Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (445)

Search Parameters:
Keywords = neutralizing monoclonal antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7055 KiB  
Article
Cardiopulmonary Bypass-Induced IL-17A Aggravates Caspase-12-Dependent Neuronal Apoptosis Through the Act1-IRE1-JNK1 Pathway
by Ruixue Zhao, Yajun Ma, Shujuan Li and Junfa Li
Biomolecules 2025, 15(8), 1134; https://doi.org/10.3390/biom15081134 - 6 Aug 2025
Abstract
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose [...] Read more.
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose deprivation/reoxygenation (OGD/R) cellular model, we demonstrated that IL-17A levels were markedly elevated in the hippocampus post-CPB, correlating with endoplasmic reticulum stress (ERS)-mediated apoptosis. Transcriptomic analysis revealed the enrichment of IL-17 signaling and apoptosis-related pathways. IL-17A-Neutralizing monoclonal antibody (mAb) and the ERS inhibitor 4-phenylbutyric acid (4-PBA) significantly attenuated neurological deficits and hippocampal neuronal damage. Mechanistically, IL-17A activated the Act1-IRE1-JNK1 axis, wherein heat shock protein 90 (Hsp90) competitively regulated Act1-IRE1 interactions. Co-immunoprecipitation confirmed the enhanced Hsp90-Act1 binding post-CPB, promoting IRE1 phosphorylation and downstream caspase-12 activation. In vitro, IL-17A exacerbated OGD/R-induced apoptosis via IRE1-JNK1 signaling, reversible by IRE1 inhibition. These findings identify the hippocampus as a key vulnerable region and delineate a novel IL-17A/Act1-IRE1-JNK1 pathway driving ERS-dependent apoptosis. Targeting IL-17A or Hsp90-mediated chaperone switching represents a promising therapeutic strategy for CPB-associated neuroprotection. This study provides critical insights into the molecular crosstalk between systemic inflammation and neuronal stress responses during cardiac surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 8583 KiB  
Article
Development and Immunogenic Evaluation of a Recombinant Vesicular Stomatitis Virus Expressing Nipah Virus F and G Glycoproteins
by Huijuan Guo, Renqiang Liu, Dan Pan, Yijing Dang, Shuhuai Meng, Dan Shan, Xijun Wang, Jinying Ge, Zhigao Bu and Zhiyuan Wen
Viruses 2025, 17(8), 1070; https://doi.org/10.3390/v17081070 - 31 Jul 2025
Viewed by 307
Abstract
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics [...] Read more.
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics available. Various virological tools—such as reverse genetics systems, replicon particles, VSV-based pseudoviruses, and recombinant Cedar virus chimeras—have been widely used to study the molecular mechanisms of NiV and to support vaccine development. Building upon these platforms, we developed a replication-competent recombinant vesicular stomatitis virus (rVSVΔG-eGFP-NiVBD F/G) expressing NiV attachment (G) and fusion (F) glycoproteins. This recombinant virus serves as a valuable tool for investigating NiV entry mechanisms, cellular tropism, and immunogenicity. The virus was generated by replacing the VSV G protein with NiV F/G through reverse genetics, and protein incorporation was confirmed via immunofluorescence and electron microscopy. In vitro, the virus exhibited robust replication, characteristic cell tropism, and high viral titers in multiple cell lines. Neutralization assays showed that monoclonal antibodies HENV-26 and HENV-32 effectively neutralized the recombinant virus. Furthermore, immunization of golden hamsters with inactivated rVSVΔG-eGFP-NiVBD F/G induced potent neutralizing antibody responses, demonstrating its robust immunogenicity. These findings highlight rVSVΔG-eGFP-NiVBD F/G as an effective platform for NiV research and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

24 pages, 2310 KiB  
Review
Exploring the Use of Viral Vectors Pseudotyped with Viral Glycoproteins as Tools to Study Antibody-Mediated Neutralizing Activity
by Miguel Ramos-Cela, Vittoria Forconi, Roberta Antonelli, Alessandro Manenti and Emanuele Montomoli
Microorganisms 2025, 13(8), 1785; https://doi.org/10.3390/microorganisms13081785 - 31 Jul 2025
Viewed by 283
Abstract
Recent outbreaks of highly pathogenic human RNA viruses from probable zoonotic origin have highlighted the relevance of epidemic preparedness as a society. However, research in vaccinology and virology, as well as epidemiologic surveillance, is often constrained by the biological risk that live virus [...] Read more.
Recent outbreaks of highly pathogenic human RNA viruses from probable zoonotic origin have highlighted the relevance of epidemic preparedness as a society. However, research in vaccinology and virology, as well as epidemiologic surveillance, is often constrained by the biological risk that live virus experimentation entails. These also involve expensive costs, time-consuming procedures, and advanced personnel expertise, hampering market access for many drugs. Most of these drawbacks can be circumvented with the use of pseudotyped viruses, which are surrogate, non-pathogenic recombinant viral particles bearing the surface envelope protein of a virus of interest. Pseudotyped viruses significantly expand the research potential in virology, enabling the study of non-culturable or highly infectious pathogens in a safer environment. Most are derived from lentiviral vectors, which confer a series of advantages due to their superior efficiency. During the past decade, many studies employing pseudotyped viruses have evaluated the efficacy of vaccines or monoclonal antibodies for relevant pathogens such as HIV-1, Ebolavirus, Influenza virus, or SARS-CoV-2. In this review, we aim to provide an overview of the applications of pseudotyped viruses when evaluating the neutralization capacity of exposed individuals, or candidate vaccines and antivirals in both preclinical models and clinical trials, to further help develop effective countermeasures against emerging neutralization-escape phenotypes. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

17 pages, 6805 KiB  
Article
Ferritin Nanocages Exhibit Unique Structural Dynamics When Displaying Surface Protein
by Monikaben Padariya, Natalia Marek-Trzonkowska and Umesh Kalathiya
Int. J. Mol. Sci. 2025, 26(15), 7047; https://doi.org/10.3390/ijms26157047 - 22 Jul 2025
Viewed by 201
Abstract
Ferritin nanocages with spherical shells carry proteins or antigens that enable their use as highly efficient nanoreactors and nanocarriers. Mimicking the surface Spike (S) receptor-binding domain (RBD) from SARS-CoV-2, ferritin nanocages induce neutralizing antibody production or block viral entry. Herein, by implementing molecular [...] Read more.
Ferritin nanocages with spherical shells carry proteins or antigens that enable their use as highly efficient nanoreactors and nanocarriers. Mimicking the surface Spike (S) receptor-binding domain (RBD) from SARS-CoV-2, ferritin nanocages induce neutralizing antibody production or block viral entry. Herein, by implementing molecular dynamics simulation, we evaluate the efficiency in the interaction pattern (active or alternative sites) of H-ferritin displaying the 24 S RBDs with host-cell-receptor or monoclonal antibodies (mAbs; B38 or VVH-72). Our constructed nanocage targeted the receptor- or antibody-binding interfaces, suggesting that mAbs demonstrate an enhanced binding affinity with the RBD, with key interactions originating from its variable heavy chain. The S RBD interactions with ACE2 and B38 involved the same binding site but led to divergent dynamic responses. In particular, both B38 chains showed that asymmetric fluctuations had a major effect on their engagement with the Spike RBD. Although the receptor increased the binding affinity of VVH-72 for the RBD, the mAb structural orientation on the nanocage remained identical to its conformation when bound to the host receptor. Overall, our findings characterize the essential pharmacophore formed by Spike RBD residues over nanocage molecules, which mediates high-affinity interactions with either binding partner. Importantly, the ferritin-displayed RBD maintained native receptor and antibody binding profiles, positioning it as a promising scaffold for pre-fusion stabilization and protective RBD vaccine design. Full article
Show Figures

Figure 1

16 pages, 945 KiB  
Review
Comparative Efficacy and Safety of Tralokinumab and Dupilumab in Moderate-to-Severe Atopic Dermatitis: A Narrative Review
by Yoon-Seob Kim
J. Clin. Med. 2025, 14(14), 4960; https://doi.org/10.3390/jcm14144960 - 13 Jul 2025
Viewed by 573
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that significantly affects patients’ quality of life. Dupilumab, a monoclonal antibody targeting interleukin (IL)-4 receptor alpha (IL-4Rα), has been the standard biologic therapy for moderate-to-severe AD. This review compares dupilumab with tralokinumab—a promising alternative [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that significantly affects patients’ quality of life. Dupilumab, a monoclonal antibody targeting interleukin (IL)-4 receptor alpha (IL-4Rα), has been the standard biologic therapy for moderate-to-severe AD. This review compares dupilumab with tralokinumab—a promising alternative that selectively neutralizes IL-13—by examining their distinct mechanisms, clinical efficacy, safety profiles, and practical considerations. While both biologics are highly effective, pivotal monotherapy trials indicate numerically higher efficacy rates for dupilumab. Regarding safety, while long-term data show comparable rates of serious adverse events, dupilumab is associated with a higher incidence of both conjunctivitis and injection-site reactions. Key practical differences include dupilumab’s broader indications and approval for infants (≥6 months), versus tralokinumab’s flexible maintenance dosing and notable efficacy in head and neck AD. By highlighting these key distinctions, this review aims to support personalized treatment selection in AD. However, no direct head-to-head clinical trials have yet compared dupilumab and tralokinumab, and the available evidence is based on indirect comparisons from separate pivotal studies. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

14 pages, 1982 KiB  
Article
Evidence for Pro-Inflammatory Activity of LTα3 on Macrophages: Significance for Experimental Arthritis and for Therapeutic Switching in Rheumatoid Arthritis Patients
by Ariane Benezech, Jacques-Eric Gottenberg, Yannick Degboé, Andrey Kruglov, Jane Grogan, Fabienne Briand-Mésange, Alain Cantagrel, Adeline Ruyssen-Witrand and Jean-Luc Davignon
Int. J. Mol. Sci. 2025, 26(13), 6355; https://doi.org/10.3390/ijms26136355 - 1 Jul 2025
Viewed by 373
Abstract
Lymphotoxin-alpha (LTα3) is a soluble cytokine of the TNF superfamily. Its role in inflammation and arthritis is not well known. Macrophages are important in K/BxN Serum-Transfer Arthritis (STA) and rheumatoid arthritis (RA). Anti-TNF monoclonal antibodies as well as etanercept (ETA), a soluble TNF [...] Read more.
Lymphotoxin-alpha (LTα3) is a soluble cytokine of the TNF superfamily. Its role in inflammation and arthritis is not well known. Macrophages are important in K/BxN Serum-Transfer Arthritis (STA) and rheumatoid arthritis (RA). Anti-TNF monoclonal antibodies as well as etanercept (ETA), a soluble TNF receptor II that also neutralizes LTα3, are efficient in the treatment of RA. Objectives: To evaluate the role of LTα3 in macrophage phenotypes and in arthritis. Methods: Macrophages were cultured in the presence of recombinant LTα3, and their phenotypes were studied. The clinical effect of blocking LTα3 in STA was evaluated, as well as the effect of switching from anti-TNF monoclonal antibodies to etanercept in the “ROC” register of RA patients. Results: We showed that recombinant LTα3 was capable of directing mouse and human macrophages towards a pro-inflammatory “M1” phenotype. In K/BxN STA, ETA decreased clinical score and joint swelling. Anti-LTα3 reduced arthritis only in TNF-KO mice, indicating that the effect of LTα3 was visible in the absence of TNF. The “ROC” register indicated that switching anti-TNF mAb to ETA did not induce clinical and biological improvement in RA. Conclusion: We show a pro-inflammatory role for LTα3 in murine and human macrophages. The neutralization of both TNF and LTα3 is not beneficial in the treatment of RA. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 3172 KiB  
Article
Characterization of the Binding and Inhibition Mechanisms of a Novel Neutralizing Monoclonal Antibody Targeting the Stem Helix Region in the S2 Subunit of the Spike Protein of SARS-CoV-2
by Selene Si Ern Tan, Ee Hong Tam, Kah Man Lai, Yanjun Wu, Tianshu Xiao and Yee-Joo Tan
Vaccines 2025, 13(7), 688; https://doi.org/10.3390/vaccines13070688 - 26 Jun 2025
Viewed by 668
Abstract
Background/Objectives: For viral entry into host cells, the spike (S) protein of coronavirus (CoV) uses its S1 domain to bind to the host receptor and S2 domain to mediate the fusion between virion and cellular membranes. The S1 domain acquired multiple mutations as [...] Read more.
Background/Objectives: For viral entry into host cells, the spike (S) protein of coronavirus (CoV) uses its S1 domain to bind to the host receptor and S2 domain to mediate the fusion between virion and cellular membranes. The S1 domain acquired multiple mutations as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved to give rise to Variant of Concerns (VOCs) but the S2 domain has limited changes. In particular, the stem helix in S2 did not change significantly and it is fairly well-conserved across multiple beta-CoVs. In this study, we generated a murine mAb 7B2 binding to the stem helix of SARS-CoV-2. Methods: MAb 7B2 was isolated from immunized mouse and its neutralization activity was evaluated using microneutralization, plaque reduction and cell–cell fusion assays. Bio-layer interferometry was used to measure binding affinity and AlphaFold3 was used to model the antibody–antigen interface. Results: MAb 7B2 has lower virus neutralizing and membrane block activities when compared to a previously reported stem helix-binding human mAb S2P6. Alanine scanning and AlphaFold3 modeling reveals that residues K1149 and D1153 in S form a network of polar interactions with the heavy chain of 7B2. Conversely, S2P6 binding to S is not affected by alanine substitution at K1149 and D1153 as indicated by the high ipTM scores in the predicted S2P6-stem helix structure. Conclusions: Our detailed characterization of the mechanism of inhibition of 7B2 reveals its distinctive binding model from S2P6 and yields insights on multiple neutralizing and highly conserved epitopes in the S2 domain which could be key components for pan-CoV vaccine development. Full article
Show Figures

Figure 1

11 pages, 1047 KiB  
Brief Report
Light Chain Isotype and Antibody-Specificity Impact on Virus Neutralization
by Lin Sun, Roman Palt, Georg Schütz, Esther Föderl-Höbenreich, Laura Brod, Antonia Hermle, Anja Lux, Herta Steinkellner and Somanath Kallolimath
Antibodies 2025, 14(2), 50; https://doi.org/10.3390/antib14020050 - 17 Jun 2025
Viewed by 464
Abstract
Therapeutic antibodies with lambda light chains (λ-Abs) are underrepresented compared to kappa light chains (κ-Abs). Here, we evaluated two SARS-CoV-2-specific monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding as κ and λ variants. mAbs expressed in glycoengineered Nicotiana benthamiana [...] Read more.
Therapeutic antibodies with lambda light chains (λ-Abs) are underrepresented compared to kappa light chains (κ-Abs). Here, we evaluated two SARS-CoV-2-specific monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding as κ and λ variants. mAbs expressed in glycoengineered Nicotiana benthamiana did not show differences in expression levels, glycosylation, and antigen binding, while κ-Abs exhibited slightly increased thermodynamic stability over λ-Abs. SARS-CoV-2 neutralization and IgG-FcγR immune complex studies revealed increased activities of H4 IgG1κ compared to H4 IgG1λ, with no differences observed between P5C3 variants. Our results indicate that constant light chain variability and Ab specificity contribute to Ab features, a fact that should be considered in engineering therapeutics. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

15 pages, 1763 KiB  
Article
Single Tri-Epitopic Antibodies (TeAbs) to Botulinum Neurotoxin Serotypes B, E, and F Recapitulate the Full Potency of a Combination of Three Monoclonal Antibodies in Toxin Neutralization
by Jianlong Lou, Wei Hua Wen, Fraser Conrad, Christina C. Tam, Consuelo Garcia-Rodriguez, Shauna Farr-Jones and James D. Marks
Toxins 2025, 17(6), 281; https://doi.org/10.3390/toxins17060281 - 4 Jun 2025
Viewed by 541
Abstract
Recombinant monoclonal antibody (mAb) botulinum neurotoxin (BoNT) antitoxins, consisting of three mAbs that bind non-overlapping epitopes, are highly potent. However, the three-mAb mixtures pose unique development and manufacturing challenges. Combining even more mAbs to create multivalent antitoxin drugs multiplies those challenges. We previously [...] Read more.
Recombinant monoclonal antibody (mAb) botulinum neurotoxin (BoNT) antitoxins, consisting of three mAbs that bind non-overlapping epitopes, are highly potent. However, the three-mAb mixtures pose unique development and manufacturing challenges. Combining even more mAbs to create multivalent antitoxin drugs multiplies those challenges. We previously reported that a single tri-epitopic IgG1-based mAb (TeAb) containing the variable domains of the three parental BoNT/A mAbs and an Fc was as potent as the combination of three IgGs in the mouse neutralization assay (MNA). Here, we extended the tri-epitopic strategy to three other BoNT serotypes. Each TeAb (TeAb-B for BoNT/B, TeAb-E for BoNT/E, and TeAb-F for BoNT/F) binding was measured using fluorescence-activated cell sorting and flow fluorimetry, and the potency was tested in the MNA. The three TeAbs displayed binding affinities that were the same within error of the parental IgGs for each epitope, and all had higher avidity to each serotype of BoNT than that of the parental mAbs. The potency of the BoNT/B, BoNT/E, and BoNT/F TeAbs was similar to the combinations of the three parental IgGs binding BoNT/B, BoNT/E, and BoNT/F in the MNA. We now have four examples of a single TeAb recapitulating the affinity and in vivo potency of a three-mAb antitoxin. The tri-epitopic strategy could be applied to streamline the production and bioanalytics of antibody drugs where three-mAb binding is required for activity. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

15 pages, 23341 KiB  
Article
Discovery of Synergistic Broadly Neutralizing Antibodies Targeting Non-Dominant Epitopes on SARS-CoV-2 RBD and NTD
by Hualong Feng, Zuowei Wang, Ling Li, Yunjian Li, Maosheng Lu, Xixian Chen, Lin Hu, Yi Sun, Ruiping Du, Rongrong Qin, Xuanyi Chen, Liwei Jiang and Teng Zuo
Vaccines 2025, 13(6), 592; https://doi.org/10.3390/vaccines13060592 - 30 May 2025
Viewed by 658
Abstract
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal [...] Read more.
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal antibodies (mAbs) were isolated from a donor who experienced a BA.5 or BF.7 breakthrough infection after three doses of inactivated vaccines. Their binding and neutralizing capacities were measured with ELISA and a pseudovirus-based neutralization assay, respectively. Their epitopes were mapped by competition ELISA and site-directed mutation. Results: Among a total of 67 spike-specific mAbs cloned from the donor, four mAbs (KXD643, KXD652, KXD681, and KXD686) can neutralize all tested SARS-CoV-2 variants from wild-type to KP.3. Moreover, KXD643, KXD652, and KXD681 belong to a clonotype encoded by IGHV5-51 and IGKV1-13 and recognize the cryptic and conserved RBD-8 epitope on the receptor-binding domain (RBD). In contrast, KXD686 is encoded by IGHV1-69 and IGKV3-20 and targets a conserved epitope (NTD Site iv) outside the antigenic supersite (NTD Site i) of the N-terminal domain (NTD). Notably, antibody cocktails containing these two groups of mAbs can neutralize SARS-CoV-2 more potently due to synergistic effects. In addition, bispecific antibodies derived from KXD643 and KXD686 demonstrate further improved neutralizing potency compared to antibody cocktails. Conclusions: These four mAbs can be developed as candidates of pan-SARS-CoV-2 antibody therapeutics through further antibody engineering. On the other hand, vaccines designed to simultaneously elicit neutralizing antibodies towards RBD-8 and NTD Site iv have the potential to provide pan-SARS-CoV-2 protection. Full article
Show Figures

Figure 1

18 pages, 8713 KiB  
Article
Protective Potential and Functional Role of Antibodies Against SARS-CoV-2 Nucleocapsid Protein
by Alexandra Rak, Ekaterina Bazhenova, Polina Prokopenko, Victoria Matyushenko, Yana Orshanskaya, Konstantin V. Sivak, Arina Kostromitina, Larisa Rudenko and Irina Isakova-Sivak
Antibodies 2025, 14(2), 45; https://doi.org/10.3390/antib14020045 - 28 May 2025
Viewed by 1408
Abstract
Cases of new COVID-19 infection, which manifested in 2019 and caused a global socioeconomic crisis, still continue to be registered worldwide. The high mutational activity of SARS-CoV-2 leads to the emergence of new antigenic variants of the virus, which significantly reduces the effectiveness [...] Read more.
Cases of new COVID-19 infection, which manifested in 2019 and caused a global socioeconomic crisis, still continue to be registered worldwide. The high mutational activity of SARS-CoV-2 leads to the emergence of new antigenic variants of the virus, which significantly reduces the effectiveness of COVID-19 vaccines, as well as the sensitivity of diagnostic test systems based on variable viral antigens. These problems may be solved by focusing on highly conserved coronavirus antigens, for example nucleocapsid (N) protein, which is actively expressed by coronavirus-infected cells and serves as a target for the production of virus-specific antibodies and T cell responses. It is known that anti-N antibodies are non-neutralizing, but their protective potential and functional activity are not sufficiently studied. Here, the protective effect of anti-N antibodies was studied in Syrian hamsters passively immunized with polyclonal sera raised to N(B.1) recombinant protein. The animals were infected with 105 or 104 TCID50 of SARS-CoV-2 (B.1, Wuhan or BA.2.86.1.1.18, Omicron) 6 h after serum passive transfer, and protection was assessed by weight loss, clinical manifestation of disease, viral titers in the respiratory tract, as well as by the histopathological evaluation of lung tissues. The functional activity of anti-N(B.1) antibodies was evaluated by complement-dependent cytotoxicity (CDC) and antibody-dependent cytotoxicity (ADCC) assays. The protection of anti-N antibodies was evident only against a lower dose of SARS-CoV-2 (B.1) challenge, whereas almost no protection was revealed against BA.2.86.1.1.18 variant. Anti-N(B.1) monoclonal antibodies were able to stimulate both CDC and ADCC. Thus, anti-N(B.1) antibodies possess protective activity against homologous challenge infection, which is possibly mediated by innate Fc-mediated immune reactions. These data may be informative for the development of N-based broadly protective COVID-19 vaccines. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

30 pages, 1033 KiB  
Review
Targeting Aging Hallmarks with Monoclonal Antibodies: A New Era in Cancer Immunotherapy and Geriatric Medicine
by Michele Dal Bo, Marta Gambirasi, Idris Vruzhaj, Erika Cecchin, Abbas Pishdadian, Giuseppe Toffoli and Amin Safa
Int. J. Mol. Sci. 2025, 26(11), 4982; https://doi.org/10.3390/ijms26114982 - 22 May 2025
Cited by 1 | Viewed by 1256
Abstract
Aging is characterized by a progressive deterioration in physiological function and an increased susceptibility to age-related diseases, such as cancer. Monoclonal antibodies (mAbs) constitute a novel therapeutic approach aimed at addressing aging mechanisms such as cellular senescence, inflammaging, and immunosenescence. This text presents [...] Read more.
Aging is characterized by a progressive deterioration in physiological function and an increased susceptibility to age-related diseases, such as cancer. Monoclonal antibodies (mAbs) constitute a novel therapeutic approach aimed at addressing aging mechanisms such as cellular senescence, inflammaging, and immunosenescence. This text presents an overview of mAb methods aimed at the markers of aging and their potential application in cancer treatment. The mAbs can be categorized into senolytics, senescence-associated secretory phenotype (SASP) neutralizers, and immune checkpoint inhibitors, each targeting fewer aging-related pathways relevant to cancer therapeutic enhancement than the last. Translating promising preclinical evidence into enhanced efficacy and safety in cancer therapy presents challenges, particularly in older populations. This study examines the therapeutic efficacy of mAbs in the treatment of cancer and age-related disorders, focusing on their current and future roles in oncology practice. Full article
(This article belongs to the Special Issue New Insights in Antibody Therapy)
Show Figures

Figure 1

18 pages, 4923 KiB  
Article
A Computationally Designed Prefusion Stabilized Human Metapneumovirus Fusion Protein Vaccine Antigen Elicited a Potent Neutralization Response
by Michael Kishko, Antonia Stuebler, Sukanya Sasmal, Yvonne Chan, Dean Huang, Christopher Reyes, Jasmine Lin, Owen Price, Ana Kume, Katie Zong, Christine Bricault, Judith Alamares-Sapuay and Linong Zhang
Vaccines 2025, 13(5), 523; https://doi.org/10.3390/vaccines13050523 - 15 May 2025
Viewed by 1266
Abstract
Background/Objectives: Human metapneumovirus (hMPV) is a leading cause of respiratory infections in the elderly, with high morbidity and mortality and with no vaccines or specific therapies available. The primary protective antigen of hMPV is the fusion protein, and its prefusion conformation (pre-F) is [...] Read more.
Background/Objectives: Human metapneumovirus (hMPV) is a leading cause of respiratory infections in the elderly, with high morbidity and mortality and with no vaccines or specific therapies available. The primary protective antigen of hMPV is the fusion protein, and its prefusion conformation (pre-F) is considered the most promising target for vaccine development. Methods: Utilizing computational design strategies focused on intraprotomer interface stabilization, we designed hMPV pre-F recombinant subunit vaccine candidates based on the most prevalent A2 subtype and characterized them in vitro and in vivo, benchmarking to the prototypical hMPV pre-F stabilized by an introduction of a proline at site 185. Results: The top candidate (N46V_T160F) yielded 14.4 mg/L with a melting temperature of 79.3 °C as compared to 5.7 mg/L and 70.4 °C for the benchmark. By employing monoclonal antibody binding to all six antigenic sites of hMPV pre-F, we confirmed this construct retained all pre-F specific antigenic sites and that the key sites Ø and V were stable at 4 °C for up to 6 months. When immunogenicity of N46V_T160F was evaluated in mice, it induced higher binding and neutralizing antibody titers than the benchmark, which stemmed in part from increased levels of site Ø and site II targeting Abs. Further, this A2 based construct induced cross-neutralizing Abs against all four hMPV subtypes. Lastly, our construct exhibited similar immunogenicity as the recently published next-generation hMPV pre-F constructs, DS-CavEs2 and v3B_Δ12_D454C-V458C. Conclusions: N46V_T160F is a promising hMPV vaccine candidate paving the way for further development and optimization. Full article
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
Predicting Clinical Response to Monoclonal TNF Inhibitors in Rheumatoid Arthritis: A Transcriptomic Approach Based on Transmembrane TNF Reverse Signaling and Nrf2 Activation
by Katy Diallo, Yannick Degboé, Michel Baron, Anaïs Bellin-Robert, Jean-Frédéric Boyer, Adeline Ruyssen-Witrand, Arnaud Constantin, Benjamin Rauwel, Alain Cantagrel and Jean-Luc Davignon
Diagnostics 2025, 15(10), 1232; https://doi.org/10.3390/diagnostics15101232 - 14 May 2025
Viewed by 543
Abstract
(1) Background: TNF inhibitors (TNFis) have revolutionized the treatment of rheumatoid arthritis (RA). However, 30–40% of RA patients do not respond adequately to those biologics. In addition to neutralizing soluble TNF, TNFis have the ability to bind the transmembrane form of TNF, [...] Read more.
(1) Background: TNF inhibitors (TNFis) have revolutionized the treatment of rheumatoid arthritis (RA). However, 30–40% of RA patients do not respond adequately to those biologics. In addition to neutralizing soluble TNF, TNFis have the ability to bind the transmembrane form of TNF, tmTNF. Importantly, tmTNF can act itself as a receptor that induces “Reverse Signaling” (RS) in cells. We previously showed that certolizumab, a Fab’ TNFi, activates RS in human primary monocytes, at least in part through the transcription factor Nrf2 that is known to regulate the expression of genes involved in anti-inflammatory response and oxidative stress. (2) Methods: Here, we have developed an assay for the prediction of clinical response of RA patients to TNF inhibitors. This assay is based on mRNA quantitation of CD36 activation and of six genes induced by Nrf2 following tmTNF RS in fresh monocytes. (3) Results: We could predict the response to anti-TNF monoclonal antibodies (mAbs) with 93.3% accuracy. However, our method was not suitable for the prediction of the response to TNF soluble receptor etanercept. (4) Conclusions: We have developed a rather simple, short-term test that can be standardized. Predicting the response to TNF mAbs will help physicians offer the best available treatment and provide patients with personalized medicine. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

14 pages, 2399 KiB  
Article
Purification of Human Immunoglobulin G with Bathophenanthroline–Zn2+, –Fe2+, or –Cu2+ Complexes
by Thisara Jayawickrama Withanage, Ron Alcalay, Olga Krichevsky, Ellen Wachtel, Ohad Mazor and Guy Patchornik
Antibodies 2025, 14(2), 40; https://doi.org/10.3390/antib14020040 - 12 May 2025
Viewed by 712
Abstract
Background/Objectives: Pharmaceutical companies are aware of the ongoing effort to satisfy the increasing global demand for therapeutic-grade monoclonal antibodies (mAbs), an especially difficult challenge for poor and developing countries. We present a simple, economical, single-step purification approach at neutral pH for polyclonal human [...] Read more.
Background/Objectives: Pharmaceutical companies are aware of the ongoing effort to satisfy the increasing global demand for therapeutic-grade monoclonal antibodies (mAbs), an especially difficult challenge for poor and developing countries. We present a simple, economical, single-step purification approach at neutral pH for polyclonal human IgG (hIgG), which does not require any expensive ligands, chromatography columns, polymers, or membranes. Methods/Results: Instead, porous precipitates of commercial, recyclable aromatic [bathophenanthroline:cation] complexes were found to efficiently capture impurity proteins from CHO cells or E. coli lysate while maintaining the majority of the highly concentrated hIgG (5–15 mg/mL) in the supernatant. [(Batho)3:Zn2+] complexes were the most promising, resulting in hIgG with a purity of ≈95%, by SDS-PAGE. This purified hIgG is monomeric (by dynamic light scattering, DLS) and preserves the native secondary structure (by far UV circular dichroism spectroscopy, CD). The process yield is >90% (by densitometry) and is maintained after a 100-fold increase in the reaction volume, which required only proportional increases in reagents. Conclusions: Although Protein A chromatographic columns, the industry gold standard, have a limited binding capacity, are costly, and require familiarity with column maintenance, we are attempting, by our efforts, to help to produce a more efficient, simple, and economical purification platform. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Graphical abstract

Back to TopTop