Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,349)

Search Parameters:
Keywords = new cell line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4161 KiB  
Article
Targeting CEACAM5: Biomarker Characterization and Fluorescent Probe Labeling for Image-Guided Gastric Cancer Surgery
by Serena Martinelli, Sara Peri, Cecilia Anceschi, Anna Laurenzana, Laura Fortuna, Tommaso Mello, Laura Naldi, Giada Marroncini, Jacopo Tricomi, Alessio Biagioni, Amedeo Amedei and Fabio Cianchi
Biomedicines 2025, 13(8), 1812; https://doi.org/10.3390/biomedicines13081812 (registering DOI) - 24 Jul 2025
Abstract
Background: Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract, characterized by high mortality rates and responsible for about one million new cases each year globally. Surgery is the main treatment, but achieving radical resection remains a relevant intraoperative challenge. [...] Read more.
Background: Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract, characterized by high mortality rates and responsible for about one million new cases each year globally. Surgery is the main treatment, but achieving radical resection remains a relevant intraoperative challenge. Fluorescence-guided surgery offers clinicians greater capabilities for real-time detection of tumor nodules and visualization of tumor margins. In this field, the main challenge remains the development of fluorescent dyes that can selectively target tumor tissues. Methods: we examined the expression of the most suitable GC markers, including carcinoembryonic antigen cell adhesion molecule-5 (CEACAM5) and Claudin-4 (CLDN4), in GC cell lines. To further evaluate their expression, we performed immunohistochemistry (IHC) on tumor and healthy tissue samples from 30 GC patients who underwent partial gastrectomy at the Digestive System Surgery Unit, AOU Careggi, Florence. Additionally, we validated anti-CEACAM5 expression on patient-derived organoids. Furthermore, we developed a fluorescent molecule targeting CEACAM5 on the surface of GC cells and assessed its binding properties on patient tissue slices and fragments. Results: in this work, we first identified CEACAM5 as an optimal GC biomarker, and then we developed a fluorescent antibody specific for CEACAM5. We also evaluated its binding specificity for GC cell lines and patient-derived tumor tissue, achieving an optimal ability to discriminate tumor tissue from healthy mucosa. Conclusions: Overall, our results support the development of our fluorescent antibody as a promising tumor-specific imaging agent that, after further in vivo validation, could improve the accuracy of complete tumor resection. Full article
Show Figures

Figure 1

20 pages, 12367 KiB  
Article
Chemosensitizer Effects of Cisplatin- and 5-Fluorouracil-Treated Hepatocellular Carcinomas by Lidocaine
by Teng-Wei Chen, Hsiu-Lung Fan, Shu-Ting Liu and Shih-Ming Huang
Int. J. Mol. Sci. 2025, 26(15), 7137; https://doi.org/10.3390/ijms26157137 (registering DOI) - 24 Jul 2025
Abstract
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This [...] Read more.
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This collateral damage to healthy cells, along with the potential for cancer cells to develop resistance, presents significant challenges for conventional chemotherapy in liver cancer patients. Hepatic artery infusion of chemotherapy (HAIC) generally leads to reduced toxicity and fewer side effects. The process of catheter insertion is usually performed under local anesthesia, with lidocaine being the preferred choice to combine with various chemotherapeutics in HCC treatment. In our study, we explored the effects of repurposing lidocaine in combination with cisplatin or 5-fluorouracil (5-FU) on two HCC cell lines, HepG2 and Hep3B. Our cytotoxicity analysis revealed that lidocaine functions as a chemosensitizer for cisplatin and 5-FU in both HepG2 and Hep3B cells. Specifically, we observed an increase in the subG1 population and a reduction in cytosolic reactive oxygen species in cisplatin- or 5-FU-treated HepG2 and Hep3B cells. Interestingly, lidocaine selectively decreased the reduced/oxidized glutathione ratio in cisplatin- or 5-FU-treated HepG2 cells but not in Hep3B cells. Furthermore, lidocaine induced endoplasmic reticulum stress, apoptosis, mitochondrial membrane depolarization, lipid peroxidation, and autophagy while suppressing cellular proliferation HepG2 and Hep3B cells. In conclusion, our study demonstrates the synergistic potential of combining lidocaine with cisplatin or 5-FU for the treatment of HCC, indicating that lidocaine may serve as an effective chemosensitizer. These findings highlight a new clinical advantage of using repurposing lidocaine as a chemosensitizer in the current HAIC procedure, suggesting that this combination warrants further exploration through rigorous clinical trials. In the future, we can better optimize therapeutic regimens, potentially leading to improved patient outcomes in HCCs. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Third Edition)
Show Figures

Figure 1

17 pages, 5390 KiB  
Article
A Late-Onset and Mild Phenotype of Mitochondrial Complex I Deficiency Due to a Novel Reported Variant Within the ACAD9 Gene
by Anna Gaelle Giguet-Valard, Samira Ait-El-Mkadem Saadi, Sophie Duclos, Didier Lacombe, Rémi Bellance and Nadège Bellance
Int. J. Mol. Sci. 2025, 26(15), 7128; https://doi.org/10.3390/ijms26157128 - 24 Jul 2025
Abstract
Acyl-CoA dehydrogenase 9 deficiency is considered as a rare neuromuscular syndrome with an autosomal recessive transmission. The ACAD9 protein presents two essential functions, i.e., the limiting step enzyme of the fatty acid β-oxidation pathway and one of the complex’s compounds involved in the [...] Read more.
Acyl-CoA dehydrogenase 9 deficiency is considered as a rare neuromuscular syndrome with an autosomal recessive transmission. The ACAD9 protein presents two essential functions, i.e., the limiting step enzyme of the fatty acid β-oxidation pathway and one of the complex’s compounds involved in the respiratory chain complex I assembly. Thus, loss-of-function mutations are known to convey mitochondrial cytopathologies. A patient with a mild and late-onset phenotype, suffering from exercise intolerance and hypertrophic cardiomyopathy, was diagnosed as a compound heterozygote of the ACAD9 gene. The first c.1240C> T p.Arg414Cys variant has been previously reported and is known to be responsible for ACAD9 deficiency. However, the second c.1636G> A p.Val546Met variant has never been described. The goal was to investigate the eventual pathogenicity of this new genetic variant. For this purpose, molecular cloning was generated to express the ACAD9 gene with the V546M variant in a cell line (ACAD9mut) and compared to cells expressing the wild-type ACAD9. Then, the mitochondrial respiration, ATP production, the mitochondrial network, and the oxidative phosphorylation’s composition were investigated to reveal the effects of the V546M variant. While avoiding to affect the amount of the respiratory chain’s complexes, the new ACAD9 variant was entirely responsible for reducing over 50% of the mitochondrial complex I activity. Full article
(This article belongs to the Special Issue Mitochondria and Energy Metabolism Reprogramming in Diseases)
Show Figures

Figure 1

22 pages, 358 KiB  
Review
Infectious Complications in Patients with B-Cell Non-Hodgkin Lymphoma Treated with Bispecific Antibodies
by Agnieszka Szymczyk, Joanna Drozd-Sokołowska and Iwona Hus
Cancers 2025, 17(15), 2426; https://doi.org/10.3390/cancers17152426 - 22 Jul 2025
Abstract
Bispecific antibodies (BsABs) have become a new standard of treatment of refractory/relapsed patients with diffuse large B-cell lymphoma and follicular lymphoma, being also intensively studied in other types of B-cell non-Hodgkin lymphoma (B-NHL). Since the therapy with BsABs results in profound B-cell depletion [...] Read more.
Bispecific antibodies (BsABs) have become a new standard of treatment of refractory/relapsed patients with diffuse large B-cell lymphoma and follicular lymphoma, being also intensively studied in other types of B-cell non-Hodgkin lymphoma (B-NHL). Since the therapy with BsABs results in profound B-cell depletion and T-cell exhaustion, it is associated with significantly increased risk of infections. Additional risk factors involve immune disorders caused by lymphoma itself and previous lines of therapy. In this review, we focus on the infectious complications in B-NHL patients treated BsABs, presenting their incidence in clinical trials, admittedly performed to a large extent during the COVID-19 pandemic, as well as the proposals of infection prophylaxis. Full article
(This article belongs to the Special Issue Targeted Therapies for B-Cell Leukemia and Lymphoma)
Show Figures

Figure 1

18 pages, 1057 KiB  
Review
Orthotopically Implanted Murine Lung Adenocarcinoma Cell Lines for Preclinical Investigations
by Karshana J. Kalyanaraman, Zachary Corey, Andre Navarro, Lynn E. Heasley and Raphael A. Nemenoff
Cancers 2025, 17(15), 2424; https://doi.org/10.3390/cancers17152424 - 22 Jul 2025
Abstract
The application of personalized medicine to lung adenocarcinoma has resulted in new therapies based on specific oncogenic drivers that have improved patient outcomes. However, oncogene-defined subsets of patients exhibit a significant heterogeneity of response to these agents. Defining the factors that mediate the [...] Read more.
The application of personalized medicine to lung adenocarcinoma has resulted in new therapies based on specific oncogenic drivers that have improved patient outcomes. However, oncogene-defined subsets of patients exhibit a significant heterogeneity of response to these agents. Defining the factors that mediate the varied depth and duration of response are critical to developing new therapeutic strategies. While the examination of patient samples can provide important correlations, definitive mechanistic studies require the use of relevant preclinical models. Based on a large body of data, interactions between cancer cells and the surrounding tumor microenvironment, comprised of inflammatory, immune, and vascular cells, represent a critical determinant of therapeutic response. In this review, we focus on preclinical models that can be used to explore these interactions, identify new therapeutic targets, and test combination therapies. In particular, we will describe the use of implantable orthotopic immunocompetent models employing a panel of murine lung adenocarcinoma cell lines with oncogenic drivers common to human lung adenocarcinoma as a powerful system to develop new treatment approaches. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

16 pages, 1366 KiB  
Article
Lipid Composition of Nanocarriers Shapes Interactions of Cyclic Antimicrobial Peptide Gramicidin S with Their Membranes
by Volodymyr Berest, Larysa Sichevska, Olga Gorobchenko, Ihor Perepelytsia, Galyna Bozhok and Oleksii Skorokhod
Int. J. Mol. Sci. 2025, 26(14), 6946; https://doi.org/10.3390/ijms26146946 - 19 Jul 2025
Viewed by 271
Abstract
Gramicidin S (GS), an antimicrobial peptide (AMP), exhibits broad-spectrum activity against bacteria and cancer cells but is limited in clinical use due to its cytotoxicity toward eukaryotic cells. Lipid-based delivery systems may overcome this limitation; in this study, we proposed and tested simple [...] Read more.
Gramicidin S (GS), an antimicrobial peptide (AMP), exhibits broad-spectrum activity against bacteria and cancer cells but is limited in clinical use due to its cytotoxicity toward eukaryotic cells. Lipid-based delivery systems may overcome this limitation; in this study, we proposed and tested simple and promising lipid formulations, including dipalmitoylphosphatidylcholine (DPPC), cardiolipin (CL), and cholesterol (CHOL). We evaluated the interactions of these lipid membranes with GS by assessing membrane fluidity, dielectric permittivity, dielectric losses, dielectric relaxation frequency, and static dielectric constant. Among these, membrane fluidity and dielectric permittivity were the most sensitive to GS, showing significant changes in the formulation containing 90 mol% DPPC and 10 mol% CHOL when exposed to 20 μM GS. Notably, although membrane fluidity changed in a dose-dependent manner following GS binding, the liposomes still supported relatively high GS concentrations—up to 80 μM—which is important for future high-dose GS applications. Additionally, we performed preliminary cytotoxicity tests comparing free GS with liposome-carried GS using the tested lipid compositions and observed a significant reduction in GS-associated toxicity on L929 cell line. This study provides new insights into GS–membrane interactions and supports the rational design of AMP nanocarriers for biomedical applications. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Figure 1

37 pages, 20768 KiB  
Article
Design, Synthesis, and Testing of 1,2,3-Triazolo-Quinobenzothiazine Hybrids for Cytotoxic and Immunomodulatory Activity
by Klaudia Giercuszkiewicz-Haśnik, Magdalena Skonieczna, Beata Morak-Młodawska and Małgorzata Jeleń
Int. J. Mol. Sci. 2025, 26(14), 6920; https://doi.org/10.3390/ijms26146920 - 18 Jul 2025
Viewed by 227
Abstract
Phenothiazines, mainly known for their antipsychotic activity, have recently attracted attention as potential compounds with anticancer and immunomodulatory activity In this study, 20 new quinobenzothiazines (MJ1MJ20) were synthesized and their effects on normal cell lines (BEAS-2B, NHDF) and cancer [...] Read more.
Phenothiazines, mainly known for their antipsychotic activity, have recently attracted attention as potential compounds with anticancer and immunomodulatory activity In this study, 20 new quinobenzothiazines (MJ1MJ20) were synthesized and their effects on normal cell lines (BEAS-2B, NHDF) and cancer cell lines (HCT116, MCF7, A549, SH-SY5Y, U2OS) were investigated. The studies included cytotoxicity assessment, analysis of the expression of genes (BCL2, AIFM2, MDM2) and pro-inflammatory cytokines (IL6, IL8) using the RT-qPCR method, and prediction of biological activity using the PASS platform. The results indicate that the compounds MJ19 and MJ20 have the greatest effect on the induction of pro-inflammatory (IL6, IL8) and antiapoptotic (BCL2, MDM2) genes, suggesting their potential use in therapies for inflammatory and autoimmune diseases. Gene expression analysis showed that compound MJ2 in BEAS-2B cells significantly induced the expression of AIFM2, a protein responsible for protecting against ferroptosis, while moderately increasing the expression of BCL2 and MDM2, suggesting a potential role for MJ2 in the modulation of protective mechanisms of healthy cells, e.g., avoiding apoptosis death. These results emphasize the potential of quinobenzothiazines as multifunctional bioactive compounds, which require further studies to determine their mechanisms of action and specificity. Full article
(This article belongs to the Special Issue Techniques and Strategies in Drug Design and Discovery, 3rd Edition)
Show Figures

Figure 1

19 pages, 2360 KiB  
Article
Novel N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl) Propanamides as Antiproliferative Agents: Design, Synthesis, In Vitro Testing, and In Silico Mechanistic Study
by Samar A. Abubshait
Molecules 2025, 30(14), 3025; https://doi.org/10.3390/molecules30143025 - 18 Jul 2025
Viewed by 115
Abstract
A series of eleven new N-alkyl 3-(3-benzyloxyquinoxalin-2-yl) propanamides were prepared based on the azide coupling of 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide with a variety of primary and secondary amines and the consequent conjunction of a broad spectrum of lipophile and hydrophile characters to a quinoxaline [...] Read more.
A series of eleven new N-alkyl 3-(3-benzyloxyquinoxalin-2-yl) propanamides were prepared based on the azide coupling of 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide with a variety of primary and secondary amines and the consequent conjunction of a broad spectrum of lipophile and hydrophile characters to a quinoxaline ring system. 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide was produced in a two-step reaction of methyl 3-(3-oxo-3,4-dihydroquinoxalin-2-yl) propanoate with benzyl chloride followed by the hydrazinolysis of the corresponding ester. The antiproliferative activity of the compounds was tested in various cancer cell lines, including PC-3, Hela, HCT-116, and MCF-7; they showed a wide spectrum of activity for most of the tested compounds. Compound 6k exhibited the highest activity, which was comparable to that of doxorubicin, with IC50 (µM) values of 12.17 ± 0.9, 9.46 ± 0.7, 10.88 ± 0.8, and 6.93 ± 0.4 µM compared to 8.87 ± 0.6, 5.57 ± 0.4, 5.23 ± 0.3, and 4.17 ± 0.2 µM for doxorubicin against Hela, HCT-116, and MCF-7, respectively. The in silico mechanistic study revealed the inhibition of HDAC-6 through the binding of the unique zinc finger ubiquitin-binding domain (HDAC6 Zf-UBD). The docking results showed a specific binding pattern that emphasized the crucial role of the quinoxaline ring and its substituents. The newly developed derivatives were evaluated for antitumor effects against four cancer cell lines PC-3, HeLa, HCT-116, and MCF-7. This research led to the identification of a quinoxaline-based scaffold exhibiting broad-spectrum antiproliferative activity and a distinct mechanism involving binding to HDAC6 Zf-UBD. The findings highlight its potential for further optimization and preclinical studies to support future anticancer drug development. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery, 2nd Edition)
Show Figures

Figure 1

10 pages, 885 KiB  
Article
Three New Physalins from Physalis Alkekengi L. var. franchetii (Mast.) Makino
by Ji Zhao, Xiang-Rong Zhang, You Wu, Ying-Li Liu, Yan-Feng Liang and Yang Teng
Molecules 2025, 30(14), 3017; https://doi.org/10.3390/molecules30143017 - 18 Jul 2025
Viewed by 189
Abstract
Physalis Alkekengi L. var. franchetii (Mast.) Makino (PAF), which is used in both food and medicine, has a long history of about 1800 years of application in China. There are many active constituents in the calyx of PAF. Physalins and physalins with a [...] Read more.
Physalis Alkekengi L. var. franchetii (Mast.) Makino (PAF), which is used in both food and medicine, has a long history of about 1800 years of application in China. There are many active constituents in the calyx of PAF. Physalins and physalins with a single oxygen bridge are the unique components of the PAF calyx. Physalins with multiple biological activities, including anticancer activity, antimicrobial activity, anti-inflammatory activity, etc., have been found. As such, physalins deserve to be studied further. In this study, we aimed to extract, separate, and identify the effective components of physalins from the calyx of PAF and investigate ability to inhibit the proliferation of tumor cell lines. Three new physalins, physalin VIII (1), 3α-hydroxy-2,3,25,27-tetrahydro-4,7-didehydro-7-deoxyneophysalin A (2), and physalin IX (3), along with three known compounds, physalin L (4), physalin D (5), and alkekengilin A (6) were isolated from PAF calyxes. Physalin D was superior to the positive control drug cisplatin in inhibiting the proliferation of five tumor cell lines. The physalin compounds exhibited potential antitumor activity, being deemed worthy of further research in the fields of antitumor drug development and the application in health foods. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

32 pages, 3865 KiB  
Article
Purine–Hydrazone Scaffolds as Potential Dual EGFR/HER2 Inhibitors
by Fatemah S. Albalawi, Mashooq A. Bhat, Ahmed H. Bakheit, A. F. M. Motiur Rahman, Nawaf A. Alsaif, Alan M. Jones and Isolda Romero-Canelon
Pharmaceuticals 2025, 18(7), 1051; https://doi.org/10.3390/ph18071051 - 17 Jul 2025
Viewed by 295
Abstract
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 6 [...] Read more.
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 624 (a,b), as anticancer agents targeting EGFR and HER2 kinases. Methods: The proposed compounds were initially screened in silico using molecular docking to investigate their expected binding affinity to the active sites of EGFR and HER2 kinase domains. Subsequently, the compounds were synthesized and evaluated in vitro for their antiproliferative activity, using the MTT assay, against the various cancer cell lines A549, SKOV-3, A2780, and SKBR-3, with lapatinib as the reference drug. The most active derivatives were then examined to determine their inhibitory activity against EGFR and HER2 kinases. Results: Among the assessed compounds, significant antiproliferative activity was demonstrated by 19a, 16b, and 22b. 19a exhibited substantial anticancer efficacy against A549 and SKBR-3, with IC50 values of 0.81 µM and 1.41 µM, respectively. This activity surpassed lapatinib, which has an IC50 of 11.57 µM on A549 and 8.54 µM on SKBR-3 cells. Furthermore, 19a, 16b, and 22b exhibited superior EGFR inhibitory efficacy compared with lapatinib (IC50 = 0.13 µM), with IC50 values of 0.08, 0.06, and 0.07 µM, respectively. Regarding HER2, 22b demonstrated the greatest potency with an IC50 of 0.03 µM, equipotent to lapatinib (IC50 = 0.03 µM). Flow cytometry analysis of A549 cells treated with 19a and 22b indicated their ability to arrest the cell cycle during the G1 phase and to trigger cellular apoptosis. Conclusions: Compounds 19a, 16b, and 22b represent intriguing candidates for the development of an anticancer agent targeting EGFR and HER2 kinases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

11 pages, 1220 KiB  
Article
The Combination of HSP90 Inhibitors and Selumetinib Reinforces the Inhibitory Effects on Plexiform Neurofibromas
by Sajjad Khan, Oluwatosin Aina, Ximei Veneklasen, Hannah Edens, Donia Alson, Li Sun, Huda Zayed, Kimani Njoya and Daochun Sun
Cancers 2025, 17(14), 2359; https://doi.org/10.3390/cancers17142359 - 16 Jul 2025
Viewed by 210
Abstract
Background/Objectives: Plexiform neurofibromas (pNFs) are one of the cardinal presentations of NF1 patients, often arising during early childhood. Since selumetinib was approved by the FDA in 2020, the long-term side effects and various responses of mitogen-activated protein kinase inhibitors (MEKi) in pediatric [...] Read more.
Background/Objectives: Plexiform neurofibromas (pNFs) are one of the cardinal presentations of NF1 patients, often arising during early childhood. Since selumetinib was approved by the FDA in 2020, the long-term side effects and various responses of mitogen-activated protein kinase inhibitors (MEKi) in pediatric patients necessitate a new strategy. We propose that combining selumetinib with heat shock protein 90 inhibitors (HSP90i) can enhance the inhibitory effects as well as reduce the dosage of selumetinib in combination. We validated the synergistic effects and the significantly improved treatment effects of the combination of selumetinib and HSP90i in pNFs. Methods: We used drug screen data mining to predict the combination of selumetinib and HSP90i. Using cell lines and in vivo mouse models for pNFs, we tested a series of combinations with different concentrations. We validated the in vivo inhibitory effects using the transplanted tumors from DhhCreNf1f/f mouse models. Results: We demonstrated that combining selumetinib and SNX-2112 or retaspimycin can achieve better tumor inhibition with synergistic effects. The combination significantly delays the progression of mouse pNFs. Conclusions: The combination of selumetinib and HSP90i has significant synergistic effects, provides therapeutic inhibitor effects, and reduces the selumetinib dosage in combination. Full article
(This article belongs to the Special Issue Neurofibromatosis Type 1 (NF1) Related Tumors (2nd Edition))
Show Figures

Figure 1

16 pages, 644 KiB  
Article
Isolation and Identification of Secondary Metabolites in Rheum tataricum L.fil. Growing in Kazakhstan and Surveying of Its Anticancer Potential
by Aiman A. Turgunbayeva, Nurgul A. Sultanova, Mohammad Saleh Hamad, Victor A. Savelyev, Elena I. Chernyak, Irina Yu. Bagryanskaya, Mikhail A. Pokrovsky, Andrey G. Pokrovsky, Nadezhda G. Gemejiyeva and Elvira E. Shults
Molecules 2025, 30(14), 2978; https://doi.org/10.3390/molecules30142978 - 15 Jul 2025
Viewed by 281
Abstract
Rheum tataricum L.fil., known for its high tolerance to drought, salinity, and nutritional deficiency, is the least studied species of wild rhubarb. Extract of roots and rhizomes of R. tataricum has been traditionally used for the treatment of different diseases such as liver, [...] Read more.
Rheum tataricum L.fil., known for its high tolerance to drought, salinity, and nutritional deficiency, is the least studied species of wild rhubarb. Extract of roots and rhizomes of R. tataricum has been traditionally used for the treatment of different diseases such as liver, kidney, womb, and bladder diseases and also relapsing fever. An ethanol extract of the roots of R. tataricum was prepared and further successively fractionated by extraction with tert-butyl methyl ether (TBME) and ethyl acetate (EtOAc). The obtained extract fractions were subjected to a series of chromatographic separations on silica gel for the isolation of its individual compounds. A total of 12 individual compounds, 2-O-β-D-glucopyranoside of R-(4-hydroxyphenyl)-2-butanol (rhododendrin) 1, gallic acid 2, 2-O-β-D-glucopyranoside of S-4-(4-hydroxyphenyl)-2-butanol (epi-rhododendrin) 3, their aglycones (-)-(2R)-rhododendrol 4 and (+)-(2S)-rhododendrol 5, gallotannin β-glucogallin 6, chlorogenic acids (3,5-di-O-caffeoylquinic acid 7 and 5-O-caffeoyl-3-O-(p-coumaroyl) quinic acid 8), 4-(4-hydroxyphenyl)-2-butanon (raspberry ketone) 9 and three stilbenes (rhaponticin 10, desoxyrhaponticin 11 and resveratroloside 12), were isolated and characterized. The structure of desoxyrhaponticin 11 was confirmed by X-ray diffraction analyses. The results of in vitro biological assays (the MTT test) showed that ethanol extract Rheum tataricum was non-toxic against the normal epithelial VERO cells. The isolated compounds 1, 4, 11 and 12 exhibited cytotoxicity against a cervical cancer cell line (CaSki), breast adenocarcinoma (MCF7) and glioblastoma cell line (SNB-19) at low micromolar concentrations. Polyhydroxystilbenes 11 and 12 showed the best potency against adenocarcinoma cells (GI50 = 7–8 μM). The inhibition activity towards cancer cells was comparable to those of the standard drug doxorubicin. The available from R. tataricum secondary metabolites may serve as new leads for the discovery of anticancer drugs. Full article
Show Figures

Graphical abstract

17 pages, 2806 KiB  
Article
Death of Leukemia Cells and Platelets Induced by 3,3′-Dihydroxy-4,5-Dimethoxybibenzyl Is Mediated by p38 Mitogen-Activated Protein Kinase Pathway
by Natalia Rukoyatkina, Tatyana Sokolova, Nikita Pronin, Andrei Whaley, Anastasiia O. Whaley and Stepan Gambaryan
Molecules 2025, 30(14), 2965; https://doi.org/10.3390/molecules30142965 - 15 Jul 2025
Viewed by 233
Abstract
Bibenzyls are now recognized as compounds for use in cancer therapy, and many molecules from the bibenzyl group have shown promising anticancer activity; therefore, the characterization of new bibenzyls with strong biological activity is important for developing new anticancer drugs. In this study, [...] Read more.
Bibenzyls are now recognized as compounds for use in cancer therapy, and many molecules from the bibenzyl group have shown promising anticancer activity; therefore, the characterization of new bibenzyls with strong biological activity is important for developing new anticancer drugs. In this study, we compared the effects of three bibenzyls (3,3′-dihydroxy-4,5-dimethoxybibenzyl, 3,5-dihydroxy-4-methoxybibenzyl and 3,5,3′-trihydroxy-4-methoxybibenzyl) isolated from Empetrum nigrum and erianin on platelets and the MOLT-3 T-lymphoblast cell line. Among the studied bibenzyls, 3,3′-dihydroxy-4,5-dimethoxybibenzyl significantly reduced the viability of MOLT-3 cells and platelets and induced strong phosphatidylserine (PS) surface exposure. We showed that 3,3′-dihydroxy-4,5-dimethoxybibenzyl induced the death of MOLT-3 cells and platelets, which was not mediated by apoptosis, pyroptosis, necroptosis, autophagy, or calpain-dependent pathways, and that the p38 MAP kinase pathways are at least partly involved in the activity of 3,3′-dihydroxy-4,5-dimethoxybibenzyl. In conclusion, our data show that 3,3′-dihydroxy-4,5-dimethoxybibenzyl could be a promising candidate for future analysis as an anticancer drug. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

18 pages, 3297 KiB  
Article
Evaluation of Apoptosis and Cytotoxicity Induction Using a Recombinant Newcastle Disease Virus Expressing Human IFN-γ in Human Prostate Cancer Cells In Vitro
by Aldo Rojas-Neyra, Katherine Calderón, Brigith Carbajal-Lévano, Gloria Guerrero-Fonseca, Gisela Isasi-Rivas, Ana Chumbe, Ray W. Izquierdo-Lara, Astrid Poma-Acevedo, Freddy Ygnacio, Dora Rios-Matos, Manolo Fernández-Sánchez and Manolo Fernández-Díaz
Biomedicines 2025, 13(7), 1710; https://doi.org/10.3390/biomedicines13071710 - 14 Jul 2025
Viewed by 1201
Abstract
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment [...] Read more.
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment alternatives. One promising approach is virotherapy, which involves using oncolytic viruses (OVs), such as the recombinant Newcastle disease virus (rNDV). Methods: We used the lentogenic rNDV rLS1 strain (the control virus) as our backbone to develop two highly fusogenic rNDVs: rFLCF5nt (the parental virus) and rFLCF5nt-IFN-γ (rFLCF5nt expressing human interferon-gamma (IFN-γ)). We evaluated their oncolytic properties in a prostate cancer cell line (DU145). Results: The results showed the expression and stability of the IFN-γ protein, as confirmed using Western blotting after ten passages in specific pathogen-free chicken embryo eggs using the IFN-γ-expressing virus. Additionally, we detected a significantly high oncolytic activity in DU145 cells infected with the parental virus or the IFN-γ-expressing virus using MTS (a cell viability assay) and Annexin V-PE assays compared with the control virus (p < 0.0001 for both). Conclusions: In conclusion, our data show that IFN-γ-expressing virus can decrease cell viability and induce apoptosis in human prostate cancer in vitro. Full article
(This article belongs to the Special Issue Oncolytic Viruses and Combinatorial Immunotherapy for Cancer)
Show Figures

Figure 1

19 pages, 1415 KiB  
Article
Essential Oil from the Aerial Parts of Artemisia serotina Bunge (Winter Wormwood) Growing in Kazakhstan—Phytochemical Profile and Bioactivity
by Arshyn Kadyrbay, Liliya N. Ibragimova, Magdalena Iwan, Agnieszka Ludwiczuk, Anna Biernasiuk, Zuriyadda B. Sakipova, Łukasz Świątek, Kinga Salwa, Agnieszka Korga-Plewko, Karlygash A. Zhaparkulova, Tolkyn S. Bekezhanova, Aleksandra Józefczyk, Jolanta Szymańska and Anna Malm
Molecules 2025, 30(14), 2956; https://doi.org/10.3390/molecules30142956 - 14 Jul 2025
Viewed by 396
Abstract
Artemisia serotina Bunge represents one of the endemic Artemisia L. species in flora of Central Asia. There is scant information on the phytochemistry and biological activity of this species. The aim of the present study was to analyze the chemical composition of essential [...] Read more.
Artemisia serotina Bunge represents one of the endemic Artemisia L. species in flora of Central Asia. There is scant information on the phytochemistry and biological activity of this species. The aim of the present study was to analyze the chemical composition of essential oil from A. serotina (ASEO) growing in south Kazakhstan, together with the determination of its biological activity. ASEO isolation was carried out by hydrodistillation according to the State Pharmacopoeia of the Republic of Kazakhstan. Analysis of GC/MS data revealed that the most characteristic components of ASEO were irregular monoterpenes from three families: santolinane, artemisane, and lavandulane. The major compound was santolina alcohol (34.6%). Antimicrobial activity was studied against the reference bacterial and fungal strains using the recommended methods, allowing for an estimation of MIC (minimum inhibitory concentration). ASEO was most effective against Candida albicans (MIC = 2 mg/mL), exerting fungicidal activity. Thw MIC for bacterial species was higher, i.e., 4–16 mg/mL. Antiviral activity was tested against Coxsackievirus B3 (CVB3) and Human Herpesvirus type 1 (HHV-1) propagated in VERO cells. No antiviral effect against either virus was found at an ASEO concentration of 0.25 mg/mL, but a noticeable decrease in the intensity of HHV-1-related cytopathic effects was observed. Anticancer activity studies included several cancer cell lines. Cytotoxicity, cell cycle, thiol levels, and cell vitality were analyzed. Among the cancer cell lines tested, the breast cancer T47-D cell line exhibited the highest sensitivity to ASEO (IC50 = 40.81 ± 4.21 µg/mL at 24 h; IC50 = 33.17 ± 2.11 µg/mL at 48 h). The anticancer effect was suggested to be mainly due to the induction of cytostatic effects, accompanied by a disturbance of the intracellular redox balance. The obtained data provide novel information on the unique chemical composition of ASEO from south Kazakhstan, representing a new chemotype. Its bioactivity, including promising antifungal and anticancer properties, was demonstrated for the first time. Full article
(This article belongs to the Special Issue Chemical Analyses and Applications of Essential Oils)
Show Figures

Figure 1

Back to TopTop