, were significantly faster and more effective in preparation quality. This highlights the potential for the inclusion of mechanical instrumentation in undergraduate dental curricula. Full article
(This article belongs to the Special Issue Dental Education: Innovation and Challenge)
Show Figures

Figure 1

11 pages, 2082 KiB  
Article
Comparative Analysis of NiTi Instruments with Different Alloy Treatments
by José Aranguren, Felipe Oliveros-Porras, Ana Ramírez-Muñoz, Irene Pérez, Marcela Salamanca-Ramos, Karim Aazzouzi-Raiss and Alejandro R. Pérez
Materials 2024, 17(19), 4817; https://doi.org/10.3390/ma17194817 - 30 Sep 2024
Cited by 3 | Viewed by 1830
Abstract
This study aims to compare the cyclic fatigue resistance of nickel–titanium (NiTi) endodontic instruments, focusing on the impact of various alloy treatments and manufacturing processes across different generations of these instruments; Twenty instrumentation systems from different generations, comprising both continuous and reciprocating motion [...] Read more.
This study aims to compare the cyclic fatigue resistance of nickel–titanium (NiTi) endodontic instruments, focusing on the impact of various alloy treatments and manufacturing processes across different generations of these instruments; Twenty instrumentation systems from different generations, comprising both continuous and reciprocating motion designs, were tested. Four hundred instruments underwent cyclic fatigue testing using an INSTRON machine, with the time and number of cycles to fracture (NCF) recorded for each instrument. Statistical analyses were performed to compare the fatigue resistance between systems, generations, and motion types; Instruments treated with advanced thermal processing, such as Excalibur, Reciproc Blue, and TruNatomy, demonstrated superior resistance to fracture, whereas systems like Protaper Universal, K3XF, and 2Shape showed the lowest resistance. Reciprocating instruments generally exhibited higher cyclic fatigue resistance than continuously rotating instruments; Technological advancements in NiTi instrument design, especially the implementation of heat-treated alloys, have improved cyclic fatigue resistance, enhancing the safety and efficiency of endodontic treatments. Reciprocating systems, in particular, exhibit superior fracture resistance, suggesting their greater utility in challenging clinical conditions. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

11 pages, 1916 KiB  
Article
Cyclic Fatigue Resistance of Four Heat-Treated Nickel-Titanium Files in Severely Curved Simulated Canals: An In Vitro Study
by Katia Greco, Gaetano Paolone, Giuseppe Cicero, Giulia Tetè, Nicola Cantile, Maria Teresa Sberna, Teresa Saladino, Enrico Felice Gherlone and Giuseppe Cantatore
J. Clin. Med. 2024, 13(19), 5739; https://doi.org/10.3390/jcm13195739 - 26 Sep 2024
Cited by 3 | Viewed by 1224
Abstract
Background: Rotary Ni-Ti files are susceptible to sudden intra-canal separation due to cyclic fatigue stress, particularly in curved canals. To increase resistance to cyclic fatigue, new heat-treated files have been introduced. This study aimed to compare the performance of four heat-treated Ni-Ti [...] Read more.
Background: Rotary Ni-Ti files are susceptible to sudden intra-canal separation due to cyclic fatigue stress, particularly in curved canals. To increase resistance to cyclic fatigue, new heat-treated files have been introduced. This study aimed to compare the performance of four heat-treated Ni-Ti files in two simulated curved root canals by evaluating the effect of the alloy, rotation speed, and diameter of the files on their resistance to cyclic fatigue. Methods: The Ni-Ti files included in the study were the ProTaper Gold® (Dentsply Sirona) F2, ProTaper Ultimate® (Dentsply Sirona) F2, FQ® (Komet) 25.06, and Blueshaper® (Zarc4Endo) Z4 25.06. Two groups of 30 files were selected for each system and were tested in two simulated canals milled in a specific metal template. One group was tested in a 60° curved canal and the other in a 90° curved canal. Results: In the 60° simulated canal, there were no instrument fractures within the 15 min time limit. In the 90° simulated canal, the Blueshaper Z4 demonstrated a lower resistance to cyclic fatigue, while FQ 25.06 showed statistically higher fatigue resistance based on both the Kruskal–Wallis and Games–Howell tests (p < 0.05). Conclusions: No differences were found between files when tested in a 60° curved canal for up to 15 min. However, in a 90° canal, the FQ® files showed significantly higher resistance to cyclic fatigue, especially compared to the Blueshaper® Z4. The ProTaper Ultimate and ProTaper Gold produced intermediate results, with the ProTaper Ultimate F2 slightly outperforming the ProTaper Gold F2. Full article
(This article belongs to the Special Issue Surgical and Non-surgical Endodontics in 2024 and Beyond)
Show Figures

Figure 1

24 pages, 679 KiB  
Review
Glide Path in Endodontics: A Literature Review of Current Knowledge
by Vlad Mircea Lup, Giulia Malvicini, Carlo Gaeta, Simone Grandini and Gabriela Ciavoi
Dent. J. 2024, 12(8), 257; https://doi.org/10.3390/dj12080257 - 14 Aug 2024
Cited by 3 | Viewed by 4111
Abstract
The introduction of nickel–titanium rotary instruments revolutionized shaping procedures as they were able to produce a well-tapered preparation while reducing operator fatigue. The major drawback of rotary instruments was the high risk of fracture due to bending and torsional stress. Thus, the creation [...] Read more.
The introduction of nickel–titanium rotary instruments revolutionized shaping procedures as they were able to produce a well-tapered preparation while reducing operator fatigue. The major drawback of rotary instruments was the high risk of fracture due to bending and torsional stress. Thus, the creation of a glide path has been advocated and recommended by most rotary instrument manufacturers. The aim of the present review is to summarize existing knowledge on glide path preparation and identify areas where further research is needed. The primary goal is to provide a comprehensive overview of the techniques and instruments used in glide path preparation, highlighting their advantages and limitations. The secondary goal is to explore the effect of glide path creation on the overall success of endodontic treatment, particularly in terms of reducing procedural errors and improving treatment outcomes. An online search on PubMed, ScienceDirect, UCLA, and Scopus databases was conducted, and 116 articles were identified. Eligible articles were divided into nine categories based on what they researched and compared. The categories included centering ability and/or root canal transportation, cyclic fatigue resistance, glide path and shaping time, tortional stress resistance, apical extrusion of debris and/or bacteria, defects in dentine walls, file separation, postoperative pain assessment, and scouting ability and performance. Establishing a glide path reduces root canal transportation, especially with rotary methods. Reciprocating and heat-treated files offer higher fatigue resistance and shorter preparation time. Instruments with shorter pitch lengths have greater torsional strength. Preparation and coronal preflaring reduce apical debris and bacteria. Glide paths do not affect dentine microcracks, file separation, or defects but reduce immediate postoperative pain and improve cutting ability. Randomized trials are needed to assess their impact on treatment outcomes. Full article
Show Figures

Graphical abstract

12 pages, 4651 KiB  
Article
Comparative Analysis of Surface Roughness and Plastic Deformation of Reciprocating Instruments after Clinical Use
by Ángel Herrera, Magdalena Azabal, Jesús R. Jimenez-Octavio, Juan C. del Real-Romero, Sara López de Armentia, Juan M. Asensio-Gil and Ana Arias
Materials 2024, 17(16), 3978; https://doi.org/10.3390/ma17163978 - 10 Aug 2024
Viewed by 1669
Abstract
This study assessed the surface topography and plastic deformation (PD) of new and used contemporary reciprocating instruments. Twenty-six WaveOne Gold (WOG) and EdgeOne Fire (EO) instruments were photographed under magnification. The instruments were randomly assigned to a control group of new instruments preserved [...] Read more.
This study assessed the surface topography and plastic deformation (PD) of new and used contemporary reciprocating instruments. Twenty-six WaveOne Gold (WOG) and EdgeOne Fire (EO) instruments were photographed under magnification. The instruments were randomly assigned to a control group of new instruments preserved for surface roughness analysis (n = 6 each), or to an experimental group to shape the root canal system of a single molar (n = 20 each), making a total of four groups (WOGnew, EOnew, WOGused, EOused). Used instruments were also photographed after instrumentation. The presence of fractures was registered. Preoperative and postoperative images were randomly ordered for evaluation. Two blinded calibrated examiners evaluated the presence of PD. Inter-observer agreement was calculated with the Kappa coefficient (K = 0.89). 3D profilometry was also used for the surface roughness analysis of six randomly selected instruments from the WOGused and EOused groups. Chi-square and two-way ANOVA tests were used to, respectively, compare PD and changes in surface roughness among the groups. No instruments fractured; however, a significantly greater percentage of EO instruments suffered plastic deformation than WOG instruments (p < 0.001), (OR = 11.09 (CI 95% 2.6–56.3)). The overall surface roughness was higher for most parameters in the EO instruments (p < 0.05). Single uses of EO instruments produced significantly higher chances of PD and increased surface roughness values compared to WOG. Full article
(This article belongs to the Special Issue New Materials and Techniques for Root Canal Preparation and Filling)
Show Figures

Figure 1

15 pages, 650 KiB  
Review
Cyclic Fatigue of Different Ni-Ti Endodontic Rotary File Alloys: A Comprehensive Review
by Dina Abdellatif, Alfredo Iandolo, Michela Scorziello, Giuseppe Sangiovanni and Massimo Pisano
Bioengineering 2024, 11(5), 499; https://doi.org/10.3390/bioengineering11050499 - 16 May 2024
Cited by 3 | Viewed by 3359
Abstract
Introduction: Modern endodontics aims to decrease the bacterial load from the complex endodontic space. Over the years, improvements in the operative phases have led to a considerable increase in the success rate of endodontic treatments. The shaping phase has seen the development of [...] Read more.
Introduction: Modern endodontics aims to decrease the bacterial load from the complex endodontic space. Over the years, improvements in the operative phases have led to a considerable increase in the success rate of endodontic treatments. The shaping phase has seen the development of new techniques supported by technological innovations that have led to higher treatment predictability. Endodontic instruments have experienced a series of changes that have led to modifications in their design, surface treatments, and heat treatments. The clinical use of rotating nickel–titanium instruments has become widespread and consolidated, a success due primarily to the alloy’s mechanical characteristics, which are superior to steel ones, but also to innovations in instrument design. The advent of the Ni-Ti alloy has kept the concepts and requirements of shaping the same but has modified its implementation in endodontics. Aim: The following review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) protocol. The research question focused on Ni-Ti endodontic instruments whose cyclic fatigue was evaluated by analyzing cyclic fatigue strength and the incidence of fracture. Results: At the end of the research, 10 systematic reviews and 1 randomized controlled trial were included in this comprehensive review. The most frequently analysed alloys were M-wire, conventional Ni-Ti, and CM-wire. In seven articles, instruments made of M-wire alloy were used; in eight articles, instruments made of conventional Ni-Ti; and in seven articles, instruments made of CM-wire alloy. Conclusions: The technological evolution of Ni-Ti alloys has led to the development of increasingly high-performance endodontic files that are resistant to cyclic fatigue during clinical practice and have greater resistance to sterilisation practices, making treatment easier and more predictable over time. In particular, heat-treated nickel-titanium root canal instruments present greater resistance to cyclic fatigue than untreated ones and those used with reciprocating kinematics concerning continuous rotation. Full article
(This article belongs to the Special Issue Modern Approaches in Adhesive Dentistry)
Show Figures

Graphical abstract

11 pages, 2671 KiB  
Article
Comprehensive Assessment of Cyclic Fatigue Strength in Five Multiple-File Nickel–Titanium Endodontic Systems
by Jorge N. R. Martins, Emmanuel J. N. L. Silva, Duarte Marques, Francisco M. Braz Fernandes and Marco A. Versiani
Materials 2024, 17(10), 2345; https://doi.org/10.3390/ma17102345 - 15 May 2024
Cited by 2 | Viewed by 1353
Abstract
The resistance of nickel–titanium endodontic instruments against cyclic fatigue failure remains a significant concern in clinical settings. This study aimed to assess the cyclic fatigue strength of five nickel–titanium rotary systems, while correlating the results with the instruments’ geometric and metallurgical characteristics. A [...] Read more.
The resistance of nickel–titanium endodontic instruments against cyclic fatigue failure remains a significant concern in clinical settings. This study aimed to assess the cyclic fatigue strength of five nickel–titanium rotary systems, while correlating the results with the instruments’ geometric and metallurgical characteristics. A total of 250 new instruments (sizes S1/A1, S2/A2, F1/B1, F2/B2, F3/B3) from ProTaper Gold, ProTaper Universal, Premium Taper Gold, Go-Taper Flex, and U-Files systems underwent mechanical testing. Prior to experimental procedures, all instruments were meticulously inspected to identify irregularities that could affect the investigation. Using a stereomicroscope, design characteristics such as the number of spirals, length, spirals per millimeter, and average helical angle of the active blade were determined. The surface finishing characteristics of the instruments were examined using a scanning electron microscope. Differential scanning calorimetry was employed to establish the instruments’ phase transformation temperatures, while energy-dispersive X-ray spectroscopy was utilized to analyze the elemental composition of the alloy. The instruments were subjected to cyclic fatigue testing within a stainless steel non-tapered artificial canal featuring a 6 mm radius and 86 degrees of curvature. Appropriate statistical tests were applied to compare groups, considering a significance level of 0.05. The assessed design characteristics varied depending on the instrument type. The least irregular surface finishing was observed in U-Files and Premium Taper Gold files, while the most irregular surface was noted in Go-Taper Flex. All instruments exhibited near-equiatomic proportions of nickel and titanium elements, whereas ProTaper Universal and U-Files instruments demonstrated lower phase transformation temperatures compared to their counterparts. Larger-sized instruments, as well as ProTaper Universal and U-Files, tended to display lower cyclic fatigue strength results. Overall, the design, metallurgical, and cyclic fatigue outcomes varied among instruments and systems. Understanding these outcomes may assist clinicians in making more informed decisions regarding instrument selection. Full article
Show Figures

Figure 1

12 pages, 2707 KiB  
Article
The Safety of Removing Fractured Nickel–Titanium Files in Root Canals Using a Nd: YAP Laser
by Amaury Namour, Marwan El Mobadder, Patrick Matamba, Lucia Misoaga, Delphine Magnin, Praveen Arany and Samir Nammour
Biomedicines 2024, 12(5), 1031; https://doi.org/10.3390/biomedicines12051031 - 7 May 2024
Cited by 2 | Viewed by 2285
Abstract
The fracture of nickel–titanium (Ni-Ti) instruments during root canal instrumentation leads to compromised outcomes in endodontic treatments. Despite the significant impact of instrument facture during a root canal treatment, there is still no universally accepted method to address this complication. Several previous studies [...] Read more.
The fracture of nickel–titanium (Ni-Ti) instruments during root canal instrumentation leads to compromised outcomes in endodontic treatments. Despite the significant impact of instrument facture during a root canal treatment, there is still no universally accepted method to address this complication. Several previous studies have shown the ability of a Neodymium: Yttrium–Aluminum–Perovskite (Nd: YAP) laser to cut endodontic files. This study aims to determine safe irradiation conditions for a clinical procedure involving the use of a Neodymium: Yttrium–Aluminum–Perovskite (Nd: YAP) laser for removing fractured nickel–titanium files in root canals. A total of 54 extracted permanent human teeth (n = 54) were used. This study involved nine distinct groups, each employing different irradiation conditions. Groups 1 s, 3 s, 5 s, 10 s, and 15 s simply consist of irradiation for 1, 3, 5, 10, and 15 s, respectively. After identifying the longest and safest duration time, four additional groups were proposed (labeled A, B, C, and D). Group A was composed of three series of irradiations of 5 s each separated by a rest time of 30 s (L5s + 30 s RT). Group B consisted of three series of irradiations of 5 s each separated by a rest time of 60 s (L5s + 60 s RT). Group C consisted of two series of irradiations of 5 s each separated by a rest time of 30 s (L5s + 30 s RT), and group D consisted of two series of irradiations of 5 s each separated by a rest time of 5 s (L5s + 5 s RT). In all groups, during the rest time, continuous irrigation with 2.5 mL of sodium hypochlorite (3% NaOCl) was carried out. The variation in temperature during irradiation was registered with a thermocouple during irradiation with different protocols. The mean and standard deviation of the temperature increase was noted. The calculation of the temperature was made as the Δ of the highest recorded temperature at the root surface minus (−) that recorded at baseline (37°). Additionally, scanning electron microscopy (SEM) was used after irradiation in all groups in order to assess the morphological changes in the root dentinal walls. The Nd: YAP laser irradiation parameters were a power of 3W, an energy of 300 mJ per pulse, a fiber diameter of 200 µm, a pulsed mode of irradiation with a frequency of 10 Hz, a pulse duration of 150 µs, and an energy density of 955.41 J/cm2. Our results show that the safest protocol for bypassing and/or removing broken instruments involves three series of irradiation of 5 s each with a rest time of 30 s between each series. Furthermore, our results suggest that continuous irradiation for 10 s or more may be harmful for periodontal tissue. Full article
Show Figures

Figure 1

11 pages, 3887 KiB  
Article
Comprehensive Characterization of Blue Wire NiTi File Failure: A Comparative Analysis of Cyclic Fatigue and Torsional Resistance Properties
by Reem M. Barakat, Rahaf A. Almohareb, Fahda N. Algahtani, Amal A. Altamimi, Jenan I. Alfuraih, Lena S. Bahlol and Ahmed Jamleh
Coatings 2024, 14(3), 361; https://doi.org/10.3390/coatings14030361 - 19 Mar 2024
Cited by 3 | Viewed by 1864
Abstract
This study compared the fatigue resistance and elemental composition of two blue heat-treated nickel–titanium (NiTi) files used in root canal preparation as follows: Tia Tornado Blue (TTB) and Race Evo (RE) file systems. For cyclic fatigue testing, the two systems were tested where [...] Read more.
This study compared the fatigue resistance and elemental composition of two blue heat-treated nickel–titanium (NiTi) files used in root canal preparation as follows: Tia Tornado Blue (TTB) and Race Evo (RE) file systems. For cyclic fatigue testing, the two systems were tested where each file was rotated inside an artificial metal canal submerged in either sodium hypochlorite or saline solution until fracture. Time to fracture was recorded. For torsional fatigue testing, the file tip was secured while the file was allowed to rotate at a fixed rate until fracture. Torque at failure was recorded. The two experiments were performed at simulated body temperature and the length of fractured segments was measured. Statistical analysis was carried out with a significance level (p-value) set at 5%. The mean cycles to fracture for RE were superior to that of TTB irrespective of the solution used (p < 0.05). TTB’s cyclic fatigue resistance decreased in NaOCl (p < 0.0001). RE demonstrated lower torque at failure (p = 0.002). All files were fractured at comparable lengths (p = 0.218). Although RE is considered more resistant to cyclic fatigue, it showed inferior torsional resistance compared with TTB. The NaOCl negatively affected the TTB’s cyclic fatigue resistance. Full article
(This article belongs to the Special Issue Surface Properties of Dental Materials and Instruments, 2nd Edition)
Show Figures

Figure 1

Back to TopTop