Impact of Cherries, Strawberries, Bilberries, and Cornelian Cherry Addition on the Antioxidant Activity of Yogurt
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Method of Preparing Fruit Yogurts
2.3. The pH Value of Yogurts
2.4. Preparation of Extracts
2.5. Analysis of Antioxidant Activity
2.5.1. Determination of the Anti-Radical Properties by the ABTS•+ Method
2.5.2. Determination of DPPH Radical Scavenging Activity
2.5.3. Determination of Reducing Power (RP)
2.5.4. Determination of Total Reducing Capacity (TRC) by the Follin–Ciocalteu Assay
2.6. Microbiological Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
TRC | total reducing capacity |
RP | reducing power |
References
- Malik, V.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Neelakantan, N.; Park, S.H.; Chen, G.C.; van Dam, R.M. Sugar-sweetened beverage consumption, weight gain, and risk of type 2 diabetes and cardiovascular diseases in Asia: A systematic review. Nutr. Rev. 2021, 80, 50–67. [Google Scholar] [CrossRef]
- Qin, P.; Li, Q.; Zhao, Y.; Chen, Q.; Sun, X.; Liu, Y.; Li, H.; Wang, T.; Chen, X.; Zhou, Q.; et al. Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: A dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2020, 35, 655–671. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.; O’Donovan, C.B.; Collins, N.; Burke, K.; Doyle, G.; Gibney, E.R. Reformulation of processed yogurt and breakfast cereals over time: A scoping review. Int. J. Environ. Res. Public Health 2023, 20, 3322. [Google Scholar] [CrossRef]
- Benucci, I.; Lombardelli, C.; Esti, M. A comprehensive review on natural sweeteners: Impact on sensory properties, food structure, and new frontiers for their application. Crit. Rev. Food Sci. Nutr. 2024, 17, 1–19. [Google Scholar] [CrossRef] [PubMed]
- McCain, H.R.; Kaliappan, S.; Drake, M.A. Invited review: Sugar reduction in dairy products. J. Dairy. Sci. 2018, 101, 8619–8640. [Google Scholar] [CrossRef] [PubMed]
- Lê, K.; Robin, F.; Roger, O. Sugar replacers: From technological challenges to consequences on health. Curr. Opin. Clin. Nutr. Metab. Care. 2016, 19, 310–315. [Google Scholar] [CrossRef]
- Wan, Z.; Khubber, S.; Dwivedi, M.; Misra, N.N. Strategies for lowering the added sugar in yogurts. Food Chem. 2021, 344, 128573. [Google Scholar] [CrossRef]
- Tapsell, L.C. Fermented dairy food and CVD risk. Br. J. Nutr. 2015, 113, 131–135. [Google Scholar] [CrossRef]
- Pourrajab, B.; Fatahi, S.; Dehnad, A.; Kord Varkaneh, H.; Shidfar, F. The impact of probiotic yogurt consumption on lipid profiles in subjects with mild to moderate hypercholesterolemia: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 11–22. [Google Scholar] [CrossRef]
- Fernandez, M.A.; Marette, A. Potential health benefits of combining yogurt and fruits based on their probiotic and prebiotic properties. Adv. Nutr. 2017, 8, 155S–164S. [Google Scholar] [CrossRef]
- Paszczyk, B.; Czarnowska-Kujawska, M. Fatty acid profile, conjugated linoleic acid content, and lipid quality indices in selected yogurts available on the polish market. Animals. 2022, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Morvaridzadeh, M.; Estêvão, M.D.; Morvaridi, M.; Belančić, A.; Mohammadi, S.; Hassani, M.; Heshmati, J.; Ziaei, S. The effect of conjugated linoleic acid intake on oxidative stress parameters and antioxidant enzymes: A systematic review and meta-analysis of randomized clinical trials. Prostagl. Other Lipid Mediat. 2022, 163, 106666. [Google Scholar] [CrossRef] [PubMed]
- Vangaveti, V.N.; Jansen, H.; Kennedy, R.L.; Malabu, U.H. Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer. Eur. J. Pharmacol. 2016, 785, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Khan, A.U.; Saeed, F.; Ahmed, A.; Ahmad, M.H.; Maan, A.A.; Tufail, T.; Anjum, F.M.; Hussain, S. Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci. Nutr. 2019, 7, 3931–3940. [Google Scholar] [CrossRef]
- Williams, E.B.; Hooper, B.; Spiro, A.; Stanner, S. The contribution of yogurt to nutrient intakes across the life course. Nutr. Bull. 2015, 40, 9–32. [Google Scholar] [CrossRef]
- Kok, C.R.; Hutkins, R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr. Rev. 2018, 76 (Suppl. 1), 4–15. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: A narrative review of evidence. Nutr. Res. Rev. 2018, 31, 52–70. [Google Scholar] [CrossRef]
- Oviedo-Solís, C.I.; Cornejo-Manzo, S.; Murillo-Ortiz, B.O.; Guzmán-Barrón, M.M.; Ramírez-Emiliano, J. Los polifenoles de la fresa disminuyen el estrés oxidativo en enfermedades crónicas strawberry polyphenols decrease oxidative stress in chronic diseases. Gac. Med. Mex. 2018, 154, 80–86. [Google Scholar]
- Kazimierski, M.; Reguła, J.; Molska, M. Cornelian cherry (Cornus mas L.)—Characteristics, nutritional and pro-health properties. Acta Sci. Pol. Technol. Aliment. 2019, 18, 5–12. [Google Scholar]
- Moldovan, B.; Filip, A.; Clichici, S.; Suharoschi, R.; Bolfa, P.; David, L. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J. Func. Foods 2016, 26, 77–87. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Ligaj, M.; Kobus-Cisowska, J.; Maciejewska, P.; Tichoniuk, M.; Szulc, P. Application for novel electrochemical screening of antioxidant potential and phytochemicals in Cornus mas extracts. CyTA—J. Food. 2019, 17, 781–789. [Google Scholar] [CrossRef]
- Gozlekci, S.; Esringu, A.; Ercisli, S.; Eyduran, S.P.; Akin, M.; Bozovic, D.; Negreanu-Pirjol, T.; Sagbas, H.I. Mineral content of cornelian cherry (Cornus mas L.) fruits. Oxid. Comm. 2017, 40, 301–308.ss. [Google Scholar]
- Czerwinska, M.E.; Melzig, M.F. Cornus mas and cornus officinalis-analogies and differences of two medicinal plants traditionally used. Front. Pharmacol. 2018, 9, 1–28. [Google Scholar] [CrossRef]
- Barat, A.; Ozcan, T. Growth of probiotic bacteria and characteristics of fermented milk containing fruit matrices. Int. J. Dairy Technol. 2018, 71, 120–129. [Google Scholar] [CrossRef]
- Szot, I.; Łysiak, G.P.; Sosnowska, B.; Chojdak-Łukasiewicz, J. Health-promoting properties of anthocyanins from cornelian cherry (Cornus mas L.) fruits. Molecules 2024, 29, 449. [Google Scholar] [CrossRef]
- Lietava, J.; Beerova, N.; Klymenko, S.V.; Panghyova, E.; Varga, I.; Pechanova, O. Effects of cornelian cherry on atherosclerosis and its risk factors. Oxid. Med. Cell Longev. 2019, 2019, 2515270. [Google Scholar] [CrossRef]
- Hosseinpour-Jaghdani, F.; Shomali, T.; Gholipour-Shahraki, S.; Rahimi-Madiseh, M.; Rafieian-Kopaei, M. Cornus mas: A review on traditional uses and pharmacological properties. J. Complement. Integr. Med. 2017, 14. [Google Scholar] [CrossRef]
- Frumuzachi, O.; Kieserling, H.; Rohn, S.; Mocan, A.; Crișan, G. The impact of cornelian cherry (Cornus mas L.) on cardiometabolic risk factors: A meta-analysis of randomised controlled trials. Nutrients 2024, 16, 2173. [Google Scholar] [CrossRef]
- Gholamrezayi, A.; Aryaeian, N.; Rimaz, S.; Abolghasemi, J.; Fallah, S.; Moradi, N.; Taghizadeh, M. The effect of Cornus mas fruit extract consumption on lipid profile, glycemic indices, and leptin in postmenopausal women—A randomized clinical trial. Phytother. Res. 2019, 33, 2979–2988. [Google Scholar] [CrossRef]
- Dinda, B.; Kyriakopoulos, A.M.; Dinda, S.; Zoumpourlis, V.; Thomaidis, N.S.; Velegraki, A.; Markopoulos, C.; Dinda, M. Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharmacol. 2016, 193, 670–690. [Google Scholar] [CrossRef]
- Alsubhi, N.H.; Al-Quwaie, D.A.; Alrefaei, G.I.; Alharbi, M.; Binothman, N.; Aljadani, M.; Qahl, S.H.; Jaber, F.A.; Huwaikem, M.; Sheikh, H.M. Pomegranate pomace extract with antioxidant, anticancer, antimicrobial, and antiviral activity enhances the quality of strawberry-yogurt smoothie. Bioengineering 2022, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Georgakouli, K.; Mpesios, A.; Kouretas, D.; Petrotos, K.; Mitsagga, C.; Giavasis, I.; Jamurtas, A.Z. The effects of an olive fruit polyphenol-enriched yogurt on body composition, blood redox status, physiological and metabolic parameters and yogurt microflora. Nutrients 2016, 8, 344. [Google Scholar] [CrossRef] [PubMed]
- Raikos, V.; Ni, H.; Hayes, H.; Ranawana, V. Antioxidant properties of a yogurt beverage enriched with salal (Gautheria shallon) berries and blackcurrant (Ribes nigrum) pomace during cold storage. Beverages 2019, 5, 2. [Google Scholar] [CrossRef]
- Akan, E. The effect of fermentation time and yogurt bacteria on the physicochemical, microbiological and antioxidant properties of probiotic goat yogurts. An. Acad. Bras. Cienc. 2022, 94, e20210875. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pavithra, K.; Vadivukkarasi, S. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Sci. Hum. Wellness 2015, 4, 42–46. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of product of browning reaction prepared from glucosamine. Jp. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Singleton, V.L. Chemistry of Winemaking. Analytical fractionation of the phenolic substances of grapes and wine and some practical uses of such analyses. J. Am. Chem. Soc. 1974, 184–211. [Google Scholar]
- Gustaw, W.; Kordowska-Wiater, M.; Kozioł, J. The influence of selected prebiotics on the growth of lactic acid bacteria for bio-yogurt production. Acta Sci.Pol. Technol. Aliment. 2011, 10, 455–466. [Google Scholar]
- Essa, M.M.; Bishir, M.; Bhat, A.; Chidambaram, S.B.; Al-Balushi, B.; Hamdan, H.; Govindarajan, N.; Freidland, R.P.; Qoronfleh, M.W. Functional foods and their impact on health. J. Food Sci. Technol. 2023, 60, 820–834. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Diet sugar consumption and health: Umbrella review. BMJ 2023, 381, e071609. [Google Scholar] [CrossRef] [PubMed]
- Bankole, A.O.; Irondi, E.A.; Awoyale, W.; Ajani, E.O. Application of natural and modified additives in yogurt formulation: Types, production, and rheological and nutraceutical benefits. Front. Nutr. 2023, 10, 1257439. [Google Scholar] [CrossRef]
- Wołosiak, R.; Drużyńska, B.; Derewiaka, D.; Piecyk, M.; Majewska, E.; Ciecierska, M.; Worobiej, E.; Pakosz, P. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—A practical approach. Molecules 2022, 27, 50. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.; Osaki, S.; Silveira, E.; dos Santos, D.Y.; Chow, F. Comprehensive evaluation of Folin-Ciocalteu assay for total phenolic quantification in algae (Chlorophyta, Phaeophyceae, and Rhodophyta). Algal. Res. 2024, 103503. [Google Scholar] [CrossRef]
- Arts, M.J.; Haenen, G.R.; Wilms, L.C.; Beetstra, S.A.; Heijnen, C.G.; Voss, H.P.; Bast, A. Interactions between flavonoids and proteins: Effect on the total antioxidant capacity. J. Agric. Food Chem. 2002, 50, 1184–1187. [Google Scholar] [CrossRef]
- Bourassa, P.; Côté, R.; Hutchandani, S.; Samson, G.; Tajmir-Riahi, H.A. The effect of milk alpha-casein on the antioxidant activity of tea polyphenols. J. Photochem. Photobiol. B Biol. 2013, 128, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Gomes, M.H.; Alexandre, E.M.; Poças, F.; Almeida, D.P.; Pintado, M. Phytochemicals preservation in strawberry as affected by pH modulation. Food Chem. 2015, 170, 74–83. [Google Scholar] [CrossRef]
- Ngamdee, P.; Jiamyangyuen, S. Effective antioxidant activities of anthocyanins as affected by pH of antioxidant assays. Walailak J. Sci. Technol. 2019, 16, 875–885. [Google Scholar] [CrossRef]
- Blassy, K.; Hamed, M.; Osman, M. Functional properties of yoghurt fortified with fruits pulp. Ismailia J. Dairy. Sci. Technol. 2020, 7, 1–9. [Google Scholar]
- Gao, N.; Si, X.; Han, W.; Gong, E.; Shu, C.; Tian, J.; Wang, Y.; Zhang, J.; Li, B.; Li, B. The contribution of different polyphenol compositions from chokeberry produced in China to cellular antioxidant and antiproliferative activities. Food Sci. Hum. Wellness 2023, 12, 1590–1600. [Google Scholar] [CrossRef]
- Dahiya, D.; Terpou, A.; Dasenaki, M.; Nigam, P.S. Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification. Sustain. Food Technol. 2023, 1, 500–510. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Solomakou, N.; Kokkinomagoulos, E.; Kandylis, P. Yogurts supplemented with juices from grapes and berries. Foods. 2020, 9, 1158. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; Calani, L.; Bruni, R.; Del Rio, D. Bioactivation of high-molecular-weight polyphenols by the gut microbiome. In Diet-Microbe Interactions in the Gut: Effects on Human Health and Disease; Tuohy, K., Del Rio, D., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 73–101. [Google Scholar]
- Rui, X.; Zhang, Q.; Huang, J.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Does lactic fermentation influence soy yogurt protein digestibility: A comparative study between soymilk and soy yogurt at different pH. J. Sci. Food Agric. 2019, 99, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Evaluation of Health and Nutritional Properties of Probiotics in Food, Including Powder Milk with Live Lactic Acid Bacteria; Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report; FAO: Rome, Italy, 2001. [Google Scholar]
- Boycheva, S.; Dimitrov, T.; Naydenova, N.; Mihaylova, G. Quality characteristics of yogurt from goat’s milk, supplemented with fruit juice. Czech J. Food Sci. 2011, 29, 24–30. [Google Scholar] [CrossRef]
- Jin, X.; Chen, W.; Chen, H.; Chen, W.; Zhong, Q. Zhong Comparative evaluation of the antioxidant capacities and organic acid and volatile contents of mango slurries fermented with six different probiotic microorganisms. J. Food Sci. 2018, 83, 3059–3068. [Google Scholar] [CrossRef]
Yogurt | Fruits [g/100 g] | Protein [g/100 g] | Fat [g/100 g] | Carbohydrate [g/100 g] | Sugars [g/100 g] |
---|---|---|---|---|---|
N1 | 0.0 | 4.1 | 2.0 | 6.0 | 5.6 |
N2 | 0.0 | 4.5 | 2.0 | 6.0 | 6.0 |
N3 | 0.0 | 4.8 | 3.1 | 4.0 | 4.0 |
N4 | 0.0 | 4.5 | 2.0 | 6.8 | 6.8 |
N5 | 0.0 | 5.0 | 2.0 | 5.9 | 5.6 |
N6 | 0.0 | 4.5 | 3.4 | 5.1 | 5.1 |
N7 | 0.0 | 4.9 | 6.0 | 6.5 | 6.5 |
S1 (3) | 3.0 | 3.1 | 2.8 | 14.8 | 13.9 |
S2 (7.5) | 7.5 | 2.5 | 2.5 | 12.5 | 11.0 |
S3 (10) | 10.0 | 2.7 | 2.5 | 12.6 | 11.3 |
S4 (10) | 10.0 | 3.5 | 2.7 | 12.0 | 11.4 |
S5 (13) | 13.0 | 3.5 | 2.5 | 12.9 | 12.0 |
C1 (3) | 3.0 | 3.1 | 2.8 | 14.9 | 13.8 |
C2 (6.7) | 6.7 | 2.5 | 2.5 | 12.5 | 11.0 |
C3 (9) | 9.0 | 3.5 | 2.6 | 14.8 | 13.8 |
C4 (10) | 10.0 | 2.7 | 2.5 | 13.4 | 11.4 |
C5 (13) | 13.0 | 3.5 | 2.5 | 12.9 | 12.0 |
B1 (3) | 3.0 | 3.1 | 2.5 | 11.0 | 11.0 |
B2 (6) | 6.0 | 2.5 | 2.5 | 12.5 | 11.0 |
B3 (6.3) | 6.3 | 3.5 | 2.7 | 11.3 | 10.7 |
B4 (8) | 8.0 | 2.7 | 2.5 | 12.6 | 11.5 |
B5 (13) | 13.0 | 3.5 | 2.5 | 12.9 | 12.0 |
Yogurt | pH | Yogurt | pH |
---|---|---|---|
N1 | 4.76 ± 0.02 z | DD (3) | 4.38 ± 0.01 jk |
N2 | 4.68 ± 0.02 y | DD (7) | 4.31 ± 0.01 fgh |
N3 | 4.58 ± 0.02 tuw | DD (10) | 4.25 ± 0.01 c |
N4 | 4.61 ± 0.02 uw | DD (13) | 4.21 ± 0.01 b |
N5 | 4.68 ± 0.02 y | DD (20) | 4.14 ± 0.01 a |
N6 | 4.59 ± 0.01 tuw | ||
N7 | 4.66 ± 0.02 y | ||
S1 (3) | 4.41 ± 0.02 klm | DS (3) | 4.55 ± 0.01 r |
S2 (7,5) | 4.54 ± 0.02 prs | DS (7) | 4.52 ± 0.01 ps |
S3 (10) | 4.35 ± 0.01 hij | DS (10) | 4.49 ± 0.01 no |
S4 (10) | 4.55 ± 0.02 rst | DS (13) | 4.48 ± 0.01 n |
S5 (13) | 4.39 ± 0.01 jkl | DS (20) | 4.44 ± 0.01 m |
C1 (3) | 4.37 ± 0.01 ijk | DC (3) | 4.58 ± 0.01 tw |
C2 (6,7) | 4.56 ± 0.02 rt | DC (7) | 4.49 ± 0.01 no |
C3 (9) | 4.43 ± 0.01 lm | DC (10) | 4.43 ± 0.01 m |
C4 (10) | 4.34 ± 0.02 ghi | DC (13) | 4.31 ± 0.01 efg |
C5 (13) | 4.29 ± 0.01 def | DC (20) | 4.26 ± 0.01 cd |
B1 (3) | 4.32 ± 0.01 efgh | DB (3) | 4.61 ± 0.01 u |
B2 (6) | 4.58 ± 0.01 tuw | DB (7) | 4.51 ± 0.01 op |
B3 (6,3) | 4.55 ±0.02 rst | DB (10) | 4.48 ± 0.01 n |
B4 (8) | 4.44 ± 0.02 m | DB (13) | 4.39 ± 0.01 k |
B5 (13) | 4.31 ± 0.01 efgh | DB (20) | 4.29 ± 0.01 e |
Sample | ABTS [% RSA] | DPPH [% RSA] | RP |
---|---|---|---|
N1 | 67.36 ± 1.89 abc | 91.30 ± 1.08 c | 0.24 ± 0.02 a |
N2 | 67.85 ± 1.08 abc | 87.82 ± 1.36 ab | 0.35 ± 0.01 b |
N3 | 65.47 ± 2.42 a | 90.31 ± 2.27 bc | 0.63 ± 0.04 cd |
N4 | 65.28 ± 4.25 a | 91.97 ± 1.44 c | 0.67 ± 0.02 d |
N5 | 66.29 ± 1.15 ab | 86.28 ± 3.72 a | 0.37 ± 0.02 b |
N6 | 70.85 ± 2.36 c | 90.94 ± 2.01 bc | 0.65 ± 0.05 d |
N7 | 69.56 ± 1.38 bc | 90.49 ± 2.13 bc | 0.58 ± 0.02 c |
Yogurt (Percent Fruit Content) | ABTS [% RSA] | DPPH [% RSA] | RP | TRC [mg GAE/mL] |
---|---|---|---|---|
DS (3) | 63.89 ± 1.20 abc | 86.97 ± 0.52 f | 0.32 ± 0.03 ab | 0.63 ± 0.01 a |
DS (7) | 66.27 ± 1.70 bcd | 88.59 ± 1.06 f | 0.37 ± 0.03 abce | 0.64 ± 0.02 a |
DS (10) | 64.70 ± 1.26 abc | 87.15 ± 1.13 f | 0.37 ± 0.04 abce | 0.66 ± 0.01 ab |
DS (13) | 65.91 ± 0.69 abcd | 87.63 ± 0.88 f | 0.41 ± 0.03 abce | 0.68 ± 0.03 ab |
DS (20) | 70.06 ± 2.18 cde | 87.95 ± 1.11 f | 0.45 ± 0.05 abcdeg | 0.69 ± 0.02 ab |
S1 (3) | 59.77 ± 3.18 ab | 74.83 ± 5.33 e | 0.49 ± 0.05 abcdefg | 1.33 ± 0.06 gh |
S2 (7,5) | 59.40 ± 13.81 a | 27.97 ± 8.96 b | 0.75 ± 0.06 defghij | 1.56 ± 0.14 ij |
S3 (10) | 61.03 ± 3.69 ab | 43.31 ± 5.91 c | 1.14 ± 0.25 ijk | 1.46 ± 0.14 hi |
S4 (10) | 65.75 ± 3.96 abcd | 71.33 ± 1.45 e | 0.41 ± 0.05 abcdeg | 1.48 ± 0.02 hi |
S5 (13) | 79.62 ± 3.15 hijk | 76.06 ± 2.95 e | 0.62 ± 0.11 bcdefgh | 1.61 ± 0.02 ijk |
DB (3) | 85.56 ± 1.27 kl | 76.20 ± 1.43 e | 0.63 ± 0.09 cdefg | 0.76 ± 0.03 bc |
DB (7) | 93.99 ± 0.41 m | 83.44 ± 0.61 f | 1.07 ± 0.17 ik | 0.90 ± 0.06 de |
DB (10) | 93.95 ± 0.33 m | 84.80 ± 0.64 f | 1.67 ± 0.43 l | 0.98 ± 0.02 ef |
DB (13) | 93.96 ± 0.21 m | 87.73 ± 0.32 f | 1.83 ± 0.27 l | 1.06 ± 0.03 f |
DB (20) | 94.04 ± 0.21 m | 89.50 ± 0.27 f | 3.02 ± 0.32 m | 1.20 ± 0.02 g |
B1 (3) | 71.56 ± 3.09 def | 73.35 ± 2.83 e | 0.68 ± 0.04 bcdefghj | 1.99 ± 0.22 l |
B2 (6) | 80.79 ± 7.36 ijk | 24.19 ± 10.73 b | 0.69 ± 0.14 bcdefghj | 1.91 ± 0.09 l |
B3 (6,3) | 73.72 ± 1.61 efgh | 76.62 ± 1.40 e | 0.18 ± 0.08 a | 1.62 ± 0.06 ijk |
B4 (8) | 74.72 ± 3.09 efghi | 74.49 ± 3.03 e | 0.72 ± 0.12 bcdefghij | 1.71 ± 0.23 jk |
B5 (13) | 93.63 ± 0.83 m | 64.47 ± 2.71 e | 0.65 ± 0.10 bcdefgh | 3.23 ± 0.09 n |
DC (3) | 68.25 ± 1.07 cde | 89.49 ± 0.97 f | 0.44 ± 0.07 abceg | 0.63 ± 0.02 a |
DC (7) | 71.30 ± 1.39 def | 89.53 ± 0.80 f | 0.48 ± 0.06 abcdeg | 0.66 ± 0.02 ab |
DC (10) | 79.08 ± 1.52 ghijk | 89.29 ± 0.75 f | 0.63 ± 0.07 cdefg | 0.70 ± 0.02 ab |
DC (13) | 77.02 ± 0.82 fghij | 89.34 ± 0.77 f | 0.63 ± 0.15 cdefg | 0.73 ± 0.05 ab |
DC (20) | 83.68 ± 0.74 jkl | 90.06 ± 0.77 f | 0.73 ± 0.08 dfhj | 0.76 ± 0.03 bc |
C1 (3) | 60.85 ± 2.59 ab | 70.62 ± 9.62 e | 0.26 ± 0.04 abc | 1.49 ± 0.10 hi |
C2 (6,7) | 73.88 ± 2.92 efgh | 14.67 ± 9.00 a | 0.79 ± 0.09 dfghij | 1.92 ± 0.21 l |
C3 (9) | 72.85 ± 6.78 efg | 71.95 ± 3.35 e | 0.48 ± 0.02 abcdefg | 1.80 ± 0.06 kl |
C4 (10) | 71.53 ± 2.77 def | 58.85 ± 4.70 d | 1.01 ± 0.17 hijk | 1.63 ± 0.10 ijk |
C5 (13) | 81.96 ± 4.51 jk | 68.1 ± 1.72 e | 0.63 ± 0.05 bcdefgh | 2.42 ± 0.18 m |
DD (3) | 80.50 ± 1.99 hijk | 88.64 ± 0.64 f | 0.56 ± 0.05 bcdefg | 0.73 ± 0.05 ab |
DD (7) | 89.88 ± 3.14 lm | 88.55 ± 1.61 f | 0.78 ± 0.12 fhij | 0.84 ± 0.04 cd |
DD (10) | 92.86 ± 2.36 m | 88.41 ± 0.60 f | 1.07 ± 0.23 ik | 0.93 ± 0.05 de |
DD (13) | 93.50 ± 0.96 m | 87.92 ± 0.89 f | 1.17 ± 0.17 k | 0.95 ± 0.04 de |
DD (20) | 94.33 ± 0.11 m | 86.30 ± 0.60 f | 1.67 ± 0.25 l | 1.21 ± 0.05 g |
Addition [%] | ABTS [% RSA] | DPPH [% RSA] | RP | TRC [mg GAE/mL] |
---|---|---|---|---|
3 | 73.61 ± 9.23 a | 85.25 ± 5.57 a | 0.49 ± 0.13 a | 0.69 ± 0.07 a |
7 | 80.62 ± 12.18 ab | 87.59 ± 2.63 b | 0.67 ± 0.29 ab | 0.76 ± 0.12 ab |
10 | 82.35 ± 12.21 b | 87.51 ± 1.88 b | 0.94 ± 0.55 b | 0.82 ± 0.14 b |
13 | 82.44 ± 12.16 b | 88.22 ± 1.01 b | 1.01 ± 0.58 b | 0.85 ± 0.16 b |
20 | 86.03 ± 10.03 b | 88.59 ± 1.64 b | 1.47 ± 1.04 c | 0.96 ± 0.25 c |
Flavor Variant | ABTS [% RSA] | DPPH [% RSA] | RP | TRC [mg GAE/mL] |
---|---|---|---|---|
S | 65.12 ± 10.12 a | 59.49 ± 20.95 a | 0.65 ± 0.27 a | 1.48 ± 0.13 c |
C | 72.22 ± 7.92 b | 60.95 ± 20.04 a | 0.63 ± 0.28 a | 1.85 ± 0.35 d |
B | 78.89 ± 8.90 c | 63.75 ± 20.62 a | 0.58 ± 0.23 a | 2.09 ± 0.62 e |
DS | 66.08 ± 2.51 a | 87.68 ± 1.10 b | 0.39 ± 0.06 a | 0.66 ± 0.03 a |
DC | 76.14 ± 5.57 bc | 89.55 ± 0.82 b | 0.58 ± 0.14 a | 0.70 ± 0.06 a |
DB | 92.61 ± 3.19 d | 84.33 ± 4.71 b | 1.64 ± 0.86 c | 0.98 ± 0.15 b |
DD | 90.79 ± 5.05 d | 88.03 ± 1.22 b | 1.05 ± 0.42 b | 0.93 ± 0.17 b |
Effect | p |
---|---|
Type of fruit | *** |
Addition | *** |
Type of fruit × addition | *** |
Number of Bacteria [log CFU/g] | ||
---|---|---|
Yogurt | Lactobacillus | Streptococcus |
Cornelian cherry | 8.1 a | 10.5 a |
Strawberry | 8.4 a | 10.3 a |
Bilberry | 8.5 ab | 10.6 a |
Cherry | 8.6 ab | 10.7 a |
Natural | 9.0 b | 10.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazda, P.; Glibowski, P.; Kęska, P.; Sosnowska, B. Impact of Cherries, Strawberries, Bilberries, and Cornelian Cherry Addition on the Antioxidant Activity of Yogurt. Appl. Sci. 2025, 15, 7270. https://doi.org/10.3390/app15137270
Gazda P, Glibowski P, Kęska P, Sosnowska B. Impact of Cherries, Strawberries, Bilberries, and Cornelian Cherry Addition on the Antioxidant Activity of Yogurt. Applied Sciences. 2025; 15(13):7270. https://doi.org/10.3390/app15137270
Chicago/Turabian StyleGazda, Patrycja, Paweł Glibowski, Paulina Kęska, and Bożena Sosnowska. 2025. "Impact of Cherries, Strawberries, Bilberries, and Cornelian Cherry Addition on the Antioxidant Activity of Yogurt" Applied Sciences 15, no. 13: 7270. https://doi.org/10.3390/app15137270
APA StyleGazda, P., Glibowski, P., Kęska, P., & Sosnowska, B. (2025). Impact of Cherries, Strawberries, Bilberries, and Cornelian Cherry Addition on the Antioxidant Activity of Yogurt. Applied Sciences, 15(13), 7270. https://doi.org/10.3390/app15137270