Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = new contact force model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 489 KiB  
Article
Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies
by Andrew J. Keebaugh, Megan L. Steele, Argel Islas-Robles, Jakeb Phillips, Allison Hilberer, Kayla Cantrell, Yaroslav G. Chushak, David R. Mattie, Rebecca A. Clewell and Elaine A. Merrill
Toxics 2025, 13(8), 660; https://doi.org/10.3390/toxics13080660 - 2 Aug 2025
Viewed by 343
Abstract
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may [...] Read more.
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may experience ACD at elevated rates compared to other occupations. We aimed to better understand the utility of non-animal testing methods in characterizing the sensitization potential of chemicals used during Air Force operations by evaluating the skin sensitization hazard of Air Force-relevant chemicals using new approach methodologies (NAMs) in a case study. We also evaluated the use of NAM data to develop preliminary candidate surface guidelines (PCSGs, maximum concentrations of chemicals on workplace surfaces to prevent induction of dermal sensitization) for chemicals identified as sensitizers. NAMs for assessing skin sensitization, including in silico models and experimental assays, were leveraged into an integrated approach to predict sensitization hazard for 19 chemicals. Local lymph node assay effective concentration values were predicted from NAM assay data via previously published quantitative models. The derived values were used to calculate PCSGs, which can be used to compare the presence of these chemicals on work surfaces to better understand the risk of Airmen developing ACD from occupational exposures. Full article
Show Figures

Figure 1

25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 - 1 Aug 2025
Viewed by 332
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

16 pages, 5442 KiB  
Communication
Analysis of the Impact of Frog Wear on the Wheel–Rail Dynamic Performance in Turnout Zones of Urban Rail Transit Lines
by Yanlei Li, Dongliang Zeng, Xiuqi Wei, Xiaoyu Hu and Kaiyun Wang
Lubricants 2025, 13(7), 317; https://doi.org/10.3390/lubricants13070317 - 20 Jul 2025
Viewed by 369
Abstract
To investigate how severe wear at No. 12 turnout frogs in an urban rail transit line operating at speeds over 120 km/h on the dynamic performance of the vehicle, a vehicle–frog coupled dynamic model was established by employing the 2021 version of SIMPACK [...] Read more.
To investigate how severe wear at No. 12 turnout frogs in an urban rail transit line operating at speeds over 120 km/h on the dynamic performance of the vehicle, a vehicle–frog coupled dynamic model was established by employing the 2021 version of SIMPACK software. Profiles of No. 12 alloy steel frogs and metro wheel rims were measured to simulate wheel–rail interactions as the vehicle traverses the turnout, using both brand-new and worn frog conditions. The experimental results indicate that increased service life deepens frog wear, raises equivalent conicity, and intensifies wheel–rail forces. When a vehicle passes through the frog serviced for over 17 months at the speed of 120 km/h, the maximum derailment coefficient, lateral acceleration of the car body, and lateral and vertical wheel–rail forces increased by 0.14, 0.17 m/s2, 9.52 kN, and 105.76 kN, respectively. The maximum contact patch area grew by 35.73%, while peak contact pressure rose by 236 MPa. To prevent dynamic indicators from exceeding safety thresholds and ensure train operational safety, it is recommended that the frog maintenance cycle be limited to 12 to 16 months. Full article
Show Figures

Figure 1

15 pages, 805 KiB  
Article
Moon-Induced Differential Rotation in Earth’s Interior: A Comprehensive Conceptual Model
by Chil-Yeong Kim, Eun-Kyoung Seo, You-Soon Chang and Chungwan Lim
Geosciences 2025, 15(6), 229; https://doi.org/10.3390/geosciences15060229 - 16 Jun 2025
Viewed by 841
Abstract
This study presents a novel conceptual model to explain the differential rotation within Earth’s layers, a phenomenon observed through seismic wave studies but not fully understood. While geodynamo theory and electromagnetic coupling models have been proposed to explain this phenomenon, our model offers [...] Read more.
This study presents a novel conceptual model to explain the differential rotation within Earth’s layers, a phenomenon observed through seismic wave studies but not fully understood. While geodynamo theory and electromagnetic coupling models have been proposed to explain this phenomenon, our model offers an alternative perspective focusing on the Moon’s tidal forces. Our model proposes that the Moon’s tidal forces play a crucial role in this process, acting as a braking mechanism on Earth’s rotation. We hypothesize that these tidal forces initially decelerate the Earth’s crust and mantle, with this effect sequentially transmitted to deeper layers. A key aspect of our model is the role of the liquid outer core in mediating this process. We suggest that the liquid state of the outer core delays the transmission of tidal friction, resulting in differential rotation between layers in contact with it. This delay mechanism provides a potential explanation for the observed rotational differences between the mantle and core. Our model demonstrates that about 66,000 years after the Moon’s formation, the tidal force slowed the crust–mantle rotation by approximately 5.5 degrees per year more than the core. Furthermore, we estimate that the frictional heat generated at the boundaries of differential rotation is about 0.3478 TW. At this rate, the outer core temperature would increase by approximately 13.4 K per billion years. This thermal effect may have significant implications for the long-term evolution of Earth’s core, potentially slowing its cooling rate and maintaining its liquid state. Our model thus provides a new perspective on the interplay between lunar tidal forces, Earth’s internal structure, and its thermal evolution, offering insights into the complex dynamics of our planet’s interior. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

20 pages, 8369 KiB  
Article
Mechanical Response of Pipeline Leakage to Existing Tunnel Structures: Insights from Numerical Modeling
by Ruichuan Zhao, Linghui Li, Xiaofei Chen and Sulei Zhang
Buildings 2025, 15(11), 1771; https://doi.org/10.3390/buildings15111771 - 22 May 2025
Cited by 1 | Viewed by 372
Abstract
Pipeline leakage can induce ground surface settlements and structural responses in existing tunnels. A thorough understanding of pipeline–tunnel interactions is crucial for optimizing urban underground design and establishing construction guidelines. As urban underground spaces undergo rapid, large-scale development, their layouts have grown increasingly [...] Read more.
Pipeline leakage can induce ground surface settlements and structural responses in existing tunnels. A thorough understanding of pipeline–tunnel interactions is crucial for optimizing urban underground design and establishing construction guidelines. As urban underground spaces undergo rapid, large-scale development, their layouts have grown increasingly complex. Previous studies have mainly focused on the leakage propagation range and the resulting strata instability during tunnel excavation, while paying limited attention to the effects of pipeline leakage on existing tunnels. This study systematically investigated the mechanical response of existing tunnel structures to pipeline leakage under different layout configuration conditions using numerical modeling. A two-dimensional numerical model was developed to simulate the pipeline leakage process and its impact on adjacent tunnels. The research established a correlation between surrounding rock strength parameters and the saturation degree while examining the evolution patterns of leakage effects in various tunnel–pipeline arrangements. The analysis specifically focused on the mechanical influence of horizontal pipeline–tunnel distance, quantitatively determining the relationships among pipeline–tunnel spacing, leakage duration, and structural internal force. The horizontal pipeline–tunnel distance did not influence the development of the leakage zone above the tunnel vault but significantly altered the seepage path length and interface contact area. The complete encapsulation of the tunnel periphery by the leakage zone required progressively longer durations with increasing horizontal offsets: 16 days (0 m), 20 days (3 m), and 33 days (6 m). Corresponding circumferential contact ratios at 10 days were measured at 68.9%, 56.4%, and 30.6%, respectively. Furthermore, prolonged seepage duration led to increased ground subsidence with expanded affected areas, while the maximum settlement decreased proportionally with greater horizontal separation from the tunnel. These findings provide valuable insights for planning, designing, and maintaining “old tunnel-new pipeline” systems in urban underground development. Full article
(This article belongs to the Special Issue Design, Construction and Maintenance of Underground Structures)
Show Figures

Figure 1

16 pages, 3308 KiB  
Article
Analytical Modeling of Particle Scratching Process
by Shouhong Chen, Mingjun Sun, Yuantao Fan, Fangchen Yin, Jixiang Huang and Shengui Huang
Appl. Sci. 2025, 15(10), 5670; https://doi.org/10.3390/app15105670 - 19 May 2025
Viewed by 270
Abstract
This study develops a new physical and analytical model for the particle scratching process, where a particle is modeled as a sphere. It investigates the flow of workpiece material introduced by the particle’s motion, dividing the contact area into zones of elastic and [...] Read more.
This study develops a new physical and analytical model for the particle scratching process, where a particle is modeled as a sphere. It investigates the flow of workpiece material introduced by the particle’s motion, dividing the contact area into zones of elastic and plastic deformation. Forces applied to the particle in both zones are calculated, and parameters defining the extent of elastic rebound and plastic upheaval are introduced. The study also presents stress distribution in the plastic zone, discusses the factors influencing the force ratio, and reveals that the force ratio increases with greater elastic rebound, plastic upheaval, cutting depth, and strain strengthening, but decreases with larger particle sizes. Yield stress was found to have no effect on the force ratio. These findings will guide research in practical material processing as well as in scratch applications. Full article
Show Figures

Figure 1

12 pages, 1944 KiB  
Article
An Experimental Study on Mud Adhesion Performance of a PDC Drill Bit Based on a Biomimetic Non-Smooth Surface
by Ming Chen and Qingchao Li
Processes 2025, 13(5), 1464; https://doi.org/10.3390/pr13051464 - 10 May 2025
Viewed by 735
Abstract
In recent years, polycrystalline diamond compact (PDC) drill bits have seen significant advancements. They have replaced over 90% of the workload traditionally handled by roller cone bits and have become the predominant choice in energy drilling due to their superior efficiency and durability. [...] Read more.
In recent years, polycrystalline diamond compact (PDC) drill bits have seen significant advancements. They have replaced over 90% of the workload traditionally handled by roller cone bits and have become the predominant choice in energy drilling due to their superior efficiency and durability. However, PDC drill bits are susceptible to adhesion of rock cuttings during drilling in muddy formations, leading to mud accumulation on the bit surface. This phenomenon can cause drill bit failure and may contribute to downhole complications, including tool failure and borehole instability. The adhesion issue between PDC drill bits and mud rock cuttings underground is primarily influenced by the normal adhesion force between the drill bit surface and the mud rock cuttings. Therefore, biological non-smooth surface technology is applied to the prevention and control of drill bit balling. It is an optimal selection of biomimetic non-smooth surface structures with reduced adhesion and detachment properties. A non-smooth surface model for the PDC drill bit body is established through the analysis of the morphological characteristics of natural biological non-smooth surfaces. An experimental platform is designed and manufactured to evaluate the adhesion performance of non-smooth surface specimens. Indoor experiments are conducted to test the normal adhesion force of non-smooth surface specimens under varying morphologies, sizes, and contact times with clay. Finally, the anti-adhesion performance of the non-smooth surface unit structures is then analyzed. The normal adhesion force with a contact time of 12 h is as follows: 340 Pa of big square raised, 250 Pa of middle square raised, 190 Pa of small square raised, 315 Pa of big circular groove, 280 Pa of middle circular groove, 200 Pa of small circular groove, 225 Pa of big dot pit, 205 Pa of middle dot pit, and 130 Pa of small dot pit. Compared with the normal adhesion force of 550 Pa for smooth surface specimens with a contact time of 12 h, the anti-adhesion properties of the three non-smooth surface unit structure specimens designed in this paper were verified. We analyzed the anti-adhesion performance of non-smooth surface unit structures. At the critical contact time when the adhesion force tends to stabilize, the adhesion forces of different specimens are as follows: 330 Pa of big square raised, 237.5 Pa of middle square raised, 175 Pa of small square raised, 290 Pa of big circular groove, 250 Pa of middle circular groove, 160 Pa of small circular groove, 210 Pa of big dot pit, 185 Pa of middle dot pit, and 115 Pa of small dot pit. The results indicate that the anti-adhesion effect of small dot pit structures is the most effective, while the anti-adhesion effect of large square convex structures is the least effective. As the size of the unit structure decreases, it becomes more similar to the surface size of the organism. Additionally, a shorter contact time with clay leads to a better anti-adhesion effect. These findings provide new insights and research directions for the effective prevention and control of mud wrapping on PDC drill bits. Full article
Show Figures

Figure 1

23 pages, 24207 KiB  
Article
Investigating the Mechanisms and Dynamic Response of Graded Aggregate Mud Pumping Based on the Hybrid DEM-FDM Method
by Kang Wang, Zhongrui Chen, Qian Chen, Zhibo Cheng, Jiawen Xu, Hongfu Tan, Lei Zhang and Le You
Buildings 2025, 15(10), 1604; https://doi.org/10.3390/buildings15101604 - 9 May 2025
Viewed by 436
Abstract
This study investigated the macro and meso mechanisms of void formation in graded aggregates within high-speed railway subgrades under train loads using a hybrid discrete element–finite difference method (DEM-FDM). First, a contact parameter inversion model based on a linear model (LM) was developed [...] Read more.
This study investigated the macro and meso mechanisms of void formation in graded aggregates within high-speed railway subgrades under train loads using a hybrid discrete element–finite difference method (DEM-FDM). First, a contact parameter inversion model based on a linear model (LM) was developed using extensive DEM simulations through angle of repose, drop, and inclined plate tests. The contact parameters for graded aggregates were further calibrated through physical and triaxial tests. Next, a refined hybrid DEM-FDM model was established to capture void formation behavior, characterized by the contact force chain ratio, and was validated against field measurements. Finally, simulations were conducted under different levels of void formation to explore the associated mechanisms based on dynamic response and meso-mechanical analysis. The results showed that the LM-based inversion model could accurately determine the contact parameters. The hybrid model’s predictions of dynamic displacement and acceleration under various train speeds fell within the range of the field data. When the fine particle loss ratio lp was ≤3%, the dynamic displacement and acceleration remained below the standard limits of 0.22 mm and 10 m/s2. As lp increased, the contact between the roadbed and base weakened, and complete separation occurred at lp ≥ 11%, preventing effective load transfer. These findings offer new insights into void formation in graded aggregates and support the safe operation of high-speed railways. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

19 pages, 7039 KiB  
Article
A New Contact Force Estimation Method for Heavy Robots Without Force Sensors by Combining CNN-GRU and Force Transformation
by Peizhang Wu, Hui Dong, Pengfei Li, Yifei Bao, Wei Dong and Lining Sun
Technologies 2025, 13(5), 192; https://doi.org/10.3390/technologies13050192 - 9 May 2025
Viewed by 743
Abstract
In response to the safety control requirements of heavy robot operations, to address the problems of cumbersome, time-consuming, poor accuracy and low real-time performance in robot end contact force estimation without force sensors by using traditional manual modeling and identification methods, this paper [...] Read more.
In response to the safety control requirements of heavy robot operations, to address the problems of cumbersome, time-consuming, poor accuracy and low real-time performance in robot end contact force estimation without force sensors by using traditional manual modeling and identification methods, this paper proposes a new contact force estimation method for heavy robots without force sensors by combining CNN-GRU and force transformation. Firstly, the CNN-GRU machine learning method is utilized to construct the robot Joint Motor Current-Joint External Force Model; then, the Joint External Force-End Contact Force Model is constructed through the Kalman filter and Jacobian force transformation method, and the robot end contact force is estimated by finally uniting them. This method can achieve robot end contact force estimation without a force sensor, avoiding the cumbersome manual modeling and identification process. Compared with traditional manual modeling and identification methods, experiments show that the proposed method in this paper can approximately double the estimation accuracy of the contact force of heavy robots and reduce the time consumption by approximately half, with advantages such as convenience, efficiency, strong real-time performance, and high accuracy. Full article
(This article belongs to the Special Issue AI Robotics Technologies and Their Applications)
Show Figures

Graphical abstract

10 pages, 3451 KiB  
Article
Interfacial Charge Transfer Mechanism and Output Characteristics of Identical-Material Triboelectric Nanogenerators
by Lin-Xin Wu, Shi-Jia Ma, Meng-Jie Li, Xian-Lei Zhang, Gang Zheng, Zheng Liang, Ru Li, Hao Dong, Jun Zhang and Yun-Ze Long
Nanomaterials 2025, 15(10), 708; https://doi.org/10.3390/nano15100708 - 8 May 2025
Viewed by 535
Abstract
When testing the output of piezoelectric devices under different pressures, the friction between the pressure platform and the device causes a large amount of frictional electrical signals to be mixed in the output piezoelectric signal, seriously affecting the measurement accuracy of the piezoelectric [...] Read more.
When testing the output of piezoelectric devices under different pressures, the friction between the pressure platform and the device causes a large amount of frictional electrical signals to be mixed in the output piezoelectric signal, seriously affecting the measurement accuracy of the piezoelectric signal. The current solution is to encapsulate the contact interface with identical materials to suppress triboelectric interference. However, this work has shown that even when contact separation is implemented at the interface of same media, triboelectric signals can still be generated. The heterogeneous potential distribution of the same material in contact separation has been discovered for the first time through the contact interface potential distribution, proving that charge transfer still exists between the same materials. Atomic force microscopy (AFM) was used to analyze the microstructure of the interface, and it was found that the existence of the surface tip structure would enhance the electron loss. Based on this, a new electron transfer model for surface–tip electron cloud interaction is proposed in this work. In addition, by comparing the output voltage characteristics of the triboelectric nanogenerators (TENGs) of seven polymer materials (e.g., polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polyoxymethylene (POM), polyimide (PI), and polyethylene terephthalate (PET)), it was found that the open circuit voltage of PP material was only 0.06 V when they friction with each other, which is 2–3 orders of magnitude lower than other materials. When PP materials are applied to the package of piezoelectric devices, the precision of piezoelectric output characterization can be improved significantly, and a new experimental basis for a triboelectric theory system can be provided. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

21 pages, 6826 KiB  
Article
A Mixed FEM for Studying Jointed Concrete Pavement Blowups
by Daniele Baraldi
Infrastructures 2025, 10(4), 86; https://doi.org/10.3390/infrastructures10040086 - 4 Apr 2025
Viewed by 460
Abstract
This work aims to study the compressive buckling and consequent blowup of jointed concrete pavements due to thermal rise. For this purpose, a simple and effective mixed FEM, originally introduced for performing static and buckling analyses of beams on elastic supports, is extended [...] Read more.
This work aims to study the compressive buckling and consequent blowup of jointed concrete pavements due to thermal rise. For this purpose, a simple and effective mixed FEM, originally introduced for performing static and buckling analyses of beams on elastic supports, is extended for performing a preliminary study of jointed concrete pavements. An elastic Euler–Bernoulli beam in frictionless and bilateral contact with an elastic support is considered. Three different elastic support models are assumed, namely a Winkler support, an elastic half-space (3D), and half-plane (2D). The transversal pavement joint or crack is modeled employing a hinge at the beam midpoint with nil rotational stiffness. Numerical tests are performed by determining critical loads and the corresponding modal shapes, with particular attention to the first minimum critical load related to pavement blowup. From a theoretical point of view, the results show that minimum critical loads converge to existing results in the case of Winkler support, whereas new results are obtained in the case of the 2D and 3D support types. Associated modal shapes have maximum upward displacements at the beam midpoint. The second and subsequent critical loads, together with the corresponding sinusoidal modal shapes, converge to existing results. From a practical point of view, minimum critical loads represent a lower bound for estimating axial forces due to thermal variation causing jointed pavement blowup. Full article
Show Figures

Figure 1

19 pages, 9778 KiB  
Article
Experimental and Numerical Research on the Mechanical Properties of a Novel Prefabricated Diaphragm Wall–Beam Joint
by Yang Liu, Guisheng Yang, Chunyu Qi, Peng Zhang, Tao Cui and Ran Song
Buildings 2025, 15(7), 1158; https://doi.org/10.3390/buildings15071158 - 2 Apr 2025
Cited by 1 | Viewed by 588
Abstract
Based on the engineering context of prefabricated underground station structures, this paper proposed a novel diaphragm wall–beam joint based on post-poured ultra-high-performance concrete (UHPC) and non-contact lap-spliced steel bars. This research study designed and conducted a full-scale experiment on the diaphragm wall–beam joints. [...] Read more.
Based on the engineering context of prefabricated underground station structures, this paper proposed a novel diaphragm wall–beam joint based on post-poured ultra-high-performance concrete (UHPC) and non-contact lap-spliced steel bars. This research study designed and conducted a full-scale experiment on the diaphragm wall–beam joints. The failure modes, bearing capacity, overall stiffness, crack resistance performance, and force transmission mechanism of the new diaphragm wall–beam joint were investigated. Additionally, a three-dimensional finite element model (FEM) of the wall–beam joint was developed using the software ABAQUS 2020. The model was validated against experimental results and used for further analysis. The results showed that the tensile through-cracks at the UHPC-diaphragm wall interface characterize the final failure process. The proposed UHPC joint could satisfy the structural design requirements in terms of crack resistance and bearing capacity. No rebar pulled-out damage was observed, and the non-contact lap-spliced length of 10d in the UHPC joint was sufficient. Compared with the traditional cast-in-place concrete joint, the cracking moment and yield moment of the proposed UHPC joint increased by 8.7% and 5.4%, respectively. Full article
Show Figures

Figure 1

19 pages, 10219 KiB  
Article
Research on the Grinding Force Modeling of Herringbone Gear Tooth Surface Formation Based on the Microscopic Mechanism of Wear Particles
by Rongyi Li, Chenglong Kan, Zemin Zhao, Xianbin Li, Xianli Liu and Zhaochi Li
Coatings 2025, 15(4), 395; https://doi.org/10.3390/coatings15040395 - 27 Mar 2025
Viewed by 491
Abstract
In the process of herringbone gear grinding, excessive grinding force leads to a large increase in grinding specific energy. A large increase in the specific grinding energy can easily lead to an increase in the transient cutting load. It leads to grinding burn, [...] Read more.
In the process of herringbone gear grinding, excessive grinding force leads to a large increase in grinding specific energy. A large increase in the specific grinding energy can easily lead to an increase in the transient cutting load. It leads to grinding burn, tooth surface crack and other undesirable phenomena, which ultimately affect the surface quality and service performance of the workpiece. This paper is based on the contact mechanics of workpiece materials. The number of dynamic effective abrasive particles is considered. Combined with the mechanism of grinding force, the model is developed. Based on the consideration of the wear characteristics of the grinding wheel and the structure parameters of the gear itself, the grinding force model was modified. The accuracy of grinding force model is improved by dividing the effective contact angle of grinding grains into four cases. The experimental results show that the normal grinding force error reaches 10.73% and the tangential grinding force error reaches 10.34%. The model reveals the grinding mechanism, optimizes grinding parameters and improves grinding efficiency. It provides a new way for high-precision machining of aerospace precision herringbone gear. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

15 pages, 5162 KiB  
Article
Predicting Wetting Properties for Surfaces with Stochastic Topography
by Caroline Schmechel Schiavon, Nadja Felde, Sven Schröder, Mario Lucio Moreira and Pedro Lovato Gomes Jardim
Coatings 2025, 15(2), 202; https://doi.org/10.3390/coatings15020202 - 7 Feb 2025
Viewed by 841
Abstract
Understanding the influence of topography on wettability is essential for improving the modeling of superhydrophobic surfaces. Moreover, wetting predictions can foresee corrosion, biological contamination, self-cleaning properties, and all phenomena related to wetting. In this context, this research work reports the experimental corroboration of [...] Read more.
Understanding the influence of topography on wettability is essential for improving the modeling of superhydrophobic surfaces. Moreover, wetting predictions can foresee corrosion, biological contamination, self-cleaning properties, and all phenomena related to wetting. In this context, this research work reports the experimental corroboration of a novel theoretical model for stochastic surfaces that relates the static contact angle for the heterogeneous wetting of surfaces to the root mean square (RMS) slope of the surface structures, allowing wetting prediction through topography. For this study, hydrophobic and superhydrophobic alumina thin films with gradual roughness were constructed. The films were deposited on glass using the dip-coating technique, textured with boiling water, and functionalized to achieve low surface energy using Dynasylan F-8815. Surface wettability was characterized using the sessile drop technique, and the RMS slope of the alumina surfaces was quantified using the atomic force microscopy (AFM) technique. The model, presented here for the first time, fits the experimental data, allowing wetting prediction for hydrophobic and superhydrophobic surfaces considering static contact angles. As expected, topography plays a fundamental role in achieving superhydrophobicity. Therefore, defining a topographic criterion, as performed here, for obtaining superhydrophobic surfaces is highly relevant to reduce the production costs of these surfaces and also enable new production processes and designs. Full article
Show Figures

Figure 1

33 pages, 11404 KiB  
Review
Review on Key Development of Magnetic Bearings
by Tong Wu and Weiyu Zhang
Machines 2025, 13(2), 113; https://doi.org/10.3390/machines13020113 - 30 Jan 2025
Cited by 3 | Viewed by 3454
Abstract
A magnetic suspension bearing is a device that suspends the rotating shaft in a balanced position by magnetic force, thereby eliminating the friction between the rotor and the stator. Different from traditional bearing support methods, magnetic bearings show significant advantages in terms of [...] Read more.
A magnetic suspension bearing is a device that suspends the rotating shaft in a balanced position by magnetic force, thereby eliminating the friction between the rotor and the stator. Different from traditional bearing support methods, magnetic bearings show significant advantages in terms of speed, accuracy, and loss. Because there is no contact, magnetic bearings enable high-speed operation, precise control, and zero friction. Magnetic bearings, with their excellent performance, are widely applied in fields such as industrial production, flywheel energy storage, and aerospace. However, with the continuous growth of the demand for high-performance bearings and the deepening of the concept of low-carbon and environmental protection, breakthroughs in the key technologies of magnetic bearings are urgently needed. In this paper, relevant research on magnetic bearings is summarized. Magnetic bearings are classified according to the different ways in which they generate suspension forces. Research on the topological structure design, mathematical modeling, and control strategies of the magnetic bearing system is covered. The aim is to provide readers and researchers with a comprehensive overview of the key technologies of magnetic bearings from a new perspective. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

Back to TopTop