Effects of Gamma Irradiation Pretreatment and Exogenous Fibrolytic Enzyme Supplementation on the Ruminal Fermentation and Nutritional Value of Typha latifolia
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Chemical Composition, Bioactive Compounds, and Antioxidant Activity
2.3. Ruminal Incubation
2.3.1. Rumen Inoculum Preparation
2.3.2. In Vitro Ruminal Fermentation Assay
2.3.3. Gas Volume Calculation and Kinetics Modeling
2.3.4. Post-Incubation Analysis
2.3.5. Energy Estimations
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition and Antioxidant Activity
3.2. In Vitro Gas Kinetics
3.3. Fermentation Parameters
3.4. Ruminal Degradability and Energy Utilizable
3.5. Ruminal Microbiota
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADL | Acid detergent lignin |
C | Fractional rate of gas production |
CP | Crude protein |
DM | Dry matter |
DMD | Dry matter degradability |
DPPH | 2,2-diphenyl-picrylhydrazl-hydrate |
EE | Ether extract |
EFE | Exogenous fibrolytic enzyme |
GP | Gas pressure |
Gv | Gas volume |
Lag | Time at which gas production starts |
ME | Metabolizable energy |
NDF | Neutral detergent fiber |
NDFD | Neutral detergent fiber degradability |
NEL | Net energy for lactation |
NFC | Non-fiber carbohydrate |
Patm | Atmospheric pressure |
PGP | Potential gas production |
RS | Reducing sugars |
SEM | Standard error of means |
TP | Total polyphenols |
TT | Total tannins |
Vf | Volume of the bottle |
VFA | Volatile fatty acids |
Vi | Volume of inoculum added at the start of incubation |
γ irradiation | Gamma irradiation |
References
- Benoit, M.; Mottet, A. Energy Scarcity and Rising Cost: Towards a Paradigm Shift for Livestock. Agric. Syst. 2023, 205, 103585. [Google Scholar] [CrossRef]
- Hassan, H.F.; Hassan, U.F.; Baba, H.; Suleiman, A.S. The Feed Quality Status of Whole Typha domingensis Plant. Int. J. Sci. Eng. Res. 2018, 9, 211–231. [Google Scholar]
- Ondua, M.; Mfotie Njoya, E.; Abdalla, M.A.; McGaw, L.J. Investigation of Anthelmintic Activity of the Acetone Extract and Constituents of Typha capensis against Animal Parasitic Haemonchus contortus and Free-Living Caenorhabditis elegans. Parasitol. Res. 2021, 120, 3437–3449. [Google Scholar] [CrossRef] [PubMed]
- John, M.O.; Rufai, M.A.; Sunday, A.J.; Fernando, E.; Richard, K.; Eva, I.; Maidala, A.; Amos, M.; Chana, M.; Hannatu, C.; et al. Cattail (Typha domingensis) Silage Improves Feed Intake, Blood Profile, Economics of Production, and Growth Performance of Beef Cattle. Trop. Anim. Health Prod. 2022, 54, 48. [Google Scholar] [CrossRef] [PubMed]
- Dilshad, R.; Khan, K.-R.; Ahmad, S.; Aati, H.Y.; Al-qahtani, J.H.; Sherif, A.E.; Hussain, M.; Ghalloo, B.A.; Tahir, H.; Basit, A.; et al. Phytochemical Profiling, in Vitro Biological Activities, and in-Silico Molecular Docking Studies of Typha domingensis. Arab. J. Chem. 2022, 15, 104133. [Google Scholar] [CrossRef]
- Musa, A.R.; De Evan, T.; Makinde, O.J.; Alao, J.S.; Iglesias, E.; Escribano, F.; Carro, M.D.; Aminu, M.; Dunya, A.M.; Mohammad, I.C.; et al. Influence of Maturity Stage on Nutritive Value of Typha for Ruminants. Niger. J. Anim. Sci. 2021, 23, 214–218. [Google Scholar]
- De Evan, T.; Musa, A.R.; Marcos, C.N.; Alao, J.S.; Iglesias, E.; Escribano, F.; Carro, M.D. Ensiling Typha (Typha latifolia) Forage with Different Additives for Ruminant Feeding: In Vitro Studies. Appl. Sci. 2023, 13, 6546. [Google Scholar] [CrossRef]
- Mahesh, M.S.; Tariq, H.; Patra, A.K. Fibrolytic Enzymes in Animal and Fish Nutrition. In Organic Feed Additives for Livestock; Elsevier: Amsterdam, The Netherlands, 2025; pp. 175–193. ISBN 978-0-443-13510-1. [Google Scholar]
- Abid, K.; Jabri, J.; Yaich, H.; Malek, A.; Rekhis, J.; Kamoun, M. Nutritional Value Assessments of Peanut Hulls and Valorization with Exogenous Fibrolytic Enzymes Extracted from a Mixture Culture of Aspergillus Strains and Neurospora intermedia. Biomass Convers. Biorefinery 2024, 14, 11977–11985. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Liu, Q.; Guo, G.; Huo, W.; Pei, C.; Jiang, Q. Influence of Fibrolytic Enzymes Mixture on Performance, Nutrient Digestion, Rumen Fermentation and Microbiota in Holstein bulls. J. Anim. Feed Sci. 2022, 31, 46–54. [Google Scholar] [CrossRef]
- Abid, K.; Jabri, J.; Ammar, H.; Ben Said, S.; Yaich, H.; Malek, A.; Rekhis, J.; López, S.; Kamoun, M. Effect of Treating Olive Cake with Fibrolytic Enzymes on Feed Intake, Digestibility and Performance in Growing Lambs. Anim. Feed Sci. Technol. 2020, 261, 114405. [Google Scholar] [CrossRef]
- Hristov, A.N.; McAllister, T.A.; Cheng, K.J. Intraruminal Supplementation with Increasing Levels of Exogenous Polysaccharide-Degrading Enzymes: Effects on Nutrient Digestion in Cattle Fed a Barley Grain Diet. J. Anim. Sci. 2000, 78, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Abid, K.; Jabri, J.; Yaich, H.; Malek, A.; Rekhis, J.; Kamoun, M. In vitro study on the effects of exogenic fibrolytic enzymes produced from Trichoderma longibrachiatum on ruminal degradation of olive mill waste. Arch. Anim. Breed. 2022, 65, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Abid, K.; Jabri, J.; Beckers, Y.; Yaich, H.; Malek, A.; Rekhis, J.; Kamoun, M. Effects of exogenous fibrolytic enzymes on the ruminal fermentation of agro-industrial by-products. S. Afr. J. Anim. Sci. 2019, 49, 612–618. [Google Scholar] [CrossRef]
- Abid, K.; Jabri, J.; Yaich, H.; Malek, A.; Rekhis, J.; Kamoun, M. Conversion of Posidonia oceanica Wastes into Alternative Feed for Ruminants by Treatment with Microwaves and Exogenous Fibrolytic Enzymes Produced by Fermentation of Trichoderma longibrachiatum. Biomass Convers. Biorefinery 2023, 13, 16529–16536. [Google Scholar] [CrossRef]
- Betiku, E.; Adetunji, O.A.; Ojumu, T.V.; Solomon, B.O. A Comparative Study of the Hydrolysis of Gamma Irradiated Lignocelluloses. Braz. J. Chem. Eng. 2009, 26, 251–255. [Google Scholar] [CrossRef]
- Al-Masri, M.R.; Zarkawi, M. Effects of Gamma Irradiation on Cell-Wall Constituents of Some Agricultural Residues. Radiat. Phys. Chem. 1994, 44, 661–663. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Petchidurai, G.; Nagoth, J.A.; John, M.S.; Sahayaraj, K.; Murugesan, N.; Pucciarelli, S. Standardization and Quantification of Total Tannins, Condensed Tannin and Soluble Phlorotannins Extracted from Thirty-Two Drifted Coastal Macroalgae Using High Performance Liquid Chromatography. Bioresour. Technol. Rep. 2019, 7, 100273. [Google Scholar] [CrossRef]
- Marinova, G.; Batchvarov, V. Evaluation Pf the Methods for Determination of the Free Radical Scavening Activity by DPPH. Bulg. J. Agric. Sci. 2011, 17, 11–24. [Google Scholar]
- National Research Council (Ed.) Nutrient Requirements of Dairy Cattle; Seventh Revised Edition; Nutrient Requirements of Domestic Animals; National Academy Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7.
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analyses and gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A Simple Gas Production Method Using a Pressure Transducer to Determine the Fermentation Kinetics of Ruminant Feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the Extent of Degradation of Ruminant Feeds from a Description of Their Gas Production Profiles Observed in Vitro: Derivation of Models and Other Mathematical Considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L. Laboratory Procedures in Animal Nutrition Research; Department of Animal and Food Sciences Texas Tech University: Lubbock, TX, USA, 2010; Available online: https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdf (accessed on 28 March 2025).
- Lima, P.M.T.; Moreira, G.D.; Sakita, G.Z.; Natel, A.S.; Mattos, W.T.; Gimenes, F.M.A.; Gerdes, L.; McManus, C.; Abdalla, A.L.; Louvandini, H. Nutritional Evaluation of the Legume Macrotyloma axillare Using in Vitro and in Vivo Bioassays in Sheep. J. Anim. Physiol. Anim. Nutr. 2018, 102, e669–e676. [Google Scholar] [CrossRef]
- Tang, S.X.; Wang, K.Q.; Cong, Z.H.; Wang, M.; Han, X.F.; Zhou, C.S.; Tan, Z.L.; Sun, Z.H. Changes in Chemical Composition and in Vitro Fermentation Characters of Rice Straw Due to Gamma Irradiation. J. Food Agric. Environ. 2012, 10, 459–462. [Google Scholar]
- Kapoor, K.; Tyagi, A.K.; Diwan, R.K. Effect of Gamma Irradiation on Recovery of Total Reducing Sugars from Delignified Sugarcane Bagasse. Radiat. Phys. Chem. 2020, 170, 108643. [Google Scholar] [CrossRef]
- Moradi, M.; Afzalzadeh, A.; Behgar, M.; Norouzian, M.A. Effects of Electron Beam, NaOH and Urea on Chemical Composition, Phenolic Compounds, in Situ Ruminal Degradability and in Vitro Gas Production Kinetics of Pistachio by-Products. Vet. Res. Forum Int. Q. J. 2015, 6, 111–117. [Google Scholar]
- Aslaniyan, A.; Ghanbari, F.; Kouhsar, J.B.; Shahraki, B.K. Comparing the Effects of Gamma Ray and Alkaline Treatments of Sodium Hydroxide and Calcium Oxide on Chemical Composition, Ruminal Degradation Kinetics and Crystallinity Degree of Soybean Straw. Appl. Radiat. Isot. 2023, 191, 110524. [Google Scholar] [CrossRef]
- Harrison, K.; Were, L. Effect of Gamma Irradiation on Total Phenolic Content Yield and Antioxidant Capacity of Almond Skin Extracts. Food Chem. 2007, 102, 932–937. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Blümmel, M.; Becker, K. In Vitro Effects of and Interactions between Tannins and Saponins and Fate of Tannins in the Rumen. J. Sci. Food Agric. 1995, 69, 481–493. [Google Scholar] [CrossRef]
- Santra, A.; Karim, S.A. Rumen Manipulation to Improve Animal Productivity. Asian-Australas. J. Anim. Sci. 2003, 16, 748–763. [Google Scholar] [CrossRef]
- Al-Masri, M.R.; Zarkawi, M. Changes in Digestible Energy Values of Some Agricultural Residues Treated with Gamma Irradiation. Appl. Radiat. Isot. 1999, 50, 883–885. [Google Scholar] [CrossRef]
- Shawrang, P.; Nikkhah, A.; Zare-Shahneh, A.; Sadeghi, A.A.; Raisali, G.; Moradi-Shahrebabak, M. Effects of Gamma Irradiation on Protein Degradation of Soybean Meal in the Rumen. Anim. Feed Sci. Technol. 2007, 134, 140–151. [Google Scholar] [CrossRef]
- Ghanbari, F.; Ghoorchi, T.; Shawrang, P.; Mansouri, H.; Torbati-Nejad, N.M. Comparison of Electron Beam and Gamma Ray Irradiations Effects on Ruminal Crude Protein and Amino Acid Degradation Kinetics, and in Vitro Digestibility of Cottonseed Meal. Radiat. Phys. Chem. 2012, 81, 672–678. [Google Scholar] [CrossRef]
- Colombatto, D.; Mould, F.L.; Bhat, M.K.; Owen, E. Influence of Exogenous Fibrolytic Enzyme Level and Incubation pH on the in Vitro Ruminal Fermentation of Alfalfa Stems. Anim. Feed Sci. Technol. 2007, 137, 150–162. [Google Scholar] [CrossRef]
- Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H. Gamma Radiation Effects on Phenolics, Antioxidants Activity and in Vitro Digestion of Pistachio (Pistachia vera) Hull. Radiat. Phys. Chem. 2011, 80, 963–967. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A.; Rode, L.M.; Beauchemin, K.A.; Morgavi, D.P.; Nsereko, V.L.; Iwaasa, A.D.; Yang, W. Effects of an Exogenous Enzyme Preparation on Microbial Protein Synthesis, Enzyme Activity and Attachment to Feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 2001, 85, 325–332. [Google Scholar] [CrossRef]
- Gunun, N.; Kaewpila, C.; Khota, W.; Kimprasit, T.; Cherdthong, A.; Gunun, P. The Effect of Supplementation with Rubber Seed Kernel Pellet on in Vitro Rumen Fermentation Characteristics and Fatty Acid Profiles in Swamp Buffalo. BMC Vet. Res. 2024, 20, 177. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Jo, S.U.; Guan, L.L.; Seo, J.; Kim, H.; Lee, S.S.; Lee, S.S. Effects of Seaweed Extracts on in Vitro Rumen Fermentation Characteristics, Methane Production, and Microbial Abundance. Sci. Rep. 2021, 11, 24092. [Google Scholar] [CrossRef]
Control | γ Irradiation | EFE | γ Irradiation + EFE | SEM | p Value | |
---|---|---|---|---|---|---|
Chemical composition (g/kg dry matter) | ||||||
Crude protein | 130 | 127 | 129 | 131 | 2.3 | NS |
Ether extracts | 18 | 18 | 17 | 18 | 0.9 | NS |
Ash | 117 b | 130 a | 115 b | 128 a | 2.2 | *** |
Non-fiber carbohydrates | 133 c | 199 b | 138 c | 225 a | 5.3 | *** |
Reducing sugars | 34 c | 49 b | 37 c | 61 a | 3.1 | *** |
Structural carbohydrate composition (g/kg dry matter) | ||||||
Neutral detergent fiber | 602 a | 526 b | 595 a | 503 c | 11.1 | *** |
Acid detergent fiber | 342 | 340 | 339 | 333 | 7.2 | NS |
Acid detergent lignin | 71 | 69 | 70 | 71 | 4.1 | NS |
Bioactive Compounds (mg gallic acid equivalents/g) | ||||||
Total polyphenols | 104 b | 122 a | 102 b | 124 a | 4.2 | *** |
Total tannins | 31 b | 36 a | 31 b | 35 a | 0.7 | ** |
Antioxidant activity (mg Terox/g) | ||||||
DPPH | 299 b | 316 a | 298 b | 317 a | 5.4 | *** |
Incubation Time | Control | γ Irradiation | EFE | γ Irradiation + EFE | SEM | p Value |
---|---|---|---|---|---|---|
2 h | 5.1 b | 5.9 b | 6.2 b | 8.7 a | 0.73 | *** |
4 h | 14.9 c | 16.9 b | 17.6 b | 20.4 a | 0.88 | *** |
6 h | 23.4 c | 26.5 b | 27.4 b | 31.1 a | 1.01 | *** |
8 h | 31.9 c | 36.1 b | 35.5 b | 41.6 a | 1.13 | *** |
12 h | 47.8 c | 52.7 b | 52.9 b | 61.3 a | 1.22 | *** |
24 h | 83.1 c | 93.2 ab | 90.1 bc | 103.2 a | 3.09 | *** |
48 h | 122.4 c | 139.1 ab | 130.8 bc | 151.4 a | 5.09 | *** |
72 h | 142.1 c | 161.9 ab | 148.4 bc | 172.7 a | 5.22 | *** |
96 h | 149.8 c | 170.6 ab | 155.1 bc | 182.1 a | 5.41 | *** |
Control | γ Irradiation | EFE | γ Irradiation + EFE | SEM | p Value | |
---|---|---|---|---|---|---|
Potential gas production (mL/g dry matter) | 157 b | 180 a | 162 b | 189 a | 6.9 | *** |
Fractional rate of gas production (%/h) | 3.22 b | 3.19 b | 3.48 a | 3.42 a | 0.091 | * |
Lag time (h) | 0.98 a | 0.93 a | 0.90 a | 0.70 b | 0.077 | ** |
Control | γ Irradiation | EFE | γ Irradiation + EFE | SEM | p Value | |
---|---|---|---|---|---|---|
Ph | 6.88 | 6.85 | 6.87 | 6.86 | 0.055 | NS |
NH3-N (mg/L) | 243 a | 211 b | 245 a | 214 b | 7.4 | *** |
Total volatile fatty acids (mmol/L) | 29.6 b | 30.2 b | 29.7 b | 33.2 a | 1.22 | *** |
Acetic acid (%) | 60.9 a | 61.5 a | 60.8 a | 58.5 b | 0.72 | * |
Propionic acid (%) | 25.5 b | 26.1 b | 25.6 b | 29.3 a | 0.33 | *** |
Butyric acid (%) | 8.2 | 8.4 | 8.3 | 8.1 | 0.43 | NS |
Isobutyric acid (%) | 1.3 a | 0.9 b | 1.2 a | 0.9 b | 0.13 | * |
Isovaleric acid (%) | 2.2 a | 1.7 b | 2.3 a | 1.7 b | 0.11 | *** |
Valeric acid (%) | 1.9 a | 1.4 b | 1.8 a | 1.5 b | 0.19 | *** |
Acetic acid/propionic acid (%) | 2.39 a | 2.36 a | 2.38 a | 2.20 b | 0.06 | * |
Control | γ Irradiation | EFE | γ Irradiation + EFE | SEM | p Value | |
---|---|---|---|---|---|---|
Ruminal degradability | ||||||
Dry matter (g/kg dry matter) | 379 c | 426 b | 386 c | 447 a | 11.1 | *** |
Neutral detergent fiber (g/kg neutral detergent fiber) | 247 c | 269 b | 253 c | 288 a | 8.5 | * |
Energy utilizable (MJ/kg dry matter) | ||||||
Metabolizable energy | 5.28 c | 5.57 b | 5.45 bc | 5.89 a | 0.241 | * |
Net energy for lactation. | 2.68 c | 2.88 b | 2.81 bc | 3.11 a | 0.153 | * |
Control | γ Irradiation | EFE | γ Irradiation + EFE | SEM | p Value | |
---|---|---|---|---|---|---|
Bacteria (108 cells/mL) | 11.3 c | 14.2 b | 11.8 c | 17.2 a | 0.46 | *** |
Protozoa (105 cells/mL) | 3.78 a | 3.38 b | 3.77 a | 3.37 b | 0.21 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, K. Effects of Gamma Irradiation Pretreatment and Exogenous Fibrolytic Enzyme Supplementation on the Ruminal Fermentation and Nutritional Value of Typha latifolia. Fermentation 2025, 11, 301. https://doi.org/10.3390/fermentation11060301
Abid K. Effects of Gamma Irradiation Pretreatment and Exogenous Fibrolytic Enzyme Supplementation on the Ruminal Fermentation and Nutritional Value of Typha latifolia. Fermentation. 2025; 11(6):301. https://doi.org/10.3390/fermentation11060301
Chicago/Turabian StyleAbid, Khalil. 2025. "Effects of Gamma Irradiation Pretreatment and Exogenous Fibrolytic Enzyme Supplementation on the Ruminal Fermentation and Nutritional Value of Typha latifolia" Fermentation 11, no. 6: 301. https://doi.org/10.3390/fermentation11060301
APA StyleAbid, K. (2025). Effects of Gamma Irradiation Pretreatment and Exogenous Fibrolytic Enzyme Supplementation on the Ruminal Fermentation and Nutritional Value of Typha latifolia. Fermentation, 11(6), 301. https://doi.org/10.3390/fermentation11060301