Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = neutral axis locating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3047 KiB  
Article
Identifying the Combined Impacts of Sensor Quantity and Location Distribution on Source Inversion Optimization
by Shushuai Mao, Jianlei Lang, Feng Hu, Xiaoqi Wang, Kai Wang, Guiqin Zhang, Feiyong Chen, Tian Chen and Shuiyuan Cheng
Atmosphere 2025, 16(7), 850; https://doi.org/10.3390/atmos16070850 - 12 Jul 2025
Viewed by 172
Abstract
Source inversion optimization using sensor observations is a key method for rapidly and accurately identifying unknown source parameters (source strength and location) in abrupt hazardous gas leaks. Sensor number and location distribution both play important roles in source inversion; however, their combined impacts [...] Read more.
Source inversion optimization using sensor observations is a key method for rapidly and accurately identifying unknown source parameters (source strength and location) in abrupt hazardous gas leaks. Sensor number and location distribution both play important roles in source inversion; however, their combined impacts on source inversion optimization remain poorly understood. In our study, the optimization inversion method is established based on the Gaussian plume model and the generation algorithm. A research strategy combining random sampling and coefficient of variation methods was proposed to simultaneously quantify their combined impacts in the case of a single emission source. The sensor layout impact difference was analyzed under varying atmospheric conditions (unstable, neutral, and stable) and source location information (known or unknown) using the Prairie Grass experiments. The results indicated that adding sensors improved the source strength estimation accuracy more when the source location was known than when it was unknown. The impacts of sensor location distribution were strongly negatively correlated (r ≤ −0.985) with the number of sensors across scenarios. For source strength estimation, the impacts of the sensor location distribution difference decreased non-linearly with more sensors for known locations but linearly for unknown ones. The impacts of sensor number and location distribution on source strength estimation were amplified under stable atmospheric conditions compared to unstable and neutral conditions. The minimum number of randomly scattered sensors required for stable source strength inversion accuracy was 11, 12, and 17 for known locations under unstable, neutral, and stable atmospheric conditions, respectively, and 24, 9, and 21 for unknown locations. The multi-layer arc distribution outperformed rectangular, single-layer arc, and downwind-axis distributions in source strength estimation. This study enhances the understanding of factors influencing source inversion optimization and provides valuable insights for optimizing sensor layouts. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

20 pages, 5442 KiB  
Article
Experimental Study on the Flexural Performance of Composite Beams with Lipped Channels
by Changyong Lee, Byungho Bae, Seunghun Kim and Taesoo Kim
Materials 2024, 17(24), 6128; https://doi.org/10.3390/ma17246128 - 14 Dec 2024
Cited by 1 | Viewed by 984
Abstract
This study conducted experiments to investigate the flexural behavior of steel–concrete composite beams with U-shaped sections, utilizing cold-formed lipped channels as web components. To enhance both flexural and shear performance, trapezoidal plates were added to the lower sides of the composite beams. A [...] Read more.
This study conducted experiments to investigate the flexural behavior of steel–concrete composite beams with U-shaped sections, utilizing cold-formed lipped channels as web components. To enhance both flexural and shear performance, trapezoidal plates were added to the lower sides of the composite beams. A total of ten specimens were fabricated, with variables defined according to the following criteria: presence of bottom tension reinforcement and bottom studs, thickness of the trapezoidal side plates (6 mm and 8 mm), and the welding method. Four-point bending tests were conducted, and all specimens exhibited typical flexural failure at the ultimate state. Specimens with bottom tension reinforcement, specifically those in the H5-T6 and H5-T8 series, demonstrated increases in ultimate load of 28.8% and 33.5%, respectively, compared to specimens without tension reinforcement. The use of lipped channels enabled full composite action between the concrete and the steel web components, eliminating the need for stud anchors. Additionally, it was confirmed that the plastic neutral axis, reflecting the material test strengths, was located within the concrete slab as intended. This study also compared the design flexural strengths, calculated using the yield stress distribution method from structural steel design standards such as AISC 360 and KDS 14, with the experimental flexural strengths. The comparison was used to evaluate the applicability of current design standards. Full article
Show Figures

Figure 1

18 pages, 13934 KiB  
Article
Shear Stress Solutions for Curved Beams: A Structural Analysis Approach
by Renny Guillén-Rujano, Victor Contreras, Argemiro Palencia-Díaz, Wilmer Velilla-Díaz and Adrián Hernández-Pérez
Materials 2024, 17(23), 5982; https://doi.org/10.3390/ma17235982 - 6 Dec 2024
Viewed by 1499
Abstract
The shear stress on isotropic curved beams with compact sections and variable thickness is investigated. Two new solutions, based on Cook’s proposal and the mechanics of materials approach, were developed and validated using computational finite element models (FEM) for four typical cross-sections (rectangular, [...] Read more.
The shear stress on isotropic curved beams with compact sections and variable thickness is investigated. Two new solutions, based on Cook’s proposal and the mechanics of materials approach, were developed and validated using computational finite element models (FEM) for four typical cross-sections (rectangular, circular, elliptical, and triangular) used in civil and mechanical structures, constituting a novel approach to predicting shear stresses in curved beams. They predict better results than other reported equations, are simpler and easier for engineers to use quickly, and join the group of equations found using the theory of elasticity, thereby expanding the field of knowledge. The results reveal that both equations are suitable to predict the shear stress on a curved beam with outer/inner radii ratios in the interval 1<b/a ≤ 5 aspect ratios. There is a maximum relative difference between the present solutions and finite element models of 8% within 1<b/a ≤ 2, and a maximum of 16% in 2<b/a ≤ 5. Additionally, the neutral axis of the curved beam can be located with the proposed solution and its position matches with that predicted by FEM. The displacement at the top face of the end of the curved beam induces a difference in the shear stress results of 8.0%, 7.0%, 6.5%, and 2.9%, for the circular, rectangular, elliptical, and triangular cross-sections, respectively, when a 3D FEM solution is considered. For small b/a ratios (near 1), the present solutions can be reduced to Collignon’s formula. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

18 pages, 2101 KiB  
Article
Predicted and Experimental Bending Behaviour of Glulam Bonded by RPF Adhesive
by Tomáš Kytka, Miroslav Gašparík, Lukáš Sahula, David Novák, Elham Karami, Sumanta Das and Martin Sviták
Materials 2024, 17(2), 514; https://doi.org/10.3390/ma17020514 - 21 Jan 2024
Cited by 6 | Viewed by 1688
Abstract
In this study, alder, spruce, and beech woods were used for homogeneous symmetric, inhomogeneous symmetric (combined) and inhomogeneous non-symmetric glued laminated timber (glulam) beams glued with resorcinol phenol formaldehyde (RPF) adhesive. The aim of this paper is to determine and compare the modulus [...] Read more.
In this study, alder, spruce, and beech woods were used for homogeneous symmetric, inhomogeneous symmetric (combined) and inhomogeneous non-symmetric glued laminated timber (glulam) beams glued with resorcinol phenol formaldehyde (RPF) adhesive. The aim of this paper is to determine and compare the modulus of elasticity of glulam beams using three methods, i.e., analytical calculation, numerical model (FEM) and experimental testing. As an additional characteristic, the bending strength (MOR) of the beams was determined during experimental testing. Analytical calculation was used to calculate the modulus of elasticity (MOE) of glued laminated timber based on the knowledge of the modulus of elasticity of solid wood and to estimate the location of the neutral axis during bending. According to calculations, for symmetrical combinations, the deviation from the real neutral axis does not exceed 5%. In the case of the modulus of elasticity, the deviation is an average of 4.1% from that of the actual measured beams. The numerical model includes finite element modelling, where the deflection of the modelled beams can be calculated with a deviation of up to 10%. The last method was experimental testing of glued beams using four-point bending, in which, among homogeneous beams, beech glulam beams achieved the highest MOE and MOR, while alder glulam beams achieved the lowest. The combination of wood species resulted in an increase in both MOE and MOR compared to homogeneous spruce and alder beams. Full article
Show Figures

Figure 1

20 pages, 7618 KiB  
Article
Shear Lag Analysis of Simply Supported Box Girders Considering Axial Equilibrium and Shear Deformation
by Daopei Zhu, Nanhui Huang, Jiazheng Li, Shihua Zhou and Cai Wu
Buildings 2023, 13(10), 2415; https://doi.org/10.3390/buildings13102415 - 22 Sep 2023
Cited by 5 | Viewed by 2630
Abstract
The conventional methods used to analyze the shear lag effect in simply supported box girders assume that the neutral axis of the section coincides with the centroid, which does not strictly satisfy the axial equilibrium condition. To address this problem, this study proposes [...] Read more.
The conventional methods used to analyze the shear lag effect in simply supported box girders assume that the neutral axis of the section coincides with the centroid, which does not strictly satisfy the axial equilibrium condition. To address this problem, this study proposes an analysis method in which three independent functions for the shear lag are employed to define the different shear lag strengths of the top slab, the bottom slab, and the cantilever slab. To fulfill the axial equilibrium condition of the box girder and to automatically locate the neutral axis position, the longitudinal displacement of the web is introduced. The shear deformation of the box girder is also considered. The governing differential equations and corresponding boundary conditions for displacement variables such as deflection and rotation of the box girder are derived through the application of the principle of virtual work. The differential equations are solved by utilizing the boundary conditions to obtain the analytical expressions of the shear lag function, longitudinal displacement of the web, rotation, deflection, and neutral axis position. Furthermore, after performing the finite element analysis, the effectiveness of the proposed method is verified by comparing the results with those obtained from conventional methods and finite element analysis. Furthermore, the influence of the axial equilibrium condition is quantified on axial force and stress difference ratios under three methods. Finally, extensive parametric analysis is carried out to investigate the effect of different parameter ratios on the ratios of the stress difference of the flanges. The results show that when the axial equilibrium condition is not considered, the axial stresses in the upper flange of the simply supported box girder are underestimated, especially at the intersection of the top, cantilever slab, and web, and the axial stresses in the lower flange are overestimated. As a result, the method in this study is able to calculate the axial stresses and deflections on simply supported box girders more accurately. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 8662 KiB  
Article
Investigation on Flexural Fracture Behaviour of Bolted Spherical Joints with Crack Propagation in Screw Threads
by Qinghong Shi, Wenfeng Zhou, Xiang You, Yinggai Liu, Zhiyu Wang and Qunyi Huang
Materials 2023, 16(10), 3781; https://doi.org/10.3390/ma16103781 - 17 May 2023
Cited by 2 | Viewed by 1563
Abstract
Bolted spherical joints, due to their prominent merits in installation, have been widely used in modern spatial structures. Despite significant research, there is a lack of understanding of their flexural fracture behaviour, which is important for the catastrophe prevention of the whole structure. [...] Read more.
Bolted spherical joints, due to their prominent merits in installation, have been widely used in modern spatial structures. Despite significant research, there is a lack of understanding of their flexural fracture behaviour, which is important for the catastrophe prevention of the whole structure. Given the recent development to fill this knowledge gap, it is the objective of this paper to experimentally investigate the flexural bending capacity of the overall fracture section featured by a heightened neutral axis and fracture behaviour related to variable crack depth in screw threads. Accordingly, two full-scale bolted spherical joints with different bolt diameters were evaluated under three-point bending. The fracture behaviour of bolted spherical joints is first revealed with respect to typical stress distribution and fracture mode. A new theoretical flexural bending capacity expression for the fracture section with a heightened neutral axis is proposed and validated. A numerical model is then developed to estimate the stress amplification and stress intensity factors related to the crack opening (mode-I) fracture for the screw threads of these joints. The model is validated against the theoretical solutions of the thread-tooth-root model. The maximum stress of the screw thread is shown to take place at the same location as the test bolted sphere, while its magnitude can be greatly reduced with an increased thread root radius and flank angle. Finally, different design variants related to threads that have influences on the SIFs are compared, and the moderate steepness of the flank thread has been found to be efficient in reducing the joint fracture. The research findings could thus be beneficial for further improving the fracture resistance of bolted spherical joints. Full article
Show Figures

Figure 1

16 pages, 6297 KiB  
Article
Damage Analysis of Segmental Dry Joint Full-Scale Prestressed Cap Beam Based on Distributed Optical Fiber Sensing
by Duo Liu, Shengtao Li, Joan R. Casas, Xudong Chen and Yangyang Sun
Sensors 2023, 23(7), 3781; https://doi.org/10.3390/s23073781 - 6 Apr 2023
Cited by 3 | Viewed by 2249
Abstract
Distributed fiber optic sensors (DFOS) can detect structural cracks and structural deformation with high accuracy and wide measurement range. This study monitors the segmental prestressed bent cap, assembled with a large key dry joint, based on optical fiber technology, and it allows the [...] Read more.
Distributed fiber optic sensors (DFOS) can detect structural cracks and structural deformation with high accuracy and wide measurement range. This study monitors the segmental prestressed bent cap, assembled with a large key dry joint, based on optical fiber technology, and it allows the comparison of its damaging process with that of a monolithic cast in place counterpart. The obtained results, comprising cross-section strain distributions, longitudinal strain profiles, neutral axis location, crack pattern, and the damage process, show that the DFOS technology can be successfully used to analyze the complex working stress state of the segmental beam with shear key joints, both in the elastic range and at the ultimate load, and to successfully identify the changing characteristics of the stress state of the segmental capping beam model when elastic beam theory no longer applies. The DFOS data confirm that the shear key joint, as the weak point of the segmental cap beam, results in the high stress concentration area, and the damage rate is higher than that of the cast-in-place beam. The accurate monitoring by the DFOS allows for the realization that the damage occurs at the premature formation of a concentrated compression zone on the upper part of the shear key. Full article
Show Figures

Figure 1

22 pages, 11314 KiB  
Article
Seismic Performance of Ductile Column with Rectangular Hollow Cross-Section in RC Building
by Kiwoong Jin, Kaede Yamazaki and Ryo Takahashi
Appl. Sci. 2023, 13(4), 2234; https://doi.org/10.3390/app13042234 - 9 Feb 2023
Cited by 2 | Viewed by 2071
Abstract
In order to reduce the self-weight of RC buildings and increase cost-savings, the seismic performance of rectangular hollow sectioned columns was investigated by experimental and analytical studies. Cyclic loading tests were carried out under compression axial force ratios from 0.16 to 0.3, and [...] Read more.
In order to reduce the self-weight of RC buildings and increase cost-savings, the seismic performance of rectangular hollow sectioned columns was investigated by experimental and analytical studies. Cyclic loading tests were carried out under compression axial force ratios from 0.16 to 0.3, and hysteresis curves, failure patterns, strain distributions of reinforcement, flexural and shear deformations, and energy absorption capacity were discussed in detail. Based on the experiments, under an axial force ratio of 0.16, the structural performances between hollow and solid sectioned columns were found to be almost equivalent. When the axial force ratio increased to 0.3, the structural performance was almost the same until the 2.0% drift angle; however, sudden deterioration of the load-bearing capacity occurred, with concrete compressive failure at the plastic hinge region near the column end. By means of numerical investigations by cross-sectional and FEM analysis, it was found that such brittle failure was induced by the neutral axis location and the concrete stress concentration on the hollow cross-section. Therefore, the appropriate separation of the hollow section from the plastic hinge region is recommended when the neutral axis is located beyond the flange at the ultimate flexural state. Full article
(This article belongs to the Special Issue Advances in Seismic Performance Assessment)
Show Figures

Figure 1

24 pages, 10679 KiB  
Article
Fracture Behavior and Digital Image Analysis of GFRP Reinforced Concrete Notched Beams
by Mohammod Minhajur Rahman, Xudong Zhao, Tommaso D’Antino, Francesco Focacci and Christian Carloni
Materials 2022, 15(17), 5981; https://doi.org/10.3390/ma15175981 - 30 Aug 2022
Cited by 7 | Viewed by 2302
Abstract
This study presents three-point bending fracture tests on glass fiber-reinforced polymer (GFRP) reinforced concrete notched beams. Few studies have been conducted to date to understand the fracture behavior of this type of specimens. The specimens have nominal depth, width, and length equal to [...] Read more.
This study presents three-point bending fracture tests on glass fiber-reinforced polymer (GFRP) reinforced concrete notched beams. Few studies have been conducted to date to understand the fracture behavior of this type of specimens. The specimens have nominal depth, width, and length equal to 150 mm, 150 mm, and 550 mm. Plain concrete notched beams with the same dimensions are cast from the same batch of concrete to compare the responses with GFRP reinforced concrete notched beams. The notch of the plain concrete specimens is either saw cut or cast. These two notch fabrication methods are compared based on the load responses. The peak load, crack mouth opening displacement (CMOD), GFRP bar slip at two ends, and load point displacement are used to discuss the results of the fracture tests. In addition, digital image analysis is performed to identify the fracture process zone (FPZ) and the location of the neutral axis, which are used to determine the force in the GFRP bar via cross-sectional analysis. Finally, the GFRP bar force versus slip responses are compared with those from the pull-out tests performed on the same bar to show that the bond of the bar in the pull-out tests represents an upper bound limit compared to the behavior in bending. Full article
(This article belongs to the Special Issue Bond Behavior of Externally Bonded and Internal Reinforcement)
Show Figures

Figure 1

21 pages, 5139 KiB  
Article
Prestress Force Monitoring and Quantification of Precast Segmental Beams through Neutral Axis Location Identification
by Han Li, Jun Li, Yu Xin, Hong Hao, Tan D. Le and Thong M. Pham
Appl. Sci. 2022, 12(5), 2756; https://doi.org/10.3390/app12052756 - 7 Mar 2022
Cited by 6 | Viewed by 2379
Abstract
This paper proposes using neutral axis locations to monitor and quantify the prestress force in post-tensioned precast segmental beams. Strain measurements are used to obtain the neutral axis locations of specific cross-sections of the precast prestressed segmental beams, based on the plane–remains–plane and [...] Read more.
This paper proposes using neutral axis locations to monitor and quantify the prestress force in post-tensioned precast segmental beams. Strain measurements are used to obtain the neutral axis locations of specific cross-sections of the precast prestressed segmental beams, based on the plane–remains–plane and linear strain distribution assumption. A theoretical calculation method based on the static equilibrium of a specific cross-section is developed to calculate the prestress force in segmental beams based on the neutral axis location. To verify the accuracy of the proposed method, a post-tensioned prestressed segmental beam is built and tested in the laboratory. A corresponding high-fidelity finite element model is also developed based on the beam design and material properties. Experimental studies and numerical simulations are conducted to verify the feasibility and accuracy of the proposed method in quantifying the prestress force in precast segmental beams. Both experimental and numerical results demonstrate that the proposed method can reliably estimate the prestress force, which can be used to monitor the prestress force loss in post-tensioned structures. Full article
(This article belongs to the Special Issue Inspection and Monitoring Techniques for Bridges and Civil Structures)
Show Figures

Figure 1

16 pages, 3677 KiB  
Article
Study on the Strip Warpage Issues Encountered in the Flip-Chip Process
by Wan-Chun Chuang and Wei-Long Chen
Materials 2022, 15(1), 323; https://doi.org/10.3390/ma15010323 - 3 Jan 2022
Cited by 9 | Viewed by 6178
Abstract
This study successfully established a strip warpage simulation model of the flip-chip process and investigated the effects of structural design and process (molding, post-mold curing, pretreatment, and ball mounting) on strip warpage. The errors between simulated and experimental values were found to be [...] Read more.
This study successfully established a strip warpage simulation model of the flip-chip process and investigated the effects of structural design and process (molding, post-mold curing, pretreatment, and ball mounting) on strip warpage. The errors between simulated and experimental values were found to be less than 8%. Taguchi analysis was employed to identify the key factors affecting strip warpage, which were discovered to be die thickness and substrate thickness, followed by mold compound thickness and molding temperature. Although a greater die thickness and mold compound thickness reduce the strip warpage, they also substantially increase the overall strip thickness. To overcome this problem, design criteria are proposed, with the neutral axis of the strip structure located on the bump. The results obtained using the criteria revealed that the strip warpage and overall strip thickness are effectively reduced. In summary, the proposed model can be used to evaluate the effect of structural design and process parameters on strip warpage and can provide strip design guidelines for reducing the amount of strip warpage and meeting the requirements for light, thin, and short chips on the production line. In addition, the proposed guidelines can accelerate the product development cycle and improve product quality with reduced development costs. Full article
(This article belongs to the Special Issue Simulation and Reliability Assessment of Advanced Packaging)
Show Figures

Figure 1

21 pages, 8645 KiB  
Article
Switch Open-Fault Detection for a Three-Phase Hybrid Active Neutral-Point-Clamped Rectifier
by Sang-Hun Kim, Seok-Min Kim, Sungmin Park and Kyo-Beum Lee
Electronics 2020, 9(9), 1437; https://doi.org/10.3390/electronics9091437 - 3 Sep 2020
Cited by 17 | Viewed by 3557
Abstract
This paper proposes a fault-detection method for open-switch failures in hybrid active neutral-point-clamped (HANPC) rectifiers. The basic HANPC topology comprises two SiC-based metal-oxide-semiconductor field-effect transistors (MOSFETs) and four Si insulated-gate bipolar transistors (IGBTs). A three-phase rectifier system using the HANPC topology can produce [...] Read more.
This paper proposes a fault-detection method for open-switch failures in hybrid active neutral-point-clamped (HANPC) rectifiers. The basic HANPC topology comprises two SiC-based metal-oxide-semiconductor field-effect transistors (MOSFETs) and four Si insulated-gate bipolar transistors (IGBTs). A three-phase rectifier system using the HANPC topology can produce higher efficiency and lower current harmonics. An open-switch fault in a HANPC rectifier can be a MOSFET or IGBT fault. In this work, faulty cases of six different switches are analyzed based on the current distortion in the stationary reference frame. Open faults in MOSFET switches cause immediate and remarkable current distortions, whereas, open faults in IGBT switches are difficult to detect using conventional methods. To detect an IGBT fault, the proposed detection method utilizes some of the reactive power in a certain period to make an important difference, using the direct-quadrant (dq)-axis current information derived from the three-phase current. Thus, the proposed detection method is based on three-phase current measurements and does not use additional hardware. By analyzing the individual characteristics of each switch failure, the failed switch can be located exactly. The effectiveness and feasibility of the proposed fault-detection method are verified through PSIM simulations and experimental results. Full article
(This article belongs to the Special Issue High Power Electric Traction Systems)
Show Figures

Figure 1

13 pages, 6434 KiB  
Article
Condition Evaluation of an Existing T-Beam Bridge Based on Neutral Axis Variation Monitored with Ultrasonic Coda Waves in a Network of Sensors
by Hanyu Zhan, Hanwan Jiang, Jinquan Zhang and Ruinian Jiang
Sensors 2020, 20(14), 3895; https://doi.org/10.3390/s20143895 - 13 Jul 2020
Cited by 7 | Viewed by 2824
Abstract
Neutral axis passing through the stiffness centroid of a structure is correlated with structural health conditions. Traditional techniques rely on gauge arrays to observe strains at their installation positions, and then locate a neutral axis through the intercept of the strain diagram. However, [...] Read more.
Neutral axis passing through the stiffness centroid of a structure is correlated with structural health conditions. Traditional techniques rely on gauge arrays to observe strains at their installation positions, and then locate a neutral axis through the intercept of the strain diagram. However, these localization results will be severely deviated if any damages exist among gauges or inside structures. In this paper, a novel technique is proposed to locate the neutral axis by measuring and analyzing ultrasonic coda waves in a network of transducers. Because of multiple trajectories, coda waves are sensitive to minor changes in a large volume of media that are not limited to direct paths between sensors. This technique is not only capable of locating a neutral axis with great efficiency and accuracy, but can also indicate global structural health and inner damages. The applicability of the technique is demonstrated by monitoring a 30 m concrete T-beam subjected to four-point loading tests. With an array of transducers placed at the surface, the neutral axes in the large region are located. The localization results also show clear trends that the global neutral axis moves up as the loads increase, which indicates the beam contains certain degrees of inner damage. Full article
(This article belongs to the Special Issue Sensors for Structural Health Monitoring and Condition Monitoring)
Show Figures

Figure 1

14 pages, 7361 KiB  
Article
Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection
by Michaela Gkantou, Magomed Muradov, George S. Kamaris, Khalid Hashim, William Atherton and Patryk Kot
Sensors 2019, 19(23), 5175; https://doi.org/10.3390/s19235175 - 26 Nov 2019
Cited by 84 | Viewed by 5564
Abstract
This paper investigates the possibility of applying novel microwave sensors for crack detection in reinforced concrete structures. Initially, a microstrip patch antenna with a split ring resonator (SRR) structure was designed, simulated and fabricated. To evaluate the sensor’s performance, a series of structural [...] Read more.
This paper investigates the possibility of applying novel microwave sensors for crack detection in reinforced concrete structures. Initially, a microstrip patch antenna with a split ring resonator (SRR) structure was designed, simulated and fabricated. To evaluate the sensor’s performance, a series of structural tests were carried out and the sensor responses were monitored. Four reinforced concrete (RC) beam specimens, designed according to the European Standards, were tested under three-point bending. The load was applied incrementally to the beams and the static responses were monitored via the use of a load cell, displacement transducers and crack width gauges (Demec studs). In parallel, signal readings from the microwave sensors, which were employed prior to the casting of the concrete and located along the neutral axis at the mid-span of the beam, were recorded at various load increments. The microwave measurements were analysed and compared with those from crack width gauges. A strong linear relationship between the crack propagation and the electromagnetic signal across the full captured spectrum was found, demonstrating the technique’s capability and its potential for further research, offering a reliable, low-cost option for structural health monitoring (SHM). Full article
(This article belongs to the Special Issue Sensors Fusion in Non-Destructive Testing Applications)
Show Figures

Figure 1

18 pages, 5502 KiB  
Article
Structural Characteristics of the Yangtze-Huaihe Cold Shear Line over Eastern China in Summer
by Lizhu Yan and Xiuping Yao
Atmosphere 2019, 10(4), 207; https://doi.org/10.3390/atmos10040207 - 19 Apr 2019
Cited by 6 | Viewed by 3637
Abstract
Based on ERA-Interim data from June to July during 1981–2016 and daily meteorological dataset of China Surface Meteorological Stations (V3.0), 10 typical Yangtze-Huaihe cold shear lines (YCSL) over eastern China (28°~34° N, 110°~122° E) in summer are selected, and the structural characteristics of [...] Read more.
Based on ERA-Interim data from June to July during 1981–2016 and daily meteorological dataset of China Surface Meteorological Stations (V3.0), 10 typical Yangtze-Huaihe cold shear lines (YCSL) over eastern China (28°~34° N, 110°~122° E) in summer are selected, and the structural characteristics of the YCSL during the evolution process are investigated by the composite analysis. The results indicate that the YCSL is horizontally in a northeast–southwest direction and vertically inclines northward from the lower layer to the upper layer. The vertical extension of the YCSL can reach 750 hPa, and its life time is about 54 h. The evolution process of the YCSL is affected by the comprehensive configuration of the high-level, medium-level, and low-level weather systems. The southward advancement, strengthening, and eastward movement of the north branch low-pressure trough over the Yangtze-Huaihe region at 850 hPa is a key factor for the evolution of the YCSL. Because the structural characteristics of the YCSL have obvious changes in the evolution process, the evolution process can be divided into the development stage, strong stage, and weakening stage. In terms of dynamic structures, the YCSL corresponds well with the axis of the positive vorticity belt, whose center is located at 850 hPa, and reaches the maximum in the strong stage. The YCSL is located in the non-divergence zone, and there are strong convergence centers located on its south side. The YCSL also locates in the ascending motion zone between two secondary circulations on the north and south sides, with the maximum ascending velocity in the strong stage, and its large-value area presents an upright structure. In the development stage, there is an ascending motion along the YCSL, but in the strong and weakening stages there are an ascending motion below 800 hPa and a descending motion above 800 hPa along the YCSL. In terms of thermal structures, the YCSL is located in the low temperature zone of the lower layer, and there is a high temperature zone around 500 hPa. Due to the dominant role of dry and cold airflow from the north, the YCSL locates in the dry and cold air during the development and strong stages, and then the warm and moist airflow from the south invades, resulting in the weakening of the YCSL. There is a convective unstable layer on the south side of the YCSL and a neutral layer on the north side. The water vapor gathers near the YCSL, and there are two water vapor convergence centers on the east and west sides of the YCSL, respectively. The water vapor convergence zone is mainly below 600 hPa in the low troposphere and the convergence center is located at around 900 hPa. The atmospheric baroclinicity is one of the reasons for the northward inclination of the YCSL. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop