Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,751)

Search Parameters:
Keywords = neurotoxic effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2572 KiB  
Article
Hair Levels of Lead, Cadmium, Selenium, and Their Associations with Neurotoxicity and Hematological Biomarkers in Children from the Mojana Region, Colombia
by Jenny Palomares-Bolaños, Jesus Olivero-Verbel and Karina Caballero-Gallardo
Molecules 2025, 30(15), 3227; https://doi.org/10.3390/molecules30153227 (registering DOI) - 1 Aug 2025
Abstract
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing [...] Read more.
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing their relationship with neurotoxicity and hematological markers. The mean Pb concentrations at the study sites were 1.98 µg/g (Magangue) > 1.51 µg/g (Achi) > 1.24 µg/g (Arjona). A similar pattern was observed for Cd concentrations for Magangue (0.39 µg/g) > Achi (0.36 µg/g) > Arjona (0.14 µg/g). In contrast, Se concentrations followed a different trend for Arjona (0.29 µg/g) > Magangue (0.21 µg/g) > Achi (0.16 µg/g). The proportion of Se/Pb molar ratios > 1 was higher in Arjona (3.8%) than in Magangue (0.9%) and Achi (2.0%). For Se/Cd ratios, values > 1 were also more frequent in Arjona (70.7%), exceeding 20% in the other two locations. Significant differences were found among locations in red and white blood cell parameters and platelet indices. Neurotransmitter-related biomarkers, including serotonin, monoamine oxidase A (MAO-A), and acetylcholinesterase levels, also varied by location. Principal component analysis showed that Pb and Cd had high loadings on the same component as PLT, WBC, and RDW, and while Se loaded together with HGB, PDW, MCHC, MCH, and MCV, suggesting distinct hematological patterns associated with each element. Multiple linear regression analysis demonstrated a statistically significant inverse association between hair Pb levels and serotonin concentrations. Although MAO-A and Cd showed negative β coefficients, these associations were not statistically significant after adjustment. These findings highlight the potential impact of toxic element exposure on key hematological and neurochemical parameters in children, suggesting early biological alterations that may compromise health and neurodevelopment. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

15 pages, 835 KiB  
Review
Optimising Exercise for Managing Chemotherapy-Induced Peripheral Neuropathy in People Diagnosed with Cancer
by Dhiaan Sidhu, Jodie Cochrane Wilkie, Jena Buchan and Kellie Toohey
Cancers 2025, 17(15), 2533; https://doi.org/10.3390/cancers17152533 - 31 Jul 2025
Abstract
Background: Chemotherapy-induced peripheral neuropathy is a common and debilitating side effect of cancer treatment. While exercise has shown promise in alleviating this burden, it remains underutilised in clinical practice due to the lack of accessible, clinician-friendly guidance. Aim: This review aimed to synthesise [...] Read more.
Background: Chemotherapy-induced peripheral neuropathy is a common and debilitating side effect of cancer treatment. While exercise has shown promise in alleviating this burden, it remains underutilised in clinical practice due to the lack of accessible, clinician-friendly guidance. Aim: This review aimed to synthesise current evidence on exercise interventions for managing chemotherapy-induced peripheral neuropathy and provide practical insights to support clinicians in integrating these approaches into patient care. Methods: A search was conducted across MEDLINE, CINAHL, and SPORTDiscus using keywords related to exercise and CIPN. Studies were included if they involved adults receiving neurotoxic chemotherapy and exercise-based interventions. Two authors independently screened studies and resolved conflicts with a third author. Study quality was assessed using the JBI Critical Appraisal Tools, and only studies meeting a minimum quality standard were included. A balanced sampling approach was employed. Data on study design, participant characteristics, interventions, and outcomes were extracted. Results: Eleven studies were included, covering various exercise modalities: multimodal (n = 5), yoga (n = 2), aerobic (n = 1), resistance (n = 1), balance (n = 1), and sensorimotor (n = 1). Exercise interventions, particularly multimodal exercise, significantly improved symptom severity, functionality, and quality of life (p < 0.05). The studies had high methodological quality, with randomised controlled trials scoring between 9/13 and 11/13, and quasi-experimental studies scoring 8/9 on JBI tools. Conclusions: This review highlights the significant benefits of exercise, especially multimodal exercise, for managing CIPN and provides guidance for integrating these strategies into clinical practice. Future research is needed to refine exercise prescriptions and develop standardised guidelines. Full article
Show Figures

Figure 1

14 pages, 875 KiB  
Article
A Comparative Study of Brain Injury Biomarker S100β During General and Spinal Anesthesia for Caesarean Delivery: A Prospective Study
by Mungun Banzar, Nasantogtokh Erdenebileg, Tulgaa Surjavkhlan, Enkhtsetseg Jamsranjav, Munkhtsetseg Janlav and Ganbold Lundeg
Medicina 2025, 61(8), 1382; https://doi.org/10.3390/medicina61081382 - 30 Jul 2025
Abstract
Background and Objectives: Anesthetic agents may influence brain function, and emerging evidence suggests possible neurotoxicity under certain conditions. S100β is a well-established biomarker of brain injury and blood–brain barrier disruption, and its prolonged elevation beyond 6–12 h, despite a short half-life, may [...] Read more.
Background and Objectives: Anesthetic agents may influence brain function, and emerging evidence suggests possible neurotoxicity under certain conditions. S100β is a well-established biomarker of brain injury and blood–brain barrier disruption, and its prolonged elevation beyond 6–12 h, despite a short half-life, may indicate ongoing neuronal injury. Its use in cesarean section (C-section) remains limited, despite the potential neurological implications of both surgical stress and anesthetic technique. This study evaluates potential brain injury during caesarean section by comparing maternal and neonatal S100β levels under general and spinal anesthesia. Materials and Methods: This observational prospective study compared changes in the S100β brain damage biomarker in maternal (pre- and post-surgery) and umbilical artery blood during elective c-sections under general or spinal anesthesia. The 60 parturient women who underwent a C-section from 1 July 2021 to 30 December 2023 were evenly distributed into 2 groups: General anesthesia (GA) (n = 30) and Spinal anesthesia (SA) group (n = 30). It included healthy term pregnant women aged 18–40, ASA I–II and excluded those with major comorbidities or emergency conditions. Results: S100β concentrations slightly increased once the C-section was over in both the SA and GA groups, but without notable differences. In the SA and GA groups, preoperative S100β concentration in maternal blood was 195.1 ± 36.2 ng/L, 193.0 ± 54.3 ng/L, then increased to 200.9 ± 42.9 ng/L, 197.0 ± 42.7 at the end of operation. There was no statistically significant difference in S100β concentrations between the spinal and general anesthesia groups (p = 0.86). Conclusions: S100β concentrations slightly increased after C-section in both groups. The form of anesthesia seems to be irrelevant for the S100β level. However, further research is needed to confirm these findings and fully evaluate any potential long-term effects. Full article
(This article belongs to the Special Issue Advanced Research on Anesthesiology and Pain Management)
Show Figures

Figure 1

19 pages, 4063 KiB  
Article
Exposure to Mitochondrial Toxins: An In Vitro Study of Energy Depletion and Oxidative Stress in Driving Dopaminergic Neuronal Death in MN9D Cells
by Oluwatosin Adefunke Adetuyi and Kandatege Wimalasena
Toxics 2025, 13(8), 637; https://doi.org/10.3390/toxics13080637 - 29 Jul 2025
Viewed by 141
Abstract
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson’s disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin [...] Read more.
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson’s disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin A, a Complex III inhibitor, on mitochondrial function in MN9D dopaminergic neuronal cells. Cells were treated with rotenone (1.5 µM) or antimycin A (10 µM) for one hour, and key biochemical parameters were assessed, including ATP levels, reactive oxygen species (ROS) production, dopamine metabolism, and neuromelanin formation. Our results indicate significant ATP depletion and ROS accumulation following treatment with both inhibitors, with antimycin A inducing a more pronounced oxidative stress response. Dysregulation of dopamine biosynthesis differed mechanistically from vesicular monoamine transporter (VMAT2) inhibition by tetrabenazine, suggesting alternative pathways of catecholamine disruption. Additionally, oxidative stress led to increased neuromelanin accumulation, indicating a possible adaptive response to mitochondrial dysfunction. These findings provide insights into the cellular mechanisms underlying dopaminergic neurotoxicity and highlight mitochondrial electron transport chain inhibition as a key driver of PD pathogenesis. Future research should explore therapeutic strategies aimed at enhancing mitochondrial function to mitigate neurodegenerative progression. Full article
Show Figures

Graphical abstract

19 pages, 1599 KiB  
Article
Nanopolystyrene (nanoPS) and Sodium Azide (NaN3) Toxicity in Danio rerio: Behavioural and Morphological Evaluation
by Wanda Komorowska, Łukasz Kurach and Agnieszka Dąbrowska
Microplastics 2025, 4(3), 45; https://doi.org/10.3390/microplastics4030045 - 29 Jul 2025
Viewed by 188
Abstract
Nano- (NPs) and microplastics (MPs) are ubiquitous and raising concerns about their toxicity. A popular model for studying acute toxicity is Danio rerio. This study investigated the acute toxicity in FET test of polystyrene nanoparticles (500 nm, nanoPS) at different concentrations (0.01, [...] Read more.
Nano- (NPs) and microplastics (MPs) are ubiquitous and raising concerns about their toxicity. A popular model for studying acute toxicity is Danio rerio. This study investigated the acute toxicity in FET test of polystyrene nanoparticles (500 nm, nanoPS) at different concentrations (0.01, 0.1, and 0.2 mg/mL), with different surface groups (non-modified, amine, carboxyl) and discuss the toxicological contribution of commercially added compounds. Different behavioural tests were used to investigate the neurotoxicity of nanoPS and sodium azide: coiling assay test, light–dark preference test, and colour preference test. Sodium azide and other preservatives are often present in commercially available NP and MP solutions frequently used in microplastic toxicity tests, but their effects on the results remain largely unknown. In the FET test, nanoPS did not increase mortality or affect the heart rate or body length. A higher hatching rate was observed at 48 hpf. Although nanoPS showed no acute toxicity, behavioural tests revealed subtle neurotoxic effects (changes in colour preference), suggesting a potential impact on neurological function. Additionally, sodium azide exhibited toxicity, indicating that additives may confound toxicity assessments. This highlights the need for careful consideration of preservatives in nanoparticle research to avoid misleading conclusions. Full article
Show Figures

Figure 1

26 pages, 10645 KiB  
Article
Classical Paal-Knorr Cyclization for Synthesis of Pyrrole-Based Aryl Hydrazones and In Vitro/In Vivo Evaluation on Pharmacological Models of Parkinson’s Disease
by Maya Georgieva, Martin Sharkov, Emilio Mateev, Diana Tzankova, Georgi Popov, Vasil Manov, Alexander Zlatkov, Rumyana Simeonova and Magdalena Kondeva-Burdina
Molecules 2025, 30(15), 3154; https://doi.org/10.3390/molecules30153154 - 28 Jul 2025
Viewed by 134
Abstract
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is [...] Read more.
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is applied to synthesize the basic hydrazine used for the formation of the designed series of hydrazones (15a15g). The potential neurotoxic and neuroprotective effects of the newly synthesized derivatives were investigated in vitro using different models of induced oxidative stress at three subcellular levels (rat brain synaptosomes, mitochondria, and microsomes). The results identified as the least neurotoxic molecules, 15a, 15d, and 15f applied at a concentration of 100 µM to the isolated fractions. In addition, the highest statistically significant neuroprotection was observed for 15a and 15d at a concentration of 100 µM using three different injury models on subcellular fractions, including 6-hydroxydopamine in rat brain synaptosomes, tert-butyl hydroperoxide in brain mitochondria, and non-enzyme-induced lipid peroxidation in brain microsomes. The hMAOA/MAOB inhibitory activity of the new compounds was studied at a concentration of 1 µM. The lack of a statistically significant hMAOA inhibitory effect was observed for all tested compounds, except for 15f, which showed 40% inhibitory activity. The most prominent statistically significant hMAOB inhibitory effect was determined for 15a, 15d, and 15f, comparable to that of selegiline. The corresponding selectivity index defined 15f as a non-selective MAO inhibitor and all other new hydrazones as selective hMAOB inhibitors, with 15d indicating the highest selectivity index of >471. The most active and least toxic representative (15d) was evaluated in vivo on Rotenone based model of Parkinson’s disease. The results revealed no microscopically visible alterations in the ganglion and glial cells in the animals treated with rotenone in combination with 15d. Full article
(This article belongs to the Special Issue Small-Molecule Targeted Drugs)
Show Figures

Figure 1

23 pages, 2174 KiB  
Article
Effects of TBBPA Exposure on Neurodevelopment and Behavior in Mice
by Yongin Kim, Inho Hwang, Sun Kim and Eui-Bae Jeung
Int. J. Mol. Sci. 2025, 26(15), 7289; https://doi.org/10.3390/ijms26157289 - 28 Jul 2025
Viewed by 256
Abstract
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant widely used in consumer products. TBBPA is often detected in soil, water, organisms, and even in human blood and breast milk. Hence, it is accessible to developing fetuses and nursing offspring after maternal exposure. The [...] Read more.
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant widely used in consumer products. TBBPA is often detected in soil, water, organisms, and even in human blood and breast milk. Hence, it is accessible to developing fetuses and nursing offspring after maternal exposure. The reported evidence for the endocrine disruption of TBBPA in the brain has raised concerns regarding its effects on neurodevelopmental and behavioral functions. This study investigated the effects of TBBPA exposure on neurodevelopment. A cell-based developmental neurotoxicity assay was performed to determine whether TBBPA is a developmental neurotoxicant. The assay revealed TBBPA to be a developmental neurotoxicant. C57BL/6N maternal mice were administered TBBPA at 0, 0.24, and 2.4 mg/kg during pregnancy and lactation, and their offspring underwent behavioral testing. The behavioral experiments revealed sex-specific effects. In females, only a deterioration of the motor ability was observed. In contrast, deteriorations in motor function, memory, and social interaction were noted in males. Furthermore, we validated changes in the expression of genes associated with behavioral abnormalities, confirming that perinatal exposure to TBBPA, at the administered doses, can affect neurodevelopment and behavior in offspring. These findings highlight the need for more in-depth and multifaceted research on the toxicity of TBBPA. Full article
(This article belongs to the Collection New Advances in Molecular Toxicology)
Show Figures

Figure 1

19 pages, 8295 KiB  
Article
Melatonin as an Alleviator in Decabromodiphenyl Ether-Induced Aberrant Hippocampal Neurogenesis and Synaptogenesis: The Role of Wnt7a
by Jinghua Shen, Lu Gao, Jingjing Gao, Licong Wang, Dongying Yan, Ying Wang, Jia Meng, Hong Li, Dawei Chen and Jie Wu
Biomolecules 2025, 15(8), 1087; https://doi.org/10.3390/biom15081087 - 27 Jul 2025
Viewed by 294
Abstract
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is [...] Read more.
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is essential for both neurogenesis and synapse formation; moreover, Wnt signaling participates in PBDE neurotoxicity and also contributes to the neuroprotective effects of melatonin. Therefore, we investigated the impacts of perinatal decabromodiphenyl ether (BDE-209) exposure on hippocampal neurogenesis and synaptogenesis in juvenile rats through BrdU injection and Golgi staining, as well as the alleviation of melatonin pretreatment. Additionally, we identified the structural basis of Wnt7a and two compounds via molecular docking. The hippocampal neural progenitor pool (Sox2+BrdU+ and Sox2+GFAP+cells), immature neurons (DCX+) differentiated from neuroblasts, and the survival of mature neurons (NeuN+) in the dentate gyrus were inhibited. Moreover, in BDE-209-exposed offspring rats, it was observed that dendritic branching and spine density were reduced, alongside the long-lasting suppression of the Wnt7a-FZD5/β-catenin pathway and targeted genes (Prox1, Neurod1, Neurogin2, Dlg4, and Netrin1) expression. Melatonin alleviated BDE-209-disrupted memory, along with hippocampal neurogenesis and dendritogenesis, for which the restoration of Wnt7a-FZD5 signaling may be beneficial. This study suggested that melatonin could represent a potential intervention for the cognitive deficits induced by PBDEs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 956 KiB  
Review
The Potential Therapeutic Role of Bruton Tyrosine Kinase Inhibition in Neurodegenerative Diseases
by Francesco D’Egidio, Housem Kacem, Giorgia Lombardozzi, Michele d’Angelo, Annamaria Cimini and Vanessa Castelli
Appl. Sci. 2025, 15(15), 8239; https://doi.org/10.3390/app15158239 - 24 Jul 2025
Viewed by 188
Abstract
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. [...] Read more.
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. Recent evidence implicates aberrant BTK signaling in the exacerbation of neuroinflammatory cascades contributing to neuronal damage in disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, ischemic stroke, and Huntington’s disease. Pharmacological inhibition of BTK has shown promise in attenuating microglial-mediated neurotoxicity, reducing pro-inflammatory cytokine release, and promoting neuroprotection in preclinical models. BTK inhibitors, originally developed for hematological malignancies, demonstrate favorable blood–brain barrier penetration and immunomodulatory effects relevant to central nervous system pathology. This therapeutic approach may counteract detrimental neuroimmune interactions without broadly suppressing systemic immunity, thus preserving host defense. Ongoing clinical trials are evaluating the safety and efficacy of BTK inhibitors in patients with neurodegenerative conditions, with preliminary results indicating potential benefits in slowing disease progression and improving neurological outcomes. This review consolidates current knowledge on BTK signaling in neurodegeneration and highlights the rationale for BTK inhibition as a novel, targeted therapeutic strategy to modulate neuroinflammation and mitigate neurodegenerative processes. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

19 pages, 1316 KiB  
Review
Anabolic–Androgenic Steroids and Brain Damage: A Review of Evidence and Medico-Legal Implications
by Mario Giuseppe Chisari, Massimiliano Esposito, Salvatore Alloca, Sabrina Franco, Martina Francaviglia, Gianpietro Volonnino, Raffaella Rinaldi, Nicola Di Fazio and Lucio Di Mauro
Forensic Sci. 2025, 5(3), 31; https://doi.org/10.3390/forensicsci5030031 - 24 Jul 2025
Viewed by 435
Abstract
Background: Anabolic–androgenic steroids (AASs) are commonly used for performance enhancement but have been linked to significant neurobiological consequences. This review explores the impact of AASs on neurochemical pathways, cognitive function, and psychiatric disorders, highlighting their potential neurotoxicity. Methods: A narrative review of current [...] Read more.
Background: Anabolic–androgenic steroids (AASs) are commonly used for performance enhancement but have been linked to significant neurobiological consequences. This review explores the impact of AASs on neurochemical pathways, cognitive function, and psychiatric disorders, highlighting their potential neurotoxicity. Methods: A narrative review of current literature was conducted to examine AASs-induced alterations in neurotransmitter systems, structural and functional brain changes, and associated psychiatric conditions. The interplay between AASs use and other substances was also considered. Results: Chronic AASs exposure affects serotonin and dopamine systems, contributing to mood disorders, aggression, and cognitive deficits. Structural and functional changes in the prefrontal cortex and limbic regions suggest long-term neurotoxicity. AASs use is associated with increased risks of depression, anxiety, and psychosis, potentially driven by hormonal dysregulation and neuroinflammation. Co-occurring substance use exacerbates neurocognitive impairments and behavioral disturbances. Discussion: While evidence supports the link between AASs use and neurotoxicity, gaps remain in understanding the precise mechanisms and long-term effects. Identifying biomarkers of brain damage and developing targeted interventions are crucial for mitigating risks. Increased awareness among medical professionals and policymakers is essential to address AASs-related neuropsychiatric consequences. Conclusions: AASs abuse poses significant risks to brain health, necessitating further research and prevention efforts. Evidence-based strategies are needed to educate the public, enhance early detection, and develop effective interventions to reduce the neuropsychiatric burden of AASs use. Full article
Show Figures

Figure 1

10 pages, 222 KiB  
Review
The Role of Serotoninomics in Neuropsychiatric Disorders: Anthranilic Acid in Schizophrenia
by Katia L. Jiménez-García, José L. Cervantes-Escárcega, Gustavo Canul-Medina, Telma Lisboa-Nascimento and Francisco Jiménez-Trejo
Int. J. Mol. Sci. 2025, 26(15), 7124; https://doi.org/10.3390/ijms26157124 - 24 Jul 2025
Viewed by 214
Abstract
Serotoninomics is an expanding field that focuses on the comprehensive study of the serotoninergic system, including serotonin’s biosynthesis, metabolism, and regulation, as well as related scientific methodologies 5-hydroxytryptamine (5-HT). This field explores serotonin’s complex roles in various physiological and pathological contexts. The essential [...] Read more.
Serotoninomics is an expanding field that focuses on the comprehensive study of the serotoninergic system, including serotonin’s biosynthesis, metabolism, and regulation, as well as related scientific methodologies 5-hydroxytryptamine (5-HT). This field explores serotonin’s complex roles in various physiological and pathological contexts. The essential amino acid tryptophan (Trp) is a precursor for several metabolic and catabolic pathways, with the kynurenine (KYN) pathway being particularly significant, representing about 95% of Trp metabolism. In contrast, only a small portion (1–2%) of dietary Trp enters the serotonin pathway. Anthranilic acid (AA), a metabolite in the KYN pathway, has emerged as a potential biomarker and therapeutic target for schizophrenia. Elevated serum AA levels in patients with schizophrenia have been associated with neurotoxic effects and disruptions in neurotransmission, suggesting AA’s critical role in the disorder’s pathophysiology. Furthermore, the 5-HT2A receptor’s involvement is particularly noteworthy, especially in relation to schizophrenia’s positive symptoms. Recent findings indicate that 5-HT2A receptor hyperactivity is linked to positive symptoms of schizophrenia, such as hallucinations and delusions. This study investigates serotoninomics’ implications for neuropsychiatric disorders, focusing on AA in schizophrenia and analysing recent research on serotonin signalling pathways and AA’s neurochemical effects. Understanding the roles of the 5-HT2A receptor and AA in neuropsychiatric disorders could lead to the development of more precise and less invasive diagnostic tools, specific therapeutic strategies, and improved clinical outcomes. Ongoing research is essential to uncover these pathways’ exact mechanisms and therapeutic potential, thereby advancing personalised medicine and innovative treatments in neuropsychiatry. Full article
17 pages, 1402 KiB  
Review
Rethinking Short-Chain Fatty Acids: A Closer Look at Propionate in Inflammation, Metabolism, and Mucosal Homeostasis
by Sonia Facchin, Matteo Calgaro and Edoardo V. Savarino
Cells 2025, 14(15), 1130; https://doi.org/10.3390/cells14151130 - 22 Jul 2025
Viewed by 264
Abstract
Propionate is a short-chain fatty acid (SCFA) produced by gut microbiota through the fermentation of dietary fibers. Among the SCFAs, butyrate stands out and has been extensively studied for its beneficial effects; however, propionate has received less attention despite its relevant roles in [...] Read more.
Propionate is a short-chain fatty acid (SCFA) produced by gut microbiota through the fermentation of dietary fibers. Among the SCFAs, butyrate stands out and has been extensively studied for its beneficial effects; however, propionate has received less attention despite its relevant roles in immune modulation, metabolism, and mucosal homeostasis. This narrative review focuses on propionate’s effects on metabolism, inflammation, microbiota, and gastrointestinal diseases. Propionate acts as a signalling molecule through FFAR2/FFAR3 receptors and modulates immunity, energy metabolism, and gut–brain communication. It has beneficial effects in metabolic disorders, inflammatory bowel disease (IBD), and alcohol-related liver disease (ALD). However, excessive accumulation is linked to neurotoxicity, autism spectrum disorder (ASD), and mitochondrial dysfunction. Its effects are dose-dependent and tissue-specific, with both protective and harmful potentials depending on the context. Propionate use requires a personalized approach, considering the pathological context, host microbiota composition, and appropriate dosage to avoid adverse effects. Full article
Show Figures

Graphical abstract

16 pages, 8218 KiB  
Article
Lead Induces Mitochondrial Dysregulation in SH-SY5Y Neuroblastoma Cells via a lncRNA/circRNA–miRNA–mRNA Interdependent Networks
by Yu Wang, Xuefeng Shen, Ruili Guan, Zaihua Zhao, Tao Wang, Yang Zhou, Xiaoming Chen, Jianbin Zhang, Wenjing Luo and Kejun Du
Int. J. Mol. Sci. 2025, 26(14), 6851; https://doi.org/10.3390/ijms26146851 - 17 Jul 2025
Viewed by 202
Abstract
Lead (Pb) exposure poses a significant public health concern due to its neurotoxic effects. While mitochondrial dysfunction is implicated in lead neurotoxicity, the precise molecular mechanisms, particularly the role of non-coding RNA-mediated competing endogenous RNA networks, remain underexplored. SH-SY5Y neuroblastoma cells were treated [...] Read more.
Lead (Pb) exposure poses a significant public health concern due to its neurotoxic effects. While mitochondrial dysfunction is implicated in lead neurotoxicity, the precise molecular mechanisms, particularly the role of non-coding RNA-mediated competing endogenous RNA networks, remain underexplored. SH-SY5Y neuroblastoma cells were treated with 10 μM lead acetate. Cell viability was assessed by Cell Counting Kit-8 (CCK-8). Mitochondrial ultrastructure and quantity were analyzed via transmission electron microscopy (TEM). Key mitochondrial dynamics proteins were examined by Western blot. Comprehensive transcriptome sequencing, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and mRNAs, was performed followed by functional enrichment and ceRNA network construction. Selected RNAs and hub genes were validated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Lead exposure significantly reduced SH-SY5Y cell viability and induced mitochondrial damage (decreased quantity, swelling, fragmentation). Western blot confirmed an imbalance in mitochondrial dynamics, as indicated by decreased mitofusin 2 (MFN2), increased total and phosphorylated dynamin-related protein 1 (DRP1). Transcriptomic analysis revealed widespread differential expression of lncRNAs, circRNAs, miRNAs, and mRNAs. Enrichment analysis highlighted mitochondrial function and oxidative stress pathways. A ceRNA network identified five key hub genes: SLC7A11, FOS, HMOX1, HGF, and NR4A1. All validated RNA and hub gene expression patterns were consistent with sequencing results. Our study demonstrates that lead exposure significantly impairs mitochondrial quantity and morphology in SH-SY5Y cells, likely via disrupted mitochondrial dynamics. We reveal the potential regulatory mechanisms of lead-induced neurotoxicity involving ceRNA networks, identifying hub genes crucial for cellular stress response. This research provides a foundational framework for developing therapeutic strategies against lead-induced neurotoxicity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

8 pages, 212 KiB  
Case Report
‘Crystal Meth’ Use in an Addiction Outpatient Clinic in Italy: A Multifaceted Challenge
by Filippo Besana, Stefano Pasquariello, Attilio Negri and Valentina Costa
Psychoactives 2025, 4(3), 25; https://doi.org/10.3390/psychoactives4030025 - 16 Jul 2025
Viewed by 289
Abstract
Shaboo is a street name commonly used in parts of Asia, particularly the Philippines and Thailand, to refer to methamphetamine, a powerful and highly addictive stimulant. Its long-term effects are related to chronic exposure to the drug effects, primarily neurotoxicity phenomena, which could [...] Read more.
Shaboo is a street name commonly used in parts of Asia, particularly the Philippines and Thailand, to refer to methamphetamine, a powerful and highly addictive stimulant. Its long-term effects are related to chronic exposure to the drug effects, primarily neurotoxicity phenomena, which could lead to cognitive impairment, or psychiatric symptoms. We aim to present one case of problematic shaboo use in a patient referring to an addiction outpatient clinic in Northern Italy. This case highlights that the treatment of these patients involves careful multidisciplinary management. An accurate knowledge of the physical and psychological effects of New Psychoactive Substances is essential, as well as the implementation of a tailored psychological and social support program. Full article
24 pages, 1164 KiB  
Review
The Aryl Hydrocarbon Receptor in Neurotoxicity: An Intermediator Between Dioxins and Neurons in the Brain
by Eiki Kimura
Toxics 2025, 13(7), 596; https://doi.org/10.3390/toxics13070596 - 16 Jul 2025
Viewed by 514
Abstract
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced [...] Read more.
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced AHR activation is pivotal for toxic effects. Accurate AHR-expressing cell identification is therefore indispensable for understanding the molecular and cellular mechanisms of dioxin toxicity. Herein, current knowledge regarding AHR expression in the mammalian brain is summarized, and dioxin neurotoxicity mechanisms are discussed. Histological studies show AHR-expressing neurons in multiple brain regions, including the hippocampus and cerebral cortex. Dopaminergic and noradrenergic neurons exhibit AHR expression, suggesting possible roles in the monoaminergic system. AHR overactivation evokes dendritic arborization atrophy, whereas its deficiency increases complexity, implying that AHR-mediated signaling is crucial for neuronal growth and maturation. AHR is also involved in neurogenesis and neuronal precursor migration. Collectively, these findings support the notion that dioxin-induced AHR overactivation in individual neurons disrupts neural circuit structure, ultimately leading to impaired brain function. However, as AHR downstream signaling is intertwined with various molecules and pathways, the precise mechanisms remain unclear. Further studies on the expression, signaling, and roles of AHR are needed to clarify dioxin neurotoxicity. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

Back to TopTop