Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = neurexin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7023 KiB  
Article
Modulation of Neurexins Alternative Splicing by Cannabinoid Receptors 1 (CB1) Signaling
by Elisa Innocenzi, Giuseppe Sciamanna, Alice Zucchi, Vanessa Medici, Eleonora Cesari, Donatella Farini, David J. Elliott, Claudio Sette and Paola Grimaldi
Cells 2025, 14(13), 972; https://doi.org/10.3390/cells14130972 - 25 Jun 2025
Viewed by 558
Abstract
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding [...] Read more.
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding thousands of isoforms with different properties of interaction with post-synaptic molecules for a quick adaptation to internal and external inputs. The endocannabinoid system also plays a central role in synaptic plasticity, regulating key retrograde signaling at both excitatory and inhibitory synapses. This study aims at elucidating the crosstalk between alternative splicing of neurexin and the endocannabinoid system in the hippocampus. By employing an ex vivo hippocampal system, we found that pharmacological activation of cannabinoid receptor 1 (CB1) with the specific agonist ACEA led to reduced neurotransmission, associated with increased expression of the Nrxn1–3 spliced isoforms excluding the exon at splice site 4 (SS4−). In contrast, treatment with the CB1 antagonist AM251 increased glutamatergic activity and promoted the expression of the Nrxn variants including the exon (SS4+) Knockout of the involved splicing factor SLM2 determined the suppression of the exon splicing at SS4 and the expression only of the SS4+ variants of Nrxns1–3 transcripts. Interestingly, in SLM2 ko hippocampus, modulation of neurotransmission by AM251 or ACEA was abolished. These findings suggest a direct crosstalk between CB1-dependent signaling, neurotransmission and expression of specific Nrxns splice variants in the hippocampus. We propose that the fine-tuned regulation of Nrxn13 genes alternative splicing may play an important role in the feedback control of neurotransmission by the endocannabinoid system. Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
Show Figures

Figure 1

32 pages, 10673 KiB  
Article
Light-Modulated Circadian Synaptic Plasticity in the Somatosensory Cortex: Link to Locomotor Activity
by Małgorzata Jasińska, Ewa Jasek-Gajda, Marek Ziaja, Jan A. Litwin, Grzegorz J. Lis and Elżbieta Pyza
Int. J. Mol. Sci. 2024, 25(23), 12870; https://doi.org/10.3390/ijms252312870 - 29 Nov 2024
Viewed by 976
Abstract
The circadian clock controls various physiological processes, including synaptic function and neuronal activity, affecting the functioning of the entire organism. Light is an important external factor regulating the day–night cycle. This study examined the effects of the circadian clock and light on synaptic [...] Read more.
The circadian clock controls various physiological processes, including synaptic function and neuronal activity, affecting the functioning of the entire organism. Light is an important external factor regulating the day–night cycle. This study examined the effects of the circadian clock and light on synaptic plasticity, and explored how locomotor activity contributes to these processes. We analyzed synaptic protein expression and excitatory synapse density in the somatosensory cortex of mice from four groups exposed to different lighting conditions (LD 12:12, DD, LD 16:8, and LL). Locomotor activity was assessed through individual wheel-running monitoring. To explore daily and circadian changes in synaptic proteins, we performed double-immunofluorescence labeling and laser scanning confocal microscopy imaging, targeting three pairs of presynaptic and postsynaptic proteins (Synaptophysin 1/PSD95, Piccolo/Homer 1, Neurexins/PICK1). Excitatory synapse density was evaluated by co-labeling presynaptic and postsynaptic markers. Our results demonstrated that all the analyzed synaptic proteins exhibited circadian regulation modulated by light. Under constant light conditions, only Piccolo and Homer 1 showed rhythmicity. Locomotor activity was also associated with the circadian clock’s effects on synaptic proteins, showing a stronger connection to changes in postsynaptic protein levels. Excitatory synapse density peaked during the day/subjective day and exhibited an inverse relationship with locomotor activity. Continued light exposure disrupted cyclic changes in synapse density but kept it consistently elevated. These findings underscore the crucial roles of light and locomotor activity in regulating synaptic plasticity. Full article
(This article belongs to the Special Issue Synapse Dynamics: From Molecular Mechanisms to Functional Plasticity)
Show Figures

Figure 1

11 pages, 5723 KiB  
Article
Effects of Human Neural Stem Cells Overexpressing Neuroligin and Neurexin in a Spinal Cord Injury Model
by Jiwon Jeong, Yunseo Choi, Narae Kim, Haneul Lee, Eun-Jung Yoon and Dongsun Park
Int. J. Mol. Sci. 2024, 25(16), 8744; https://doi.org/10.3390/ijms25168744 - 10 Aug 2024
Viewed by 1837
Abstract
Recent studies have highlighted the therapeutic potential of stem cells for various diseases. However, unlike other tissues, brain tissue has a specific structure, consisting of synapses. These synapses not only transmit but also process and refine information. Therefore, synaptic regeneration plays a key [...] Read more.
Recent studies have highlighted the therapeutic potential of stem cells for various diseases. However, unlike other tissues, brain tissue has a specific structure, consisting of synapses. These synapses not only transmit but also process and refine information. Therefore, synaptic regeneration plays a key role in therapy of neurodegenerative disorders. Neurexins (NRXNs) and neuroligins (NLGNs) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses, mediate trans-synaptic signaling, and shape neural network properties by specifying synaptic functions. In this study, we investigated the synaptic regeneration effect of human neural stem cells (NSCs) overexpressing NRXNs (F3.NRXN) and NLGNs (F3.NLGN) in a spinal cord injury model. Overexpression of NRXNs and NLGNs in the neural stem cells upregulated the expression of synaptophysin, PSD95, VAMP2, and synapsin, which are synaptic markers. The BMS scores indicated that the transplantation of F3.NRXN and F3.NLGN enhanced the recovery of locomotor function in adult rodents following spinal cord injury. Transplanted F3.NRXN and F3.NLGN differentiated into neurons and formed a synapse with the host cells in the spinal cord injury mouse model. In addition, F3.NRXN and F3.NLGN cells restored growth factors (GFs) and neurotrophic factors (NFs) and induced the proliferation of host cells. This study suggested that NSCs overexpressing NRXNs and NLGNs could be candidates for cell therapy in spinal cord injuries by facilitating synaptic regeneration. Full article
(This article belongs to the Special Issue Therapeutic Uses of Adult Stem Cells)
Show Figures

Figure 1

18 pages, 3890 KiB  
Article
Conditional Knockout of Neurexins Alters the Contribution of Calcium Channel Subtypes to Presynaptic Ca2+ Influx
by Johannes Brockhaus, Iris Kahl, Mohiuddin Ahmad, Daniele Repetto, Carsten Reissner and Markus Missler
Cells 2024, 13(11), 981; https://doi.org/10.3390/cells13110981 - 5 Jun 2024
Viewed by 2154
Abstract
Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC [...] Read more.
Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for β-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs. Full article
(This article belongs to the Special Issue Diving Deep into Synaptic Transmission)
Show Figures

Graphical abstract

13 pages, 288 KiB  
Article
Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome
by Jakub P. Fichna, Mateusz Chiliński, Anup Kumar Halder, Paweł Cięszczyk, Dariusz Plewczynski, Cezary Żekanowski and Piotr Janik
Int. J. Mol. Sci. 2024, 25(11), 5758; https://doi.org/10.3390/ijms25115758 - 25 May 2024
Cited by 1 | Viewed by 1700
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental psychiatric disorder with complex and elusive etiology with a significant role of genetic factors. The aim of this study was to identify structural variants that could be associated with familial GTS. The study group [...] Read more.
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental psychiatric disorder with complex and elusive etiology with a significant role of genetic factors. The aim of this study was to identify structural variants that could be associated with familial GTS. The study group comprised 17 multiplex families with 80 patients. Structural variants were identified from whole-genome sequencing data and followed by co-segregation and bioinformatic analyses. The localization of these variants was used to select candidate genes and create gene sets, which were subsequently processed in gene ontology and pathway enrichment analysis. Seventy putative pathogenic variants shared among affected individuals within one family but not present in the control group were identified. Only four private or rare deletions were exonic in LDLRAD4, B2M, USH2A, and ZNF765 genes. Notably, the USH2A gene is involved in cochlear development and sensory perception of sound, a process that was associated previously with familial GTS. In addition, two rare variants and three not present in the control group were co-segregating with the disease in two families, and uncommon insertions in GOLM1 and DISC1 were co-segregating in three families each. Enrichment analysis showed that identified structural variants affected synaptic vesicle endocytosis, cell leading-edge organization, and signaling for neurite outgrowth. The results further support the involvement of the regulation of neurotransmission, neuronal migration, and sound-sensing in GTS. Full article
22 pages, 3740 KiB  
Systematic Review
Landscape of NRXN1 Gene Variants in Phenotypic Manifestations of Autism Spectrum Disorder: A Systematic Review
by Jaimee N. Cooper, Jeenu Mittal, Akhila Sangadi, Delany L. Klassen, Ava M. King, Max Zalta, Rahul Mittal and Adrien A. Eshraghi
J. Clin. Med. 2024, 13(7), 2067; https://doi.org/10.3390/jcm13072067 - 2 Apr 2024
Cited by 6 | Viewed by 4579
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Recent research has increasingly focused on the genetic underpinnings of ASD, with the Neurexin 1 (NRXN1) gene emerging as a key player. [...] Read more.
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Recent research has increasingly focused on the genetic underpinnings of ASD, with the Neurexin 1 (NRXN1) gene emerging as a key player. This comprehensive systematic review elucidates the contribution of NRXN1 gene variants in the pathophysiology of ASD. Methods: The protocol for this systematic review was designed a priori and was registered in the PROSPERO database (CRD42023450418). A risk of bias analysis was conducted using the Joanna Briggs Institute (JBI) critical appraisal tool. We examined various studies that link NRXN1 gene disruptions with ASD, discussing both the genotypic variability and the resulting phenotypic expressions. Results: Within this review, there was marked heterogeneity observed in ASD genotypic and phenotypic manifestations among individuals with NRXN1 mutations. The presence of NRXN1 mutations in this population emphasizes the gene’s role in synaptic function and neural connectivity. Conclusion: This review not only highlights the role of NRXN1 in the pathophysiology of ASD but also highlights the need for further research to unravel the complex genetic underpinnings of the disorder. A better knowledge about the multifaceted role of NRXN1 in ASD can provide crucial insights into the neurobiological foundations of autism and pave the way for novel therapeutic strategies. Full article
(This article belongs to the Section Mental Health)
Show Figures

Figure 1

21 pages, 6223 KiB  
Article
Distinct Alterations in Dendritic Spine Morphology in the Absence of β-Neurexins
by Leonie Mohrmann, Jochen Seebach, Markus Missler and Astrid Rohlmann
Int. J. Mol. Sci. 2024, 25(2), 1285; https://doi.org/10.3390/ijms25021285 - 20 Jan 2024
Viewed by 1949
Abstract
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, [...] Read more.
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, including neurotransmitter release. However, its role in developing or stabilizing dendritic spines as fundamental computational units of excitatory synapses has remained unclear. Here, we show through morphological analysis that the deletion of β-neurexins in hippocampal neurons in vitro and in hippocampal tissue in vivo affects presynaptic dense-core vesicles, as hypothesized earlier, and, unexpectedly, alters the postsynaptic spine structure. Specifically, we observed that the absence of β-neurexins led to an increase in filopodial-like protrusions in vitro and more mature mushroom-type spines in the CA1 region of adult knockout mice. In addition, the deletion of β-neurexins caused alterations in the spine head dimension and an increase in spines with perforations of their postsynaptic density but no changes in the overall number of spines or synapses. Our results indicate that presynaptic β-neurexins play a role across the synaptic cleft, possibly by aligning with postsynaptic binding partners and glutamate receptors via transsynaptic columns. Full article
(This article belongs to the Special Issue Morphology-Function Relationships of Neurons and Glia Cells)
Show Figures

Figure 1

41 pages, 2245 KiB  
Review
The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour
by Brooke L. Farrugia and James Melrose
Int. J. Mol. Sci. 2023, 24(18), 14101; https://doi.org/10.3390/ijms241814101 - 14 Sep 2023
Cited by 15 | Viewed by 5187
Abstract
This review examines the roles of HS–proteoglycans (HS–PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS–PGs are essential for the functional properties of tissues [...] Read more.
This review examines the roles of HS–proteoglycans (HS–PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS–PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS–PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo–Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin–neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS–PGs also promote or inhibit tumor development. Thus, HS–PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS–PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes–Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS–PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan. Full article
(This article belongs to the Special Issue The Role of Glycosaminoglycans in Human Diseases)
Show Figures

Figure 1

9 pages, 617 KiB  
Case Report
Case Report—An Inherited Loss-of-Function NRXN3 Variant Potentially Causes a Neurodevelopmental Disorder with Autism Consistent with Previously Described 14q24.3-31.1 Deletions
by René G. Feichtinger, Martin Preisel, Karin Brugger, Saskia B. Wortmann and Johannes A. Mayr
Genes 2023, 14(6), 1217; https://doi.org/10.3390/genes14061217 - 2 Jun 2023
Cited by 4 | Viewed by 3047
Abstract
Background: Heterozygous, large-scale deletions at 14q24.3-31.1 affecting the neurexin-3 gene have been associated with neurodevelopmental disorders such as autism. Both “de novo” occurrences and inheritance from a healthy parent suggest incomplete penetrance and expressivity, especially in autism spectrum disorder. NRXN3 encodes neurexin-3, a [...] Read more.
Background: Heterozygous, large-scale deletions at 14q24.3-31.1 affecting the neurexin-3 gene have been associated with neurodevelopmental disorders such as autism. Both “de novo” occurrences and inheritance from a healthy parent suggest incomplete penetrance and expressivity, especially in autism spectrum disorder. NRXN3 encodes neurexin-3, a neuronal cell surface protein involved in cell recognition and adhesion, as well as mediating intracellular signaling. NRXN3 is expressed in two distinct isoforms (alpha and beta) generated by alternative promoters and splicing. MM/Results: Using exome sequencing, we identified a monoallelic frameshift variant c.159_160del (p.Gln54AlafsTer50) in the NRXN3 beta isoform (NM_001272020.2) in a 5-year-old girl with developmental delay, autism spectrum disorder, and behavioral issues. This variant was inherited from her mother, who did not have any medical complaints. Discussion: This is the first detailed report of a loss-of-function variant in NRXN3 causing an identical phenotype, as reported for heterozygous large-scale deletions in the same genomic region, thereby confirming NRXN3 as a novel gene for neurodevelopmental disorders with autism. Full article
(This article belongs to the Special Issue Genetics of Rare Monogenic Neurodevelopmental Syndromes)
Show Figures

Figure 1

22 pages, 14529 KiB  
Article
α-Synuclein Preformed Fibrils Bind to β-Neurexins and Impair β-Neurexin-Mediated Presynaptic Organization
by Benjamin Feller, Aurélie Fallon, Wen Luo, Phuong Trang Nguyen, Irina Shlaifer, Alfred Kihoon Lee, Nicolas Chofflet, Nayoung Yi, Husam Khaled, Samer Karkout, Steve Bourgault, Thomas M. Durcan and Hideto Takahashi
Cells 2023, 12(7), 1083; https://doi.org/10.3390/cells12071083 - 4 Apr 2023
Cited by 6 | Viewed by 3144
Abstract
Synucleinopathies form a group of neurodegenerative diseases defined by the misfolding and aggregation of α-synuclein (α-syn). Abnormal accumulation and spreading of α-syn aggregates lead to synapse dysfunction and neuronal cell death. Yet, little is known about the synaptic mechanisms underlying the α-syn pathology. [...] Read more.
Synucleinopathies form a group of neurodegenerative diseases defined by the misfolding and aggregation of α-synuclein (α-syn). Abnormal accumulation and spreading of α-syn aggregates lead to synapse dysfunction and neuronal cell death. Yet, little is known about the synaptic mechanisms underlying the α-syn pathology. Here we identified β-isoforms of neurexins (β-NRXs) as presynaptic organizing proteins that interact with α-syn preformed fibrils (α-syn PFFs), toxic α-syn aggregates, but not α-syn monomers. Our cell surface protein binding assays and surface plasmon resonance assays reveal that α-syn PFFs bind directly to β-NRXs through their N-terminal histidine-rich domain (HRD) at the nanomolar range (KD: ~500 nM monomer equivalent). Furthermore, our artificial synapse formation assays show that α-syn PFFs diminish excitatory and inhibitory presynaptic organization induced by a specific isoform of neuroligin 1 that binds only β-NRXs, but not α-isoforms of neurexins. Thus, our data suggest that α-syn PFFs interact with β-NRXs to inhibit β-NRX-mediated presynaptic organization, providing novel molecular insight into how α-syn PFFs induce synaptic pathology in synucleinopathies such as Parkinson’s disease and dementia with Lewy bodies. Full article
Show Figures

Figure 1

16 pages, 3201 KiB  
Article
Probiotic-Fermented Camel Milk Attenuates Neurodegenerative Symptoms via SOX5/miR-218 Axis Orchestration in Mouse Models
by Ashraf Khalifa, Hairul Islam Mohamed Ibrahim, Abdullah Sheikh and Hany Ezzat Khalil
Pharmaceuticals 2023, 16(3), 357; https://doi.org/10.3390/ph16030357 - 25 Feb 2023
Cited by 6 | Viewed by 3650
Abstract
Multiple sclerosis is an autoimmune-mediated myelin damage disorder in the central nervous system that is widespread among neurological patients. It has been demonstrated that several genetic and epigenetic factors control autoimmune encephalomyelitis (EAE), a murine model of MS, through CD4+ T-cell population quantity. [...] Read more.
Multiple sclerosis is an autoimmune-mediated myelin damage disorder in the central nervous system that is widespread among neurological patients. It has been demonstrated that several genetic and epigenetic factors control autoimmune encephalomyelitis (EAE), a murine model of MS, through CD4+ T-cell population quantity. Alterations in the gut microbiota influence neuroprotectiveness via unexplored mechanisms. In this study, the ameliorative effect of Bacillus amyloliquefaciens fermented in camel milk (BEY) on an autoimmune-mediated neurodegenerative model using myelin oligodendrocyte glycoprotein/complete fraud adjuvant/pertussis toxin (MCP)-immunized C57BL6j mice is investigated. Anti-inflammatory activity was confirmed in the in vitro cell model, and inflammatory cytokines interleukins IL17 (from EAE 311 to BEY 227 pg/mL), IL6 (from EAE 103 to BEY 65 pg/mL), IFNγ (from EAE 423 to BEY 243 pg/mL) and TGFβ (from EAE 74 to BEY 133 pg/mL) were significantly reduced in BEY-treated mice. The epigenetic factor miR-218-5P was identified and confirmed its mRNA target SOX-5 using in silico tools and expression techniques, suggesting SOX5/miR-218-5p could serve as an exclusive diagnostic marker for MS. Furthermore, BEY improved the short-chain fatty acids, in particular butyrate (from 0.57 to 0.85 µM) and caproic (from 0.64 to 1.33 µM) acids, in the MCP mouse group. BEY treatment significantly regulated the expression of inflammatory transcripts in EAE mice and upregulated neuroprotective markers such as neurexin (from 0.65- to 1.22-fold) (p < 0.05), vascular endothelial adhesion molecules (from 0.41- to 0.76-fold) and myelin-binding protein (from 0.46- to 0.89-fold) (p < 0.03). These findings suggest that BEY could be a promising clinical approach for the curative treatment of neurodegenerative diseases and could promote the use of probiotic food as medicine. Full article
Show Figures

Figure 1

25 pages, 2900 KiB  
Article
The Interactions of the 70 kDa Fragment of Cell Adhesion Molecule L1 with Topoisomerase 1, Peroxisome Proliferator-Activated Receptor γ and NADH Dehydrogenase (Ubiquinone) Flavoprotein 2 Are Involved in Gene Expression and Neuronal L1-Dependent Functions
by Gabriele Loers, Ralf Kleene, Ute Bork and Melitta Schachner
Int. J. Mol. Sci. 2023, 24(3), 2097; https://doi.org/10.3390/ijms24032097 - 20 Jan 2023
Cited by 7 | Viewed by 2783
Abstract
The cell adhesion molecule L1 is essential not only for neural development, but also for synaptic functions and regeneration after trauma in adulthood. Abnormalities in L1 functions cause developmental and degenerative disorders. L1’s functions critically depend on proteolysis which underlies dynamic cell interactions [...] Read more.
The cell adhesion molecule L1 is essential not only for neural development, but also for synaptic functions and regeneration after trauma in adulthood. Abnormalities in L1 functions cause developmental and degenerative disorders. L1’s functions critically depend on proteolysis which underlies dynamic cell interactions and signal transduction. We showed that a 70 kDa fragment (L1-70) supports mitochondrial functions and gene transcription. To gain further insights into L1-70’s functions, we investigated several binding partners. Here we show that L1-70 interacts with topoisomerase 1 (TOP1), peroxisome proliferator-activated receptor γ (PPARγ) and NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2). TOP1, PPARγ and NDUFV2 siRNAs reduced L1-dependent neurite outgrowth, and the topoisomerase inhibitors topotecan and irinotecan inhibited L1-dependent neurite outgrowth, neuronal survival and migration. In cultured neurons, L1 siRNA reduces the expression levels of the long autism genes neurexin-1 (Nrxn1) and neuroligin-1 (Nlgn1) and of the mitochondrially encoded gene NADH:ubiquinone oxidoreductase core subunit 2 (ND2). In mutant mice lacking L1-70, Nrxn1 and Nlgn1, but not ND2, mRNA levels are reduced. Since L1-70’s interactions with TOP1, PPARγ and NDUFV2 contribute to the expression of two essential long autism genes and regulate important neuronal functions, we propose that L1 may not only ameliorate neurological problems, but also psychiatric dysfunctions. Full article
Show Figures

Figure 1

22 pages, 5021 KiB  
Article
Diverging Effects of Adolescent Ethanol Exposure on Tripartite Synaptic Development across Prefrontal Cortex Subregions
by Christopher Douglas Walker, Hannah Gray Sexton, Jentre Hyde, Brittani Greene and Mary-Louise Risher
Cells 2022, 11(19), 3111; https://doi.org/10.3390/cells11193111 - 2 Oct 2022
Cited by 10 | Viewed by 3516
Abstract
Adolescence is a developmental period that encompasses, but is not limited to, puberty and continues into early adulthood. During this period, maturation and refinement are observed across brain regions such as the prefrontal cortex (PFC), which is critical for cognitive function. Adolescence is [...] Read more.
Adolescence is a developmental period that encompasses, but is not limited to, puberty and continues into early adulthood. During this period, maturation and refinement are observed across brain regions such as the prefrontal cortex (PFC), which is critical for cognitive function. Adolescence is also a time when excessive alcohol consumption in the form of binge drinking peaks, increasing the risk of long-term cognitive deficits and the risk of developing an alcohol use disorder later in life. Animal models have revealed that adolescent ethanol (EtOH) exposure results in protracted disruption of neuronal function and performance on PFC-dependent tasks that require higher-order decision-making. However, the role of astrocytes in EtOH-induced disruption of prefrontal cortex-dependent function has yet to be elucidated. Astrocytes have complex morphologies with an extensive network of peripheral astrocyte processes (PAPs) that ensheathe pre- and postsynaptic terminals to form the ‘tripartite synapse.’ At the tripartite synapse, astrocytes play several critical roles, including synaptic maintenance, dendritic spine maturation, and neurotransmitter clearance through proximity-dependent interactions. Here, we investigate the effects of adolescent binge EtOH exposure on astrocyte morphology, PAP-synaptic proximity, synaptic stabilization proteins, and dendritic spine morphology in subregions of the PFC that are important in the emergence of higher cognitive function. We found that adolescent binge EtOH exposure resulted in subregion specific changes in astrocyte morphology and astrocyte-neuronal interactions. While this did not correspond to a loss of astrocytes, synapses, or dendritic spines, there was a corresponding region-specific and EtOH-dependent shift in dendritic spine phenotype. Lastly, we found that changes in astrocyte-neuronal interactions were not a consequence of changes in the expression of key synaptic structural proteins neurexin, neuroligin 1, or neuroligin 3. These data demonstrate that adolescent EtOH exposure results in enduring effects on neuron-glia interactions that persist into adulthood in a subregion-specific PFC manner, suggesting selective vulnerability. Further work is necessary to understand the functional and behavioral implications. Full article
Show Figures

Figure 1

15 pages, 998 KiB  
Review
Modulation of Trans-Synaptic Neurexin–Neuroligin Interaction in Pathological Pain
by Huili Li, Ruijuan Guo, Yun Guan, Junfa Li and Yun Wang
Cells 2022, 11(12), 1940; https://doi.org/10.3390/cells11121940 - 16 Jun 2022
Cited by 8 | Viewed by 4261
Abstract
Synapses serve as the interface for the transmission of information between neurons in the central nervous system. The structural and functional characteristics of synapses are highly dynamic, exhibiting extensive plasticity that is shaped by neural activity and regulated primarily by trans-synaptic cell-adhesion molecules [...] Read more.
Synapses serve as the interface for the transmission of information between neurons in the central nervous system. The structural and functional characteristics of synapses are highly dynamic, exhibiting extensive plasticity that is shaped by neural activity and regulated primarily by trans-synaptic cell-adhesion molecules (CAMs). Prototypical trans-synaptic CAMs, such as neurexins (Nrxs) and neuroligins (Nlgs), directly regulate the assembly of presynaptic and postsynaptic molecules, including synaptic vesicles, active zone proteins, and receptors. Therefore, the trans-synaptic adhesion mechanisms mediated by Nrx–Nlg interaction can contribute to a range of synaptopathies in the context of pathological pain and other neurological disorders. The present review provides an overview of the current understanding of the roles of Nrx–Nlg interaction in the regulation of trans-synaptic connections, with a specific focus on Nrx and Nlg structures, the dynamic shaping of synaptic function, and the dysregulation of Nrx–Nlg in pathological pain. Additionally, we discuss a range of proteins capable of modulating Nrx–Nlg interactions at the synaptic cleft, with the objective of providing a foundation to guide the future development of novel therapeutic agents for managing pathological pain. Full article
(This article belongs to the Special Issue Cell-Cell Interactions and Cell Adhesion Signaling in Disease States)
Show Figures

Figure 1

9 pages, 681 KiB  
Case Report
NRXN1 Deletion in Two Twins’ Genotype and Phenotype: A Clinical Case and Literature Review
by Monica Sciacca, Lidia Marino, Giovanna Vitaliti, Raffaele Falsaperla and Silvia Marino
Children 2022, 9(5), 698; https://doi.org/10.3390/children9050698 - 10 May 2022
Cited by 4 | Viewed by 4838
Abstract
In the literature, deletions in the 2p16.3 region of the neurexin gene (NRXN1) are associated with cognitive impairment, and other neuropsychiatric disorders, such as schizophrenia, autism, and Pitt–Hopkins-like syndrome 2. In this paper, we present twins with deletion 2p16.3 of the NRXN1 gene [...] Read more.
In the literature, deletions in the 2p16.3 region of the neurexin gene (NRXN1) are associated with cognitive impairment, and other neuropsychiatric disorders, such as schizophrenia, autism, and Pitt–Hopkins-like syndrome 2. In this paper, we present twins with deletion 2p16.3 of the NRXN1 gene using a comparative genomic hybridization array. The two children had a dual diagnosis consisting of mild cognitive impairment and neurodevelopmental delay. Furthermore, they showed a dysmorphic phenotype characterized by facio-cranial disproportion, turricephalus, macrocrania, macrosomia, strabismus, and abnormal conformation of both auricles with low implantation. The genetic analysis of the family members showed the presence, in the father’s genetic test, of a microdeletion of the short arm of chromosome 2, in the 2p16.3 region. Our case report can expand the knowledge on the genotype–phenotype association in carriers of 2p16.3 deletion and for genetic counseling that could help in the prevention and eventual treatment of this genetic condition. Newborn carriers should undergo neurobehavioral follow-ups for timely detection of warning signs. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

Back to TopTop