Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = neutral sugar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1606 KB  
Article
Impact of Combined Light and Modified Atmosphere Packaging on Postharvest Quality and Carbohydrate Fluctuations of Kyoho Grapes
by Kunpeng Zhao, Shaoyu Tao, Zhaoyang Ding and Jing Xie
Foods 2025, 14(19), 3308; https://doi.org/10.3390/foods14193308 - 24 Sep 2025
Viewed by 71
Abstract
Kyoho grapes are rich in nutrients, yet their susceptibility to spoilage poses a significant challenge for postharvest preservation. While light treatment can improve fruit quality and carbohydrate metabolism in postharvest grapes, the potential benefits of combining light treatment with modified atmosphere packaging (MAP) [...] Read more.
Kyoho grapes are rich in nutrients, yet their susceptibility to spoilage poses a significant challenge for postharvest preservation. While light treatment can improve fruit quality and carbohydrate metabolism in postharvest grapes, the potential benefits of combining light treatment with modified atmosphere packaging (MAP) remain unexplored. A preservation method that combined red and blue light treatments with MAP has been developed to enhance postharvest fruit quality and carbohydrate metabolism in Kyoho grapes. Our study showed that this combined treatment significantly increased postharvest fruit hardness, as well as total soluble solids (TSS) and fruiting pedicel water content. It also improved the activities of superoxide dismutase (SOD) and phenylalanine ammonialyase (PAL) and increased the antioxidant, anti-browning capacity. This composite treatment slowed down sucrose decomposition by regulating the activities of key enzymes of carbohydrate metabolism (sucrose synthase (SS), sucrose phosphate synthase (SPS), neutral invertase (NI) and acid invertase (AI)). After 60 days of storage, the glucose, fructose, and sucrose contents of the RP group increased by 13.4%, 30.2%, and 18.1%, respectively, compared to the CK group (p < 0.05). In summary, light combined with modified atmosphere packaging significantly improved the physicochemical properties and sugar metabolism of postharvest grapes. The results indicated that the optimal treatment condition was continuous red-light irradiation combined with MAP. The hardness, TSS content, VC content and glucose content of Kyoho grapes in this treatment group were the best in all treatment groups. Full article
(This article belongs to the Special Issue Postharvest and Green Processing Technology of Vegetables and Fruits)
Show Figures

Graphical abstract

25 pages, 5375 KB  
Article
The Impact of Varieties and Growth Stages on the Production Performance and Nutritional Quality of Forage Triticale in the Qaidam Basin
by Fengjuan Xue, Chengti Xu, Yuanyuan Zhao, Xiaojian Pu, Jie Wang, Xiaoli Wei and Wei Wang
Plants 2025, 14(19), 2942; https://doi.org/10.3390/plants14192942 - 23 Sep 2025
Viewed by 161
Abstract
Insufficient forage is a significant factor limiting the development of animal husbandry in high-altitude pastoral areas. This study aims to identify suitable high-quality forage Triticale (x Triticosecale Wittmack) varieties for cultivation in the Qaidam Basin and determine their optimal harvest period. Seven triticale [...] Read more.
Insufficient forage is a significant factor limiting the development of animal husbandry in high-altitude pastoral areas. This study aims to identify suitable high-quality forage Triticale (x Triticosecale Wittmack) varieties for cultivation in the Qaidam Basin and determine their optimal harvest period. Seven triticale varieties were selected as experimental materials, and their production performance and nutritional quality were comprehensively analyzed at four different growth stages [booting stage (BTS), heading stage (HDS), flowering stage (FLS), and milk stage (MKS)] in 2024 and 2025, utilizing Pearson correlation analysis, PCA, and TOPSIS methods. The results indicated that as the reproductive period progressed, plant height, dry matter yield, and dry matter content exhibited a continuous increase. In contrast, indicators such as stem diameter, number of green leaves, and fresh biomass yield initially increased before subsequently declining. The MKS soluble sugar content (SS) and relative feed value (RFV) were the highest, crude protein (CP) and crude ash content (CA) decreased, the neutral detergent fiber content (NDF) and the acid detergent fiber (ADF) content reached their peak in the HDS. The relative forage quality (RFQ) reached its peak during the flowering period. Comprehensive analysis showed that the top five rankings are QSM-8 > JSM-3 > QSM-1 > JSM-2 > QSM-7. In the Qaidam Basin, the optimal harvest period from the FLS to the MKS ensures both high yield and good nutritional quality, making it suitable for promotion in the Qaidam Basin region and similar ecological zones. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

16 pages, 832 KB  
Review
The Necessary Transition Towards Healthier Diets: An Assessment of Replacing Meat and Refined Wheat Flour with a Mixture of Different Plant-Based Foods
by Diego Luna and Vicente Montes
Sustainability 2025, 17(18), 8357; https://doi.org/10.3390/su17188357 - 17 Sep 2025
Viewed by 283
Abstract
Currently, at least one third of greenhouse gas (GHG) emissions come from the agricultural sector, with meat production making a particularly significant contribution. Therefore, alongside the ongoing efforts to transform transport and cut its emissions, it is essential to adopt urgent measures that [...] Read more.
Currently, at least one third of greenhouse gas (GHG) emissions come from the agricultural sector, with meat production making a particularly significant contribution. Therefore, alongside the ongoing efforts to transform transport and cut its emissions, it is essential to adopt urgent measures that limit GHG emissions from food production, consumption and distribution. Without them, the Paris Agreement goal of net-zero GHG emissions by 2050 cannot be met, and the most severe impacts of climate change will not be avoided. In principle, lowering emissions from the global food system may appear simple, as no new technology (for example, electric cars or carbon-neutral fuels) is required to decarbonize transport. However, since meat consumption accounts for the majority of food related GHG emissions, it must be coupled with a sharp reduction in the large-scale production and consumption of animal foods. Encouragingly, a growing number of consumers already choose diets that are both healthy and environmentally sustainable. As meat reduction gains popularity in these groups, plant-based products are expanding in the marketplace, mainly in the form of snacks, pasta, pizzas and especially vegan or vegetarian burgers. Thus, almost spontaneously, components of the Westernized diet, rich in ultra-processed foods, salt, sugar and animal protein, are gradually being replaced by plant-derived nutrients that are healthier and more environmentally friendly. To accelerate this trend, legal measures could be introduced to improve the nutritional quality of widely consumed, low-nutrient snacks and to promote agricultural reforms that encourage the production of nutrient-dense legumes and pseudocereals. Full article
Show Figures

Figure 1

21 pages, 3446 KB  
Article
Optimizing the Enzymatic Hydrolysis of Microchloropsis salina Biomass for Single-Cell Oil Production
by Felix Melcher, Max Schneider, Michael Paper, Marion Ringel, Daniel Garbe and Thomas Brück
Biomass 2025, 5(3), 56; https://doi.org/10.3390/biomass5030056 - 17 Sep 2025
Viewed by 269
Abstract
There is an increasing industrial demand for sustainable resources for lipid-based biofuels and platform chemical production. A promising, CO2-efficient resource is autotrophically cultivated microalgae, either for direct single-cell oil (SCO) production or as a biomass substrate for fermentative SCO production via [...] Read more.
There is an increasing industrial demand for sustainable resources for lipid-based biofuels and platform chemical production. A promising, CO2-efficient resource is autotrophically cultivated microalgae, either for direct single-cell oil (SCO) production or as a biomass substrate for fermentative SCO production via organisms like yeasts. Regarding the latter, chemical biomass hydrolysis typically results in high sugar yield and high salt concentrations due to the required neutralization prior to fermentation. In contrast, enzymatic hydrolysis is often lacking in mass efficiency. In this study, the enzymatic hydrolysis of both nutrient-replete and lipid-rich autotrophic Microchloropsis salina biomass was optimized, testing different pre-treatments and enzyme activities. Hereby, the protease treatment to weaken the cell wall integrity and the dosing of the Cellic CTec3 was identified to have the highest effect on hydrolysis efficiency. Sugar yields of 63% (nutrient-replete) and almost 100% (lipid-rich) could be achieved. The process was successfully scaled-up in mini bioreactors at a 250 mL scale. The resulting hydrolysate of the lipid-rich biomass was tested as a substrate of the oleaginous yeast Cutaneotrichosporon oleaginosus in a consumption-based acetic acid fed-batch setup. It outperformed both the model substrate and the glucose control, demonstrating the high potential of the hydrolysate as feedstock for yeast oil production. The presented sequential and circular SCO-producing value chain highlights the potential for mass- and space–time-efficient biofuel production, combining the autotrophic cultivation of oleaginous algae with decoupled yeast oil fermentation for the first time. Full article
Show Figures

Graphical abstract

19 pages, 582 KB  
Article
Xylitol Antioxidant Properties: A Potential Effect for Inflammation Reduction in Menopausal Women?—A Pilot Study
by Ilona Górna, Magdalena Kowalówka, Barbara Więckowska, Michalina Banaszak, Grzegorz Kosewski, Olivia Grządzielska, Juliusz Przysławski and Sławomira Drzymała-Czyż
Curr. Issues Mol. Biol. 2025, 47(8), 611; https://doi.org/10.3390/cimb47080611 - 2 Aug 2025
Viewed by 665
Abstract
Introduction: Oxidative stress is a key factor in the pathogenesis of many chronic diseases, especially in postmenopausal women. Xylitol, a sugar alcohol with potential antioxidant properties, may affect oxidative balance when used as a sugar substitute. Aim: This pilot study aimed to assess [...] Read more.
Introduction: Oxidative stress is a key factor in the pathogenesis of many chronic diseases, especially in postmenopausal women. Xylitol, a sugar alcohol with potential antioxidant properties, may affect oxidative balance when used as a sugar substitute. Aim: This pilot study aimed to assess the effect of replacing sucrose with xylitol on serum antioxidant capacity in postmenopausal women. Methods: This study included 34 women aged 50 to 65 years who successively consumed 5 g/d, 10 g/d, and 15 g/d of xylitol. The dietary intervention lasted a total of 6 weeks, with each phase covering a 2-week period. Diet was assessed twice based on a 7-day dietary interview (Diet 6.0, NIZP–PZH, Warsaw). The material for this study was venous blood. Antioxidant capacity was determined using the DPPH radical scavenging method and the ABTS cation radical scavenging method. Results: In both methods, a significant increase in serum antioxidant potential was observed after replacing sugar with xylitol (p < 0.0001). An increase in the ability to neutralize free radicals was observed in almost all women studied. Additional analysis of the effect of selected nutrients on the obtained effects of the nutritional intervention showed that the most significant effect could potentially be exerted by manganese, maltose, sucrose, and mercury, and the strongest positive correlation was exerted by vitamin A, retinol, and vitamin E. Although the values obtained in the constructed models were not statistically significant, the large effect indicates potentially significant relationships that could have a significant impact on serum antioxidant potential in the studied group of women. Conclusions: The results suggest a potential role of xylitol in enhancing antioxidant defense mechanisms in menopausal women. Although the sample size was relatively small, this study was powered at approximately 80% to detect large effects, supporting the reliability of the observed results. Nevertheless, given the pilot nature of this study, further research with larger cohorts is warranted to confirm these preliminary observations and to clarify the clinical significance of xylitol supplementation in populations exposed to oxidative stress. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammatory Diseases)
Show Figures

Graphical abstract

18 pages, 2301 KB  
Article
Optimization, Structural Characterization, and Bioactivities of Polysaccharides from Rosa roxburghii Tratt Fruit Using Enzyme-Assisted Extraction
by Qing Chen, Yue Zhang, Siyuan Zheng, Siming Zhu and Chao Li
Foods 2025, 14(14), 2423; https://doi.org/10.3390/foods14142423 - 9 Jul 2025
Cited by 1 | Viewed by 640
Abstract
This study aimed to optimize the enzyme-assisted extraction of polysaccharides (RTFPs) from Rosa roxburghii fruit using response surface methodology. Under the optimal extraction conditions, the yield of RTFPs reached 14.02%, which was close to the predicted value of 13.96%. The primary structural characteristics [...] Read more.
This study aimed to optimize the enzyme-assisted extraction of polysaccharides (RTFPs) from Rosa roxburghii fruit using response surface methodology. Under the optimal extraction conditions, the yield of RTFPs reached 14.02%, which was close to the predicted value of 13.96%. The primary structural characteristics and the antioxidative and immunomodulatory activities of RTFPs were also examined. Structural characterization revealed that RTFPs comprise 36.38% neutral sugar, 48.83% uronic acid, and 7.29% protein. Their heteropolysaccharide structure features two distinct molecular weight fractions (1.87 × 105 Da and 4.75 × 103 Da) and a monosaccharide composition dominated by glucose (38.93%), arabinose (20.66%), galactose (20.58%), galacturonic acid (10.94%), and xylose (6.52%). Antioxidant assays demonstrated potent radical scavenging activity, with IC50 values of 11 μg/mL (DPPH) and 150 μg/mL (ABTS), comparable to conventional antioxidants. Immunomodulatory studies on RAW264.7 macrophages revealed that RTFPs (100–400 μg/mL) significantly enhanced phagocytosis by 12.61–76.63% and stimulated the secretion of nitric oxide (NO) and tumor necrosis factor-α (TNF-α). These bioactivities are attributed to RTFPs’ high uronic acid content, moderate molecular weight distribution, unique monosaccharide profile, and highly branched conformation. Full article
Show Figures

Figure 1

16 pages, 2041 KB  
Article
Unlocking the Industrial Potential of Cambuci Peel: A Sustainable Approach Based on Its Physicochemical Profile
by Juver Andrey Jimenez Moreno, Tiago Linhares Cruz Tabosa Barroso, Luiz Eduardo Nochi Castro, Leda Maria Saragiotto Colpini, Felipe Sanchez Bragagnolo, Mauricio Ariel Rostagno and Tânia Forster Carneiro
Resources 2025, 14(7), 109; https://doi.org/10.3390/resources14070109 - 4 Jul 2025
Viewed by 930
Abstract
Cambuci is a native fruit from Brazil, and during the processing of this fruit, the peel is typically discarded due to limited knowledge of its physicochemical characteristics, which restricts its potential applications across various industries. Given the lack of detailed physicochemical characterization of [...] Read more.
Cambuci is a native fruit from Brazil, and during the processing of this fruit, the peel is typically discarded due to limited knowledge of its physicochemical characteristics, which restricts its potential applications across various industries. Given the lack of detailed physicochemical characterization of this by-product in the literature, this study aimed to analyze key parameters to expand on our understanding of this raw material and stimulate interest from both academia and industry. The cambuci peel was found to have a moisture content of 9.41 ± 1.69% dw (dry weight), total solids of 90.59 ± 1.69% dw, and volatile solids of 87.41 ± 1.69%. Its ash content was 3.18 ± 0.41%, while the chemical oxygen demand (COD) reached 420.54 ± 9.88 mg L−1. The total protein content was 4.93 ± 0.04 g/100 g dw, with reducing sugars at 108.22 ± 3.71 mg g−1 and non-reducing sugars at 30.58 ± 3.16 mg g−1. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined as 36.65 ± 0.19% dw and 18.91 ± 0.05% dw, respectively, with hemicellulose content of 17.74 ± 0.20% dw. Chromatographic analysis identified key bioactive compounds, including ellagic and gallic acid, which hold significant potential for pharmaceutical and food industry applications. Thermogravimetric analysis revealed three distinct decomposition zones, corresponding to physisorbed water, hemicellulose decomposition, and cellulose degradation, respectively. The results demonstrate the valuable physicochemical and biochemical properties of cambuci peel, supporting its potential for the development of new bioproducts aligned with circular economy principles. This study lays the foundation for further research into this underutilized by-product and its application in diverse industrial sectors. Full article
Show Figures

Figure 1

15 pages, 280 KB  
Article
Impact of Cherries, Strawberries, Bilberries, and Cornelian Cherry Addition on the Antioxidant Activity of Yogurt
by Patrycja Gazda, Paweł Glibowski, Paulina Kęska and Bożena Sosnowska
Appl. Sci. 2025, 15(13), 7270; https://doi.org/10.3390/app15137270 - 27 Jun 2025
Viewed by 454
Abstract
Increasing awareness of the negative health effects associated with high sugar intake has led to a growing demand for reducing added sugar in food products. In this study, the antioxidant properties of commercial yogurts containing pasteurized fruits were evaluated and compared with natural [...] Read more.
Increasing awareness of the negative health effects associated with high sugar intake has led to a growing demand for reducing added sugar in food products. In this study, the antioxidant properties of commercial yogurts containing pasteurized fruits were evaluated and compared with natural yogurts freshly enriched with 3–20% thawed fruits (bilberries, cherries and strawberries). Additionally, yogurts enriched with cornelian cherry were analyzed. Antioxidant activity was assessed using the ABTS and DPPH methods, along with measurements of total polyphenol content and reducing power. The effect of fruit addition on the number of yogurt bacteria was also investigated. The results showed that the addition of fruits significantly increased the yogurts’ ability to neutralize free radicals, attributed to the presence of natural antioxidants and polyphenols. The addition of fruits helped maintain the vitality of lactic acid bacteria, with bacterial counts remaining well above the minimum threshold of 107 cfu/g. The findings demonstrated that cornelian cherry has great potential as a source of polyphenols with antioxidant properties. These results confirm the high nutritional value of yogurts enriched with thawed fruit, which may serve as a valuable component of a healthy diet and a healthier alternative to sweetened yogurts commonly available in stores. Full article
15 pages, 5956 KB  
Article
Comparative Effects of Macroalgal Extracts on Tomato Plant Growth and Fruit Quality
by Damiano Spagnuolo, Domenico Prisa, Anupam Kundu, Maria Grazia De Michele, Valentino Russo and Giuseppa Genovese
Phycology 2025, 5(2), 22; https://doi.org/10.3390/phycology5020022 - 3 Jun 2025
Viewed by 1377
Abstract
Macroalgal extracts are widely recognised as biostimulants that enhance crop productivity and plant growth under both optimal and stressful conditions. They offer a sustainable approach to mitigating the adverse effects of abiotic stress on crop development. This study investigates the efficacy of macroalgal-based [...] Read more.
Macroalgal extracts are widely recognised as biostimulants that enhance crop productivity and plant growth under both optimal and stressful conditions. They offer a sustainable approach to mitigating the adverse effects of abiotic stress on crop development. This study investigates the efficacy of macroalgal-based fertilisers in enhancing tomato (Solanum lycopersicum L.) growth, yield, and fruit quality, as sustainable alternatives to chemical fertilisers. Different seaweed species (Sargassum muticum, Ulva ohnoi, Furcellaria lumbricalis, Ascophyllum nodosum, and a commercial A. nodosum extract) were evaluated as foliar treatments. The results showed that while the leaf fresh weight and chlorophyll content were not significantly affected, the fruit morphology and biochemical composition exhibited notable variations. Sargassum muticum-treated fruits displayed the highest °Brix (6.57), indicating superior sugar accumulation, while Ulva ohnoi maintained near-neutral pH levels (avg. 3.94), suggesting balanced acidity. Ascophyllum nodosum extracts induced the highest proline concentrations (peak: 63.77 µmol/g), but also caused extreme acidity (pH 1.39–2.58). Furcellaria lumbricalis enhanced the fruit size (axial length up to 41.4 mm), but reduced the pH sharply (1.69–2.13). The commercial product underperformed in regard to sugar content and flavour complexity. The integrative analysis revealed species-specific flavour profiles: Sargassum yielded sweet, mildly acidic fruits; Ascophyllum produced intensely aromatic, acidic tomatoes; and Ulva resulted in bland flavours. These findings underscore the importance of algal species and extraction methods in tailoring biofertilisers for target fruit qualities. This study advocates for the use of macroalgal fertilisers in sustainable agriculture, but highlights the need for optimised formulations to balance crop yield, taste, and stress adaptation. Full article
Show Figures

Figure 1

13 pages, 253 KB  
Article
Effects of Gamma Irradiation Pretreatment and Exogenous Fibrolytic Enzyme Supplementation on the Ruminal Fermentation and Nutritional Value of Typha latifolia
by Khalil Abid
Fermentation 2025, 11(6), 301; https://doi.org/10.3390/fermentation11060301 - 23 May 2025
Viewed by 764
Abstract
Efficient bioconversion of lignocellulosic biomass into ruminant feed requires advanced strategies to enhance fiber degradation and ruminal fermentation efficiency. This study evaluates the synergistic effects of gamma irradiation (150 kGy) and exogenous fibrolytic enzyme (EFE) supplementation (4 µL/g dry matter) from Trichoderma longibrachiatum [...] Read more.
Efficient bioconversion of lignocellulosic biomass into ruminant feed requires advanced strategies to enhance fiber degradation and ruminal fermentation efficiency. This study evaluates the synergistic effects of gamma irradiation (150 kGy) and exogenous fibrolytic enzyme (EFE) supplementation (4 µL/g dry matter) from Trichoderma longibrachiatum on the structural composition and ruminal fermentation of Typha latifolia. Gamma irradiation significantly reduced neutral detergent fiber (NDF) while increasing non-fiber carbohydrates (NFCs), reducing sugars (RS) and antioxidant activity. These modifications enhanced ruminal bacterial proliferation, suppressed ruminal protozoal populations, and improved ruminal fermentation efficiency by increasing gas production, dry matter degradability, and NDF degradability. Additionally, irradiation decreased ruminal NH3-N concentrations and branched-chain volatile fatty acids (VFAs) without affecting total VFA production and ruminal pH. While EFE alone accelerated only ruminal fermentation, its combination with irradiation further reduced NDF content, enriched NFC and RS, and enhanced fermentation efficiency. This dual treatment increased total VFA production, shifted fermentation pathways toward propionate synthesis, and reduced acetate and branched-chain VFA levels. It also stimulated ruminal bacterial populations without altering ruminal pH. These findings highlight gamma irradiation as an effective pretreatment to enhance EFE hydrolysis, offering a promising strategy to improve the nutritional value of low-quality forages to integrate into ruminant diets. Full article
(This article belongs to the Special Issue Research Progress of Rumen Fermentation)
14 pages, 959 KB  
Article
Characteristics of Amino Acid and Glucose Digestion and Metabolism in Energy and Protein Feedstuffs for Pigs
by Jiayu Tu, Qingyun Chen, Junyan Zhou, Yuxin Fan, Yanlong Li, Yonghang Ma, Xiangfang Zeng, Shiyan Qiao and Shuang Cai
Animals 2025, 15(11), 1510; https://doi.org/10.3390/ani15111510 - 22 May 2025
Cited by 2 | Viewed by 627
Abstract
The objective of this study is to investigate the digestion and metabolism characteristics of amino acids and glucose in energy and protein feeds, and to establish regression equations to accurately predict their release rates in vivo based on the in vitro digestion characteristics [...] Read more.
The objective of this study is to investigate the digestion and metabolism characteristics of amino acids and glucose in energy and protein feeds, and to establish regression equations to accurately predict their release rates in vivo based on the in vitro digestion characteristics of the feedstuffs. A total of 9 energy feedstuffs and 19 protein feedstuffs were selected for in vitro digestion simulation experiments. Additionally, four representative energy and protein feeds were then chosen for the portal vein, femoral artery, and femoral vein blood cannulation experiments in growing pigs. The results showed that among the nine energy feedstuffs tested, wheat bran presented the highest degree of digestion, followed by wheat, whereas potato had the lowest degree of digestion. The digestibility of starch at different time points in vitro was linearly correlated with the crude fiber content, total starch content, and ratio of amylose to amylopectin (R2 = 0.61~0.96). Among the 19 protein feedstuffs tested, peas released the highest total amount of amino acids, followed by sugar beet meal. The in vivo digestibility and metabolism trial in cannulated pigs showed that the total amino acid release was linearly correlated with the in vitro amino acid release rates, dry matter, crude protein, neutral detergent fiber, crude fat, and total energy of the feedstuffs (R2 = 0.93~0.99). Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Graphical abstract

14 pages, 1243 KB  
Article
Effects of Substituting Sweet Sorghum for Corn Silage in the Diet on the Growth Performance, Meat Quality, and Rumen Microorganisms of Boer Goats in China
by Shuyang Wang, Fangzhu Guo, Yuchen Wang, Miaoyin Dong, Junkai Wang and Guoqing Xiao
Animals 2025, 15(10), 1492; https://doi.org/10.3390/ani15101492 - 21 May 2025
Cited by 1 | Viewed by 709
Abstract
Due to its superior drought tolerance, high biomass yield, and stress resistance, sweet sorghum (Sorghum bicolor L.) has emerged as an ideal candidate for sustainable forage production in arid, semi-arid, and mildly saline–alkaline regions. This study aimed to evaluate the effects of [...] Read more.
Due to its superior drought tolerance, high biomass yield, and stress resistance, sweet sorghum (Sorghum bicolor L.) has emerged as an ideal candidate for sustainable forage production in arid, semi-arid, and mildly saline–alkaline regions. This study aimed to evaluate the effects of replacing corn silage (CS) with either forage sorghum silage (FSS) or sugar sweet sorghum silage (SSS) on goat meat quality, the rumen microbial community, and meat composition. Thirty 3-month-old Boer goats (average body weight: 13.44 ± 1.67 kg) were randomly assigned to five dietary treatments; the control group contained 50% corn silage (CON), while the experimental groups contained 50% FSS (group I), 70% FSS (group II), 50% SSS (group III), or 70% SSS (group V), with each group receiving the same concentrate diet but different roughage sources. The results showed that compared to the CON group (50% CS), the experimental groups had a significantly increased average daily weight gain (ADG) (p < 0.05) and slaughter rate (SR). It is noteworthy that group III (50% SSS) showed a significant increase of 12.4% in SR (p < 0.01). Analysis of the silage characteristics and changes in the rumen microbial community revealed that feeding SSS and FSS increased the relative abundance of Ruminococcus in the rumen, further enhanced the degradation and conversion of silage neutral detergent fiber (NDF), and promoted the synthesis of fatty acids and amino acids. Specifically, FSS significantly increased the amino acid content in the meat, while SSS effectively improved the crude protein (CP) and crude fat (CF) contents. In conclusion, replacing 50% CS with FSS or SSS can effectively improve the meat quality and growth performance of Boer goats. Full article
(This article belongs to the Special Issue Impacts of Silage-Based Forages on Ruminant Health and Welfare)
Show Figures

Graphical abstract

35 pages, 891 KB  
Systematic Review
A Systematic Review of Evidence on the Role of Ready-to-Eat Cereals in Diet and Non-Communicable Disease Prevention
by E. J. Derbyshire and C. H. S. Ruxton
Nutrients 2025, 17(10), 1680; https://doi.org/10.3390/nu17101680 - 15 May 2025
Viewed by 2672
Abstract
Background: Ready-to-eat cereals (RTECs) are a large, heterogeneous category of cereals designed to fit into busy lifestyles with minimal preparation time. Methods: This systematic review evaluated nutrient intake data from seven national surveys. Using PubMed and Science Direct (1 January 2004 until 16 [...] Read more.
Background: Ready-to-eat cereals (RTECs) are a large, heterogeneous category of cereals designed to fit into busy lifestyles with minimal preparation time. Methods: This systematic review evaluated nutrient intake data from seven national surveys. Using PubMed and Science Direct (1 January 2004 until 16 September 2024), we investigated RTECs in relation to their contributions to macro, micronutrient and food group intakes, breakfast/diet quality and effects on health with focus on non-communicable disease (NCD) prevention. The search was restricted to Systematic Reviews (SRs), meta-analyses (MAs), randomised controlled trials (RCTs) and observational studies. Fifty-one publications were obtained. Studies related to health outcomes and NCD risk were graded using an updated Scottish Intercollegiate Guidelines Network approach. Results: Grade A evidence: Based on high-quality MA, SRs, or RCTs, this showed that RTEC consumption was associated with improved nutrient intakes (particularly fibre and micronutrients), reduced cardiovascular disease and mortality. One good-quality Grade A meta-analysis showed that total whole grain intake which included cereals was associated with a reduced risk of total cancer. Grade B evidence: Based largely on observational evidence, this showed that RTEC consumption was associated with reduced risk of overweight and obesity, body mass index and composition improvements and type 2 diabetes risk. For food group intakes, breakfast/diet quality and lipid profiles, more well-designed studies were needed (Grade D evidence). Conclusions: There is consistent evidence that RTECs generally have positive or neutral effects on nutritional status and NCD prevention. Strongest evidence exists for RTEC and micronutrient intakes, reduced risk of cardiovascular diseases (CVDs), body weight regulation, and reduced type 2 diabetes risk. Public health messaging should recognise that RTECs, especially whole-grain, higher-fibre and lower-sugar varieties, may help to reinforce micronutrient intakes and a range of health outcomes. Full article
(This article belongs to the Special Issue Nutrition and Non-Communicable Disease Prevention or Improvement)
Show Figures

Figure 1

11 pages, 797 KB  
Article
Comparison of In Vitro Fermentation Characteristics Among Five Maize Varieties
by Fabio Zicarelli, Serena Calabrò, Piera Iommelli, Micaela Grossi, Federico Infascelli and Raffaella Tudisco
Fermentation 2025, 11(5), 285; https://doi.org/10.3390/fermentation11050285 - 15 May 2025
Viewed by 738
Abstract
Maize (Zea mays L.) silage in the irrigated and flat areas of Italy represents the most important large ruminant feed crop due to the high dry matter yield and nutritive value per hectare. The aim of the investigation was to evaluate the [...] Read more.
Maize (Zea mays L.) silage in the irrigated and flat areas of Italy represents the most important large ruminant feed crop due to the high dry matter yield and nutritive value per hectare. The aim of the investigation was to evaluate the chemical composition and the in vitro fermentation patterns of five maize varieties (Tiesto, R700 1, MAS 78.T, DKC 7074 and KWS Kantico) freshly chopped and preserved via ensiling. The results indicated that the chemical composition was not significantly different among varieties. The substrates were incubated for 72 h with buffered rumen fluid collected from cow. The ensiling process slightly reduced gas production and fermentation kinetics, likely due to the consumption of soluble sugars during fermentation. Organic matter loss (OM loss) differed significantly (p < 0.01) among varieties in ensiled maize, correlating with their neutral detergent fiber (NDF) content. While total volatile fatty acid (VFA) production showed no significant differences between varieties, the buffer capacity ratio (BCR), an indicator of protein degradation, varied significantly. Ammonia production (NH3) was significantly higher in ensiled samples, supporting previous findings that ensiling increases non-protein nitrogen (NPN) due to microbial proteolysis and plant enzyme activity. The gas production profiles and fermentation rates over time showed minor differences between fresh and ensiled samples, with fresh material exhibiting faster fermentation kinetics due to the presence of soluble sugars. These findings highlight the importance of evaluating maize silage quality to optimize ruminant nutrition and feed efficiency. Full article
(This article belongs to the Special Issue Ruminal Fermentation)
Show Figures

Figure 1

27 pages, 7853 KB  
Article
Different Spatial Configurations of LED Light Sources Enhance Growth in Tomato Seedlings by Influencing Photosynthesis, CO2 Assimilation, and Endogenous Hormones
by Xiting Yang, Shuya Wang, Wenkai Liu, Shuchao Huang, Yandong Xie, Xin Meng, Zhaozhuang Li, Ning Jin, Li Jin, Jian Lyu and Jihua Yu
Plants 2025, 14(9), 1369; https://doi.org/10.3390/plants14091369 - 30 Apr 2025
Cited by 3 | Viewed by 962
Abstract
Sub-optimal light environments in controlled agricultural settings often limit the productivity of plants. While LED supplementary lighting has been widely adopted to mitigate light deficiencies, the spatial arrangement of LED light sources remains a critical but under-explored factor affecting plant physiological responses. In [...] Read more.
Sub-optimal light environments in controlled agricultural settings often limit the productivity of plants. While LED supplementary lighting has been widely adopted to mitigate light deficiencies, the spatial arrangement of LED light sources remains a critical but under-explored factor affecting plant physiological responses. In this study, we used the affiliation function method to comprehensively analyze the effects of four spatial LED supplementary lighting configurations—top-down lighting (T1), mid-canopy upward lighting (T2), mid-canopy downward lighting (T3), and bottom-up lighting (T4)—on the growth and photosynthetic performance of tomato plants. Our findings reveal that the T1 treatment significantly increased light absorption in the upper and middle leaves, enhanced photosynthetic efficiency, promoted the CO2 assimilation rate, and elevated the activities of key Calvin cycle enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), fructose-1,6-bisphosphatase (FBPase), transketolase (TK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and fructose-1,6-bisphosphate aldolase (FBA). These changes led to improved carbohydrate metabolism and biomass accumulation. Additionally, the T4 treatment markedly enhanced photosynthetic activity in the lower leaves, increasing sugar metabolism-related enzyme activities, such as sucrose synthase (SS), sucrose phosphate synthase (SPS), acid invertase (AI), and neutral invertase (NI). Consequently, compared with the CK treatment, the T4 treatment significantly increased the accumulation of glucose, fructose, and sucrose, with increases of 47.36%, 27.61%, and 87.21%, respectively. Furthermore, LED supplementation regulated endogenous hormone levels, thereby promoting overall plant growth. This study highlights the importance of the spatial arrangement of LEDs in optimizing light distribution and enhancing plant productivity, providing valuable theoretical and practical insights for improving agricultural practices in controlled environments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Graphical abstract

Back to TopTop