Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (484)

Search Parameters:
Keywords = new environmental paradigm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

10 pages, 460 KiB  
Article
Industry 5.0 and Digital Twins in the Chemical Industry: An Approach to the Golden Batch Concept
by Andrés Redchuk and Federico Walas Mateo
ChemEngineering 2025, 9(4), 78; https://doi.org/10.3390/chemengineering9040078 - 25 Jul 2025
Viewed by 231
Abstract
In the context of industrial digitalization, the Industry 5.0 paradigm introduces digital twins as a cutting-edge solution. This study explores the concept of digital twins and their integration with the Industrial Internet of Things (IIoT), offering insights into how these technologies bring intelligence [...] Read more.
In the context of industrial digitalization, the Industry 5.0 paradigm introduces digital twins as a cutting-edge solution. This study explores the concept of digital twins and their integration with the Industrial Internet of Things (IIoT), offering insights into how these technologies bring intelligence to industrial settings to drive both process optimization and sustainability. Industrial digitalization connects products and processes, boosting the productivity and efficiency of people, facilities, and equipment. These advancements are expected to yield broad economic and environmental benefits. As connected systems continuously generate data, this information becomes a vital asset, but also introduces new challenges for industrial operations. The work presented in this article aims to demonstrate the possibility of generating advanced tools for process optimization. This, which ultimately impacts the environment and empowers people in the processes, is achieved through data integration and the development of a digital twin using open tools such as NodeRed v4.0.9 and Python 3.13.5 frameworks, among others. The article begins with a conceptual analysis of IIoT and digital twin integration and then presents a case study to demonstrate how these technologies support the principles of the Industry 5.0 framework. Specifically, it examines the requirements for applying the golden batch concept within a biological production environment. The goal is to illustrate how digital twins can facilitate the achievement of quality standards while fostering a more sustainable production process. The results from the case study show that biomaterial concentration was optimized by approximately 10%, reducing excess in an initially overdesigned process. In doing so, this paper highlights the potential of digital twins as key enablers of Industry 5.0—enhancing sustainability, empowering operators, and building resilience throughout the value chain. Full article
Show Figures

Figure 1

26 pages, 312 KiB  
Article
REN+HOMES Positive Carbon Building Methodology in Co-Design with Residents
by Dorin Beu, Alessio Pacchiana, Elena Rastei, Horaţiu Albu and Theodor Contolencu
Architecture 2025, 5(3), 51; https://doi.org/10.3390/architecture5030051 - 23 Jul 2025
Viewed by 196
Abstract
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional [...] Read more.
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional expert-driven approach to sustainable construction. Developed and validated through the H2020 REN+HOMES project, this resident-centered approach achieved remarkable technical performance—65.9% reduction in final energy demand—while simultaneously enhancing community ownership and long-term sustainability practices. By integrating participatory design with Zero Emissions Building (ZEB) criteria, renewable energy systems, and national carbon offset programs, the methodology proves that resident collaboration is not merely beneficial but essential for creating buildings that truly serve both environmental and human needs. This research establishes a new paradigm where technical excellence emerges from authentic partnership between residents and sustainability experts, offering a replicable framework for community-driven environmental regeneration. Full article
16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 301
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

33 pages, 9781 KiB  
Article
Spatial Narrative Optimization in Digitally Gamified Architectural Scenarios
by Deshao Wang, Jieqing Xu and Luwang Chen
Buildings 2025, 15(15), 2597; https://doi.org/10.3390/buildings15152597 - 23 Jul 2025
Viewed by 205
Abstract
Currently, exploring digital immersive experiences is a new trend in the innovation and development of cultural tourism. This study addresses the growing demand for digital immersion in cultural tourism by examining the integration of spatial narrative and digitally gamified architectural scenarios. This study [...] Read more.
Currently, exploring digital immersive experiences is a new trend in the innovation and development of cultural tourism. This study addresses the growing demand for digital immersion in cultural tourism by examining the integration of spatial narrative and digitally gamified architectural scenarios. This study synthesizes an optimized framework for narrative design in digitally gamified architectural scenarios, integrating spatial narrative theory and feedback-informed design. The proposed model comprises four key components: (1) developing spatial narrative design methods for such scenarios; (2) constructing a spatial language system for spatial narratives using linguistic principles to organize narrative expression; (3) building a preliminary digitally gamified scenario based on the “Wuhu Jiaoji Temple Renovation Project” after architectural and environmental enhancements; and (4) optimization through thermal feedback experiments—collecting visitor trajectory heatmaps, eye-tracking heatmaps, and oculometric data. The results show that the optimized design, validated in the original game Dreams of Jiaoji, effectively enhanced spatial narrative execution by refining both on-site and in-game architectural scenarios. Post-optimization visitor feedback confirmed the validity of the proposed optimization strategies and principles, providing theoretical and practical references for innovative digital cultural tourism models and architectural design advancements. In the context of site-specific architectural conservation, this approach achieves two key objectives: the generalized interpretation of architectural cultural resources and their visual representation through gamified interactions. This paradigm not only enhances public engagement through enabling a multidimensional understanding of historical building cultures but also accelerates the protective reuse of heritage sites, allowing heritage value to be maximized through contemporary reinterpretation. The interdisciplinary methodology promotes sustainable development in the digital transformation of cultural tourism, fostering user-centered experiences and contributing to rural revitalization. Ultimately, this study highlights the potential use of digitally gamified architectural scenarios as transformative tools for heritage preservation, cultural dissemination, and rural community revitalization. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

16 pages, 615 KiB  
Article
Young People’s Perspectives on Climate Change in Urban Brazil
by Irene Rizzini and Mariana Menezes Neumann
Challenges 2025, 16(3), 35; https://doi.org/10.3390/challe16030035 - 21 Jul 2025
Viewed by 328
Abstract
The climate crisis poses profound risks to present and future generations. Nonetheless, the perspectives of children and young people internationally, and more specifically in Brazil, remain underexplored. Based on a multi-discipline literature review on climate anxiety and nature (dis)connectedness, the hypothesis is that [...] Read more.
The climate crisis poses profound risks to present and future generations. Nonetheless, the perspectives of children and young people internationally, and more specifically in Brazil, remain underexplored. Based on a multi-discipline literature review on climate anxiety and nature (dis)connectedness, the hypothesis is that the effects and symptoms of increasing (dis)connection with natural environments have short-, medium-, and long-term consequences. Access to natural spaces is a vital response to counteract the negative impacts of climate change. This article discusses findings from a study conducted in urban Brazil with 200 young people aged 12 to 18 years old, with the aim of addressing three research questions from ten questions that comprised the complete survey. The major research questions were as follows: 1. ‘Climate change worries me’: How do you relate to this statement? 2. How does climate change affect you?, and 3. Do you think some young people are more affected by climate change than others? The results show that young people care about and are preoccupied with climate change, especially when they reflect on their futures and the future generations. Although young participants are deeply concerned about climate change and feel its effects them personally in the form of anxiety, fear, and insecurity, they often lack clear pathways for contributing to broader environmental efforts beyond individual actions. These findings highlight an urgent need to foster community-based approaches and enhance education and resources for enlarging and improving youth engagement, especially to rethink the everyday strategies addressing these challenges, and to foster new paradigms of interaction with the natural world based on (re)connection with natural spaces. The correlation between climate anxiety and nature (dis)connection offers an approach that is still little explored, especially concerning children and young people. Full article
Show Figures

Figure 1

27 pages, 1844 KiB  
Article
Renewable Energy Index: The Country-Group Performance Using Data Envelopment Analysis
by Geovanna Bernardino Bello, Luana Beatriz Martins Valero Viana, Gregory Matheus Pereira de Moraes and Diogo Ferraz
Energies 2025, 18(14), 3803; https://doi.org/10.3390/en18143803 - 17 Jul 2025
Viewed by 298
Abstract
Renewable energy stands as a pivotal solution to environmental concerns, prompting substantial research and development endeavors to promote its adoption and enhance energy efficiency. Despite the recognized environmental superiority of renewable energy systems, there is a lack of globally standardized indicators specifically focused [...] Read more.
Renewable energy stands as a pivotal solution to environmental concerns, prompting substantial research and development endeavors to promote its adoption and enhance energy efficiency. Despite the recognized environmental superiority of renewable energy systems, there is a lack of globally standardized indicators specifically focused on renewable energy efficiency. This study aims to develop and apply a non-parametric data envelopment analysis (DEA) indicator, termed the Renewable Energy Indicator (REI), to measure environmental performance at the national level and to identify differences in renewable energy efficiency across countries grouped by development status and income level. The REI incorporates new factors such as agricultural methane emissions (thousand metric tons of CO2 equivalent), PM2.5 air pollution exposure (µg/m3), and aspects related to electricity, including consumption (as % of total final energy consumption), production from renewable sources, excluding hydroelectric (kWh), and accessibility in rural and urban areas (% of population with access), aligning with the emerging paradigm outlined by the United Nations. By segmenting the REI into global, developmental, and income group classifications, this study conducts the Mann–Whitney U test and the Kruskal–Wallis H tests to identify variations in renewable energy efficiency among different country groups. Our findings reveal top-performing countries globally, highlighting both developed (e.g., Sweden) and developing nations (e.g., Costa Rica, Sri Lanka). Central and North European countries demonstrate high efficiency, while those facing political and economic instability perform poorly. Agricultural-dependent nations like Australia and Argentina exhibit lower REI due to significant methane emissions. Disparities between developed and developing markets underscore the importance of understanding distinct socio-economic dynamics for effective policy formulation. Comparative analysis across income groups informs specific strategies tailored to each category. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 2469 KiB  
Article
Robust Low-Overlap Point Cloud Registration via Displacement-Corrected Geometric Consistency for Enhanced 3D Sensing
by Xin Wang and Qingguang Li
Sensors 2025, 25(14), 4332; https://doi.org/10.3390/s25144332 - 11 Jul 2025
Viewed by 363
Abstract
Accurate alignment of 3D point clouds, achieved by ubiquitous sensors such as LiDAR and depth cameras, is critical for enhancing perception capabilities in robotics, autonomous navigation, and environmental reconstruction. However, low-overlap scenarios—common due to limited sensor field-of-view or occlusions—severely degrade registration robustness and [...] Read more.
Accurate alignment of 3D point clouds, achieved by ubiquitous sensors such as LiDAR and depth cameras, is critical for enhancing perception capabilities in robotics, autonomous navigation, and environmental reconstruction. However, low-overlap scenarios—common due to limited sensor field-of-view or occlusions—severely degrade registration robustness and sensing reliability. To address this challenge, this paper proposes a novel geometric consistency optimization and rectification deep learning network named GeoCORNet. By synergistically designing a geometric consistency enhancement module, a bidirectional cross-attention mechanism, a predictive displacement rectification strategy, and joint optimization of overlap loss with displacement loss, GeoCORNet significantly improves registration accuracy and robustness in complex scenarios. The Attentive Cross-Consistency module of GeoCORNet integrates distance and angular consistency constraints with bidirectional cross-attention to significantly suppress noise from non-overlapping regions while reinforcing geometric coherence in overlapping areas. The predictive displacement rectification strategy dynamically rectifies erroneous correspondences through predicted 3D displacements instead of discarding them, maximizing the utility of sparse sensor data. Furthermore, a novel displacement loss function was developed to effectively constrain the geometric distribution of corrected point-pairs. Experimental results demonstrate that our method outperformed existing approaches in the aspects of registration recall, rotation error, and algorithm robustness under low-overlap conditions. These advances establish a new paradigm for robust 3D sensing in real-world applications where partial sensor data is prevalent. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 1834 KiB  
Article
Hydrofeminist Life Histories in the Aconcagua River Basin: Women’s Struggles Against Coloniality of Water
by María Ignacia Ibarra
Histories 2025, 5(3), 31; https://doi.org/10.3390/histories5030031 - 11 Jul 2025
Viewed by 465
Abstract
This article examines the struggles for water justice led by women in the Aconcagua River Basin (Valparaíso, Chile) through a hydrofeminist perspective. Chile’s water crisis, rooted in a colonial extractivist model and exacerbated by neoliberal policies of water privatization, reflects a deeper crisis [...] Read more.
This article examines the struggles for water justice led by women in the Aconcagua River Basin (Valparaíso, Chile) through a hydrofeminist perspective. Chile’s water crisis, rooted in a colonial extractivist model and exacerbated by neoliberal policies of water privatization, reflects a deeper crisis of socio-environmental injustice. Rather than understanding water merely as a resource, this research adopts a relational epistemology that conceives water as a living entity shaped by and shaping social, cultural, and ecological relations. Drawing on life-history interviews and the construction of a hydrofeminist cartography with women river defenders, this article explores how gendered and racialized bodies experience the crisis, resist extractive practices, and articulate alternative modes of co-existence with water. The hydrofeminist framework offers critical insights into the intersections of capitalism, colonialism, patriarchy, and environmental degradation, emphasizing how women’s embodied experiences are central to envisioning new water governance paradigms. This study reveals how women’s affective, spiritual, and territorial ties to water foster strategies of resilience, recovery, and re-existence that challenge the dominant extractivist logics. By centering these hydrofeminist life histories, this article contributes to broader debates on environmental justice, decolonial feminisms, and the urgent need to rethink human–water relationships within the current climate crisis. Full article
(This article belongs to the Section Gendered History)
Show Figures

Figure 1

25 pages, 4179 KiB  
Article
A Reflection on the Conservation of Waterlogged Wood: Do Original Artefacts Truly Belong in Public Museum Collections?
by Miran Erič, David Stopar, Enej Guček Puhar, Lidija Korat Bensa, Nuša Saje, Aleš Jaklič and Franc Solina
Heritage 2025, 8(7), 273; https://doi.org/10.3390/heritage8070273 - 9 Jul 2025
Viewed by 356
Abstract
The last decade has seen a transformative advancement in computational technologies, enabling the precise creation, evaluation, visualization, and reproduction of high-fidelity three-dimensional (3D) models of archaeological sites and artefacts. With the advent of 3D printing, both small- and large-scale objects can now be [...] Read more.
The last decade has seen a transformative advancement in computational technologies, enabling the precise creation, evaluation, visualization, and reproduction of high-fidelity three-dimensional (3D) models of archaeological sites and artefacts. With the advent of 3D printing, both small- and large-scale objects can now be reproduced with remarkable accuracy and at customizable scales. Artefacts composed of organic materials—such as wood—are inherently susceptible to biological degradation and thus require extensive, long-term conservation employing costly methodologies. These procedures often raise environmental concerns and lead to irreversible alterations in the wood’s chemical composition, dimensional properties, and the intangible essence of the original artefact. In the context of public education and the dissemination of knowledge about historical technologies and objects, 3D replicas can effectively fulfill the same purpose as original artefacts, without compromising interpretative value or cultural significance. Furthermore, the digital data embedded in 3D surface and object models provides a wealth of supplementary information that cannot be captured, preserved, or documented through conventional techniques. Waterlogged wooden objects can now be thoroughly documented in 3D, enabling ongoing, non-invasive scientific analysis. Given these capabilities, it is imperative to revisit the philosophical and ethical foundations of preserving waterlogged wood and to adopt innovative strategies for the conservation and presentation of wooden artefacts. These new paradigms can serve educational, research, and outreach purposes—core functions of contemporary museums. Full article
Show Figures

Figure 1

38 pages, 3752 KiB  
Review
Recent Advances in Metal–Organic Framework-Based Nanozymes for Intelligent Microbial Biosensing: A Comprehensive Review of Biomedical and Environmental Applications
by Alemayehu Kidanemariam and Sungbo Cho
Biosensors 2025, 15(7), 437; https://doi.org/10.3390/bios15070437 - 7 Jul 2025
Viewed by 561
Abstract
Metal–organic framework (MOF)-based nanozymes represent a groundbreaking frontier in advanced microbial biosensing, offering unparalleled catalytic precision and structural tunability to mimic natural enzymes with superior stability and specificity. By engineering the structural features and forming composites, MOFs are precisely tailored to amplify nanozymatic [...] Read more.
Metal–organic framework (MOF)-based nanozymes represent a groundbreaking frontier in advanced microbial biosensing, offering unparalleled catalytic precision and structural tunability to mimic natural enzymes with superior stability and specificity. By engineering the structural features and forming composites, MOFs are precisely tailored to amplify nanozymatic activity, enabling the highly sensitive, rapid, and cost-effective detection of a broad spectrum of microbial pathogens critical to biomedical diagnostics and environmental monitoring. These advanced biosensors surpass traditional enzyme systems in robustness and reusability, integrating seamlessly with smart diagnostic platforms for real-time, on-site microbial identification. This review highlights cutting-edge developments in MOF nanozyme design, composite engineering, and signal transduction integration while addressing pivotal challenges such as biocompatibility, complex matrix interference, and scalable manufacturing. Looking ahead, the convergence of multifunctional MOF nanozymes with portable technologies and optimized in vivo performance will drive transformative breakthroughs in early disease detection, antimicrobial resistance surveillance, and environmental pathogen control, establishing a new paradigm in next-generation smart biosensing. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications—2nd Edition)
Show Figures

Graphical abstract

14 pages, 236 KiB  
Article
Influence of Field Trips on Adolescent Environmental Stewardship: Examining the Role of the Dominant Social Paradigm
by Gita Bhushal, Meghann Smith, Pankaj Lal and Neeraj Vedwan
World 2025, 6(3), 88; https://doi.org/10.3390/world6030088 - 1 Jul 2025
Viewed by 373
Abstract
Promoting environmental stewardship among youths is crucial for inspiring collaborative, multi-generational actions to tackle long-term environmental challenges. This research study explores the impact of an environmental education (EE) field trip, which highlighted wastewater management and renewable energy technology, on high school students using [...] Read more.
Promoting environmental stewardship among youths is crucial for inspiring collaborative, multi-generational actions to tackle long-term environmental challenges. This research study explores the impact of an environmental education (EE) field trip, which highlighted wastewater management and renewable energy technology, on high school students using the revised new ecological paradigm (NEP) scale as a key metric in a pre-post survey, which uses traditionally pro (NEP) and anti (dominant social paradigm, DSP) conservationist statements to measure beliefs towards the environment. When applying the Wilcoxon signed-rank test (null hypothesis t = 0, no change) to the series of environmental stewardship action questions “___ is an extremely important part of protecting the environment”, we identified ten out of the thirteen scale questions to show significant change, all of which were positive. Additionally, the overall impact score was positive and significant (p ≤ 0.05). This finding demonstrates that respondents felt more strongly that these variables played a role in protecting the environment after experiencing the field trip. This suggests that exposure to environmental management intervention strategies utilizing man-made infrastructure and technology may enhance human capability to positively influence the environment and mitigate environmental threats, potentially alleviating concerns about environmental issues. These results suggest that environmental stewardship in youth needs to be reconceptualized in an increasingly STEM-focused world, and a new metric should be developed to assess environmental beliefs. Full article
16 pages, 838 KiB  
Article
Sustainable Regional Development: A Challenge Between Socio-Economic Development and Sustainable Environmental Management
by Alikhan Medeu, Maulken Askarova, Aknur Zhakupova, Ulmira Bauyrzhan and Hermann Klug
Sustainability 2025, 17(13), 6020; https://doi.org/10.3390/su17136020 - 30 Jun 2025
Viewed by 436
Abstract
In the context of sustainability, the concept of balanced development is crucial at both global and regional levels. This principle is equally significant for specific regions, natural-economic complexes, and local communities. Sustainable regional development necessitates a holistic approach to addressing economic, social, and [...] Read more.
In the context of sustainability, the concept of balanced development is crucial at both global and regional levels. This principle is equally significant for specific regions, natural-economic complexes, and local communities. Sustainable regional development necessitates a holistic approach to addressing economic, social, and environmental challenges, which are particularly pertinent at the regional scale. The sustainable development of nations is intrinsically linked to their integration into global processes; however, its resilience and stability are contingent upon balanced regional progress. The West Kazakhstan region exemplifies an economic powerhouse within the country and plays a pivotal role in national regional policy. This study introduces a conceptual model designed to evaluate sustainable development through the balanced interaction of various indicators. The results reveal a disparity between the financial and economic potential of different regions and their environmental challenges. These findings form the foundation for developing a new paradigm of sustainable development that emphasizes the integration of economic growth, social stability, and environmental security. The proposed model has the potential to be adapted in various regions of the world facing similar climatic, water, and social challenges. However, it is necessary to consider local characteristics, data availability, and institutional contexts. Full article
Show Figures

Figure 1

22 pages, 4096 KiB  
Review
AI, Optimization, and Human Values: Mapping the Intellectual Landscape of Industry 4.0 to 5.0
by Albérico Travassos Rosário and Ricardo Jorge Gomes Raimundo
Appl. Sci. 2025, 15(13), 7264; https://doi.org/10.3390/app15137264 - 27 Jun 2025
Viewed by 404
Abstract
This study conducts a systematic bibliometric literature review to explore the conceptual and technological transition from Industry 4.0 to Industry 5.0, focusing on the roles of artificial intelligence (AI), optimization, and human values. Applying the PRISMA 2020 protocol, the analysis includes 53 peer-reviewed [...] Read more.
This study conducts a systematic bibliometric literature review to explore the conceptual and technological transition from Industry 4.0 to Industry 5.0, focusing on the roles of artificial intelligence (AI), optimization, and human values. Applying the PRISMA 2020 protocol, the analysis includes 53 peer-reviewed sources from the Scopus database, emphasizing the integration of advanced technologies such as cyber–physical systems, the Internet of Things, collaborative robotics, and explainable AI. While Industry 4.0 is marked by intelligent automation and digital connectivity, Industry 5.0 introduces a human-centric paradigm emphasizing sustainability, resilience, and co-creation. The findings underscore the significance of human–machine collaboration, process personalization, AI education, and ethical governance as foundational pillars of this new industrial era. This review highlights the emerging role of enabling technologies that reconcile technical performance with social and environmental values, promoting a more inclusive and sustainable model for industrial development. Full article
Show Figures

Figure 1

37 pages, 3650 KiB  
Review
Regulatory Mechanisms of Phenolic Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Review
by Shengyu Zhang, Congcong Shen, Han Di, Yanhong Wang and Feng Guan
Antioxidants 2025, 14(7), 760; https://doi.org/10.3390/antiox14070760 - 20 Jun 2025
Viewed by 885
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), the leading chronic liver condition globally, constitutes a major etiological contributor to hepatocellular carcinoma (HCC). Its transition from steatosis to non-alcoholic steatohepatitis (NASH) involves progressive fibrosis, ultimately predisposing to HCC. The pathogenesis involves multifactorial interactions among genetic [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), the leading chronic liver condition globally, constitutes a major etiological contributor to hepatocellular carcinoma (HCC). Its transition from steatosis to non-alcoholic steatohepatitis (NASH) involves progressive fibrosis, ultimately predisposing to HCC. The pathogenesis involves multifactorial interactions among genetic susceptibility, environmental triggers, and obesity-associated metabolic dysregulation. Crucially, the gut–liver axis serves as a pivotal regulatory mechanism in MASLD development. Current therapeutic strategies prioritize lifestyle interventions for metabolic syndrome management, while pharmacological options remain limited, underscoring the need for new therapies. Emerging evidence highlights phenolic acids—bioactive phytochemicals from medicinal plants—as multi-target agents against MASLD. These compounds demonstrate therapeutic efficacy via antioxidative modulation of stress, anti-inflammatory activity, and gut–liver axis regulation. This review synthesizes recent advances in natural phenolic acids for MASLD intervention, emphasizing their potential as preventive and therapeutic candidates. Their multimodal mechanisms may inform innovative drug development paradigms targeting MASLD pathogenesis. Full article
Show Figures

Figure 1

Back to TopTop