Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = net community production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

36 pages, 807 KiB  
Article
A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola
by Eduardo E. Eliseu, Tânia M. Lima and Pedro D. Gaspar
Sustainability 2025, 17(15), 7019; https://doi.org/10.3390/su17157019 - 1 Aug 2025
Viewed by 155
Abstract
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature [...] Read more.
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature insufficiently addresses this issue, leaving a significant gap in the evaluation of key performance indicators (KPIs) that can guide good agricultural practices (GAPs) adapted to the context of southern Angola, with the goal of promoting a more resilient and sustainable agricultural sector. So, the objective of this study is to identify and assess KPIs capable of supporting the selection of GAPs suitable for maize, potato, and tomato cultivation in the context of southern Angolan agriculture. A systematic literature review (SLR) was conducted, screening 2720 articles and selecting 14 studies that met defined inclusion criteria. Five KPIs were identified as the most relevant: gross margin, net profit, water use efficiency, nitrogen use efficiency, and machine energy. These indicators were analyzed and standardized to evaluate their contribution to sustainability across different GAPs. Results show that organic fertilizers are the most sustainable option for maize, drip irrigation for potatoes, and crop rotation for tomatoes in southern Angola because of their efficiency in low-resource environments. A clear, simple, and effective representation of the KPIs was developed to be useful in communicating to farmers and policy makers on the selection of the best GAPs in the cultivation of different crops. The study proposes a validated KPI-based methodology for assessing sustainable agricultural practices in developing regions such as southern Angola, aiming to lead to greater self-sufficiency and economic stability in this sector. Full article
Show Figures

Figure 1

32 pages, 6657 KiB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 283
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

21 pages, 7145 KiB  
Article
Derivation and Application of Allometric Equations to Quantify the Net Primary Productivity (NPP) of the Salix pierotii Miq. Community as a Representative Riparian Vegetation Type
by Bong Soon Lim, Jieun Seok, Seung Jin Joo, Jeong Cheol Lim and Chang Seok Lee
Forests 2025, 16(8), 1225; https://doi.org/10.3390/f16081225 - 25 Jul 2025
Viewed by 136
Abstract
International efforts are underway to implement carbon neutrality policies in rapidly changing climate conditions. This situation has strongly demanded the discovery of novel carbon sinks. The Salix genus has attracted attention as a promising carbon sink owing to its rapid growth and efficient [...] Read more.
International efforts are underway to implement carbon neutrality policies in rapidly changing climate conditions. This situation has strongly demanded the discovery of novel carbon sinks. The Salix genus has attracted attention as a promising carbon sink owing to its rapid growth and efficient use as a biofuel in short-rotation cultivation. The present study aims to derive an allometric equation and conduct stem analysis as fundamental tools for estimating net primary productivity (NPP) in Salix pierotii Miq. stand, which is increasingly acknowledged as an important emerging carbon sink. The allometric equations derived showed a high explanatory rate and fitness (R2 ranged from 0.74 to 0.99). The allometric equations between DBH and stem volume and biomass derived in the process of stem analysis also showed a high explanatory rate and fitness (R2 ranged from 0.87 to 0.94). The NPPs calculated based on the allometric equation derived and stem analysis were 11.87 tonC∙ha−1∙yr−1 and 15.70 tonC∙ha−1∙yr−1, respectively. These results show that the S. pierotii community, recognized as the representative riparian vegetation, could play an important role as a carbon sink. In this context, an assessment of the carbon absorption capacity of riparian vegetation such as willow communities could contribute significantly to achieving carbon neutrality goals. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

36 pages, 5532 KiB  
Article
Supporting Sustainable Development Goals with Second-Life Electric Vehicle Battery: A Case Study
by Muhammad Nadeem Akram and Walid Abdul-Kader
Sustainability 2025, 17(14), 6307; https://doi.org/10.3390/su17146307 - 9 Jul 2025
Viewed by 435
Abstract
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many [...] Read more.
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many benefits. This paper focuses on reducing the energy consumption cost and greenhouse gas emissions of Internet-of-Things-enabled campus microgrids by installing solar photovoltaic panels on rooftops alongside energy storage systems that leverage second-life batteries, a gas-fired campus power plant, and a wind turbine while considering the potential loads of a prosumer microgrid. A linear optimization problem is derived from the system by scheduling energy exchanges with the Ontario grid through net metering and solved by using Python 3.11. The aim of this work is to support Sustainable Development Goals, namely 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). A comparison between a base case scenario and the results achieved with the proposed scenarios shows a significant reduction in electricity cost and greenhouse gas emissions and an increase in self-consumption rate and renewable fraction. This research work provides valuable insights and guidelines to policymakers. Full article
Show Figures

Figure 1

9 pages, 1246 KiB  
Brief Report
The Role of Abundant Organic Macroaggregates in Planktonic Metabolism in a Tropical Bay
by Marcelo Friederichs Landim de Souza and Guilherme Camargo Lessa
Water 2025, 17(13), 1967; https://doi.org/10.3390/w17131967 - 30 Jun 2025
Viewed by 259
Abstract
Abundant large organic aggregates, which form mucous webs up to a few decimeters in length, have been observed in Baía de Todos os Santos (BTS), northeastern Brazil. This communication presents preliminary results from field (February 2015) and laboratory (June 2015) experiments that aimed [...] Read more.
Abundant large organic aggregates, which form mucous webs up to a few decimeters in length, have been observed in Baía de Todos os Santos (BTS), northeastern Brazil. This communication presents preliminary results from field (February 2015) and laboratory (June 2015) experiments that aimed to determine preliminary values for respiration and near-maximum photosynthesis and the impact of macroaggregates on respiration rates. The experiments included the determination of respiration in controls, with the mechanical removal and addition of macroaggregates. The field experiment during a flood tide presented the lowest respiration rate (−7.0 ± 0.7 µM L−1 d−1), average net primary production (8.9 ± 4.5 µM L−1 d−1), and gross primary production (16.0 ± 10 µM L−1 d−1), with a ratio of gross primary production to respiration of 2.3. The control experiments during an ebb tide showed a mean respiration rate of 8.7 ± 2.3 µM L−1 d−1, whereas, after macroaggregate removal, this was 9.5 ± 4.5 µM L−1 d−1. In the laboratory experiments, the control sample respiration rate of 18.4 ± 1.4 µM L−1 d−1 was slightly increased to 20.6 ± 0.1 µM L−1 d−1 after aggregate removal. The addition of aggregates to the control sample increased the respiration rate by approximately 3-fold, to 56.5 ± 4.8 µM L−1 d−1. These results indicate that macroaggregates could have an important role in pelagic and benthic respiration, as well as in the whole bay’s metabolism. Full article
(This article belongs to the Special Issue Biogeochemical Cycles in Vulnerable Coastal and Marine Environment)
Show Figures

Figure 1

21 pages, 6504 KiB  
Article
Drought Amplifies the Suppressive Effect of Afforestation on Net Primary Productivity in Semi-Arid Ecosystems: A Case Study of the Yellow River Basin
by Futao Wang, Ziqi Zhang, Mingxuan Du, Jianzhong Lu and Xiaoling Chen
Remote Sens. 2025, 17(12), 2100; https://doi.org/10.3390/rs17122100 - 19 Jun 2025
Viewed by 467
Abstract
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate [...] Read more.
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate on primary productivity require further investigation. Integrating multi-source remote sensing data (2000–2020), meteorological observations with the Standardized Precipitation Evapotranspiration Index (SPEI) and an improved CASA model, this study systematically investigates spatiotemporal patterns of vegetation net primary productivity (NPP) responses to extreme drought events while quantifying vegetation coverage’s regulatory effects on ecosystem drought sensitivity. Among drought events identified using a three-dimensional clustering algorithm, high-intensity droughts caused an average NPP loss of 23.2 gC·m−2 across the basin. Notably, artificial irrigation practices in the Hetao irrigation district significantly mitigated NPP reduction to −9.03 gC·m−2. Large-scale afforestation projects increased the NDVI at a rate of 3.45 × 10−4 month−1, with a contribution rate of 78%, but soil moisture competition from high-density vegetation reduced carbon-sink benefits. However, mixed forest structural optimization in the Three-North Shelterbelt Forest Program core area achieved local carbon-sink gains, demonstrating that vegetation configuration alleviates water competition pressure. Drought amplified the suppressive effect of afforestation through stomatal conductance-photosynthesis coupling mechanisms, causing additional NPP losses of 7.45–31.00 gC·m−2, yet the April–July 2008 event exhibited reversed suppression effects due to immature artificial communities during the 2000–2004 baseline period. Our work elucidates nonlinear vegetation-climate interactions affecting carbon sequestration in semi-arid ecosystems, providing critical insights for optimizing ecological restoration strategies and climate-adaptive management in the Yellow River Basin. Full article
Show Figures

Graphical abstract

28 pages, 2079 KiB  
Article
Energy Valorization Strategies in Rural Renewable Energy Communities: A Path to Social Revitalization and Sustainable Development
by Cristina Sanz-Cuadrado, Luis Narvarte and Ana Belén Cristóbal
Energies 2025, 18(10), 2561; https://doi.org/10.3390/en18102561 - 15 May 2025
Viewed by 586
Abstract
Energy communities led by local citizens are vital for achieving the European energy transition goals. This study examines the design of a regional energy community in a rural area of Spain, aiming to address the pressing issue of rural depopulation. Seven villages were [...] Read more.
Energy communities led by local citizens are vital for achieving the European energy transition goals. This study examines the design of a regional energy community in a rural area of Spain, aiming to address the pressing issue of rural depopulation. Seven villages were selected based on criteria such as size, energy demand, population, and proximity to infrastructure. Three energy valorization scenarios, generating eight subscenarios, were analyzed: (1) self-consumption, including direct sale (1A), net billing (1B), and selling to other consumers (1C); (2) battery storage, including storing for self-consumption (2A), battery-to-grid (2B), and electric vehicle recharging points (2C); and (3) advanced options such as hydrogen refueling stations (3A) and hydrogen-based fertilizer production (3B). The findings underscore that designing rural energy communities with a focus on social impact—especially in relation to depopulation—requires an innovative approach to both their design and operation. Although none of the scenarios alone can fully reverse depopulation trends or drive systemic change, they can significantly mitigate the issue if social impact is embedded as a core principle. For rural energy communities to effectively tackle depopulation, strategies such as acting as an energy retailer or aggregating individual villages into a single, unified energy community structure are crucial. These approaches align with the primary objective of revitalizing rural communities through the energy transition. Full article
Show Figures

Figure 1

37 pages, 49892 KiB  
Article
Pressure-Related Discrepancies in Landsat 8 Level 2 Collection 2 Surface Reflectance Products and Their Correction
by Santosh Adhikari, Larry Leigh and Dinithi Siriwardana Pathiranage
Remote Sens. 2025, 17(10), 1676; https://doi.org/10.3390/rs17101676 - 9 May 2025
Viewed by 831
Abstract
Landsat 8 Level 2 Collection 2 (L2C2) surface reflectance (SR) products are widely used in various scientific applications by the remote sensing community, where their accuracy is vital for reliable analysis. However, discrepancies have been observed at shorter wavelength bands, which can affect [...] Read more.
Landsat 8 Level 2 Collection 2 (L2C2) surface reflectance (SR) products are widely used in various scientific applications by the remote sensing community, where their accuracy is vital for reliable analysis. However, discrepancies have been observed at shorter wavelength bands, which can affect certain applications. This study investigates the root cause of these differences by analyzing the assumptions made in the Land Surface Reflectance Code (LaSRC), the atmospheric correction algorithm of Landsat 8, as currently implemented at United States Geological Survey Earth Resources Observation and Science (USGS EROS), and proposes a correction method. To quantify these discrepancies, ground truth SR measurements from the Radiometric Calibration Network (RadCalNet) and Arable Mark 2 sensors were compared with the Landsat 8 SR. Additionally, the surface pressure measurements from RadCalNet and the National Centers for Environmental Information (NCEI) were evaluated against the LaSRC-calculated surface pressure values. The findings reveal that the discrepancies arose from using a single scene center surface pressure for the entire Landsat 8 scene pixels. The pressure-related discrepancies were most pronounced in the coastal aerosol and blue bands, with greater deviations observed in regions where the elevation of the study area differed substantially from the scene center, such as Railroad Valley Playa (RVUS) and Baotao Sand (BSCN). To address this issue, an exponential correction model was developed, reducing the mean error in the coastal aerosol band for RVUS from 0.0226 to 0.0029 (about two units of reflectance), which can be substantial for dark vegetative and water targets. In the blue band, there is a smaller improvement in the mean error, from 0.0095 to −0.0032 (about half a unit of reflectance). For the green band, the reduction in error was much less due to the significantly lesser impact of aerosol on this band. Overall, this study underscores the need for a more precise estimation of surface pressure in LaSRC to enhance the reliability of Landsat 8 SR products in remote sensing applications. Full article
Show Figures

Figure 1

19 pages, 652 KiB  
Systematic Review
Fostering Organizational and Professional Commitment Through Transformational Leadership in Nursing: A Systematic Review
by Eleni Tsapnidou, Georgios Katharakis, Martha Kelesi-Stavropoulou, Michael Rovithis, Sofia Koukouli, Evangelia Sigala, Maria Moudatsou, Dimitrios Papageorgiou and Areti Stavropoulou
Hospitals 2025, 2(2), 10; https://doi.org/10.3390/hospitals2020010 - 8 May 2025
Viewed by 2199
Abstract
Effective nurse leadership increases nurses’ job satisfaction, performance, motivation, and empowerment. Ensuring nurses’ organizational and professional commitment is vital for addressing quality, sustainability, and cost-effectiveness challenges in a high-demanding healthcare environment. The aim of this study was to explore the impact of transformational [...] Read more.
Effective nurse leadership increases nurses’ job satisfaction, performance, motivation, and empowerment. Ensuring nurses’ organizational and professional commitment is vital for addressing quality, sustainability, and cost-effectiveness challenges in a high-demanding healthcare environment. The aim of this study was to explore the impact of transformational leadership on nurses’ organizational and professional commitment. A systematic review was conducted using the Scopus, ScienceDirect, PubMed/Medline, Scilit.net, and Wiley Online Library databases. Original research studies published between 2016 and 2024 focusing exclusively on nurses’ professional and organizational commitment and transformational leadership were included. The indexing terms “nursing leadership”, “transformational leadership”, “professional/organizational commitment”, and “nursing” were used along with the Boolean operators AND, OR, and NOT. According to the findings, transformational leadership practices increase nurses’ organizational and professional commitment through vision sharing, motivation, career development, interpersonal communication, a positive working environment, and productive resources management. The healthcare policy makers should invest in organizing, supporting, and promoting relational leadership practices to retain their nursing workforce and obtain their organizational and professional commitment to ensure high care quality. Full article
Show Figures

Figure 1

33 pages, 24011 KiB  
Article
Reservoir and Riverine Sources of Cyanotoxins in Oregon’s Cascade Range Rivers Tapped for Drinking Water Supply
by Kurt D. Carpenter, Barry H. Rosen, David Donahue, Kari Duncan, Brandin Hilbrandt, Chris Lewis, Kim Swan, Tracy Triplett and Elijah Welch
Phycology 2025, 5(2), 16; https://doi.org/10.3390/phycology5020016 - 30 Apr 2025
Viewed by 1876
Abstract
Reservoirs and downstream rivers draining Oregon’s Cascade Range provide critical water supplies for over 1.5 million residents in dozens of communities. These waters also support planktonic and benthic cyanobacteria that produce cyanotoxins that may degrade water quality for drinking, recreation, aquatic life, and [...] Read more.
Reservoirs and downstream rivers draining Oregon’s Cascade Range provide critical water supplies for over 1.5 million residents in dozens of communities. These waters also support planktonic and benthic cyanobacteria that produce cyanotoxins that may degrade water quality for drinking, recreation, aquatic life, and other beneficial uses. This 2016–2020 survey examined the sources and transport of four cyanotoxins—microcystins, cylindrospermopsins, anatoxins, and saxitoxins—in six river systems feeding 18 drinking water treatment plants (DWTPs) in northwestern Oregon. Benthic cyanobacteria, plankton net tows, and (or) Solid-Phase Adsorption Toxin Tracking (SPATT) samples were collected from 65 sites, including tributaries, reservoirs, main stems, and sites at or upstream from DWTPs. Concentrated extracts (320 samples) were analyzed with enzyme-linked immuno-sorbent assays (ELISA), resulting in >90% detection. Benthic cyanobacteria (n = 80) mostly Nostoc, Phormidium, Microcoleus, and Oscillatoria, yielded microcystins (76% detection), cylindrospermopsins (41%), anatoxins (45%), and saxitoxins (39%). Plankton net tow samples from tributaries and main stems (n = 94) contained saxitoxins (84%), microcystins (77%), anatoxins (25%), and cylindrospermopsins (22%), revealing their transport in seston. SPATT sampler extracts (n = 146) yielded anatoxins (81%), microcystins (66%), saxitoxins (37%), and cylindrospermopsins (32%), indicating their presence dissolved in the water. Reservoir plankton net tow samples (n = 15), most often containing Dolichospermum, yielded microcystins (87%), cylindrospermopsins (73%), and anatoxins (47%), but no saxitoxins. The high detection frequencies of cyanotoxins at sites upstream from DWTP intakes, and at sites popular for recreation, where salmon and steelhead continue to exist, highlight the need for additional study on these cyanobacteria and the factors that promote production of cyanotoxins to minimize effects on humans, aquatic ecosystems, and economies. Full article
Show Figures

Figure 1

24 pages, 10528 KiB  
Article
Functional Diversity and Ecosystem Services of Birds in Productive Landscapes of the Colombian Amazon
by Jenniffer Tatiana Díaz-Cháux, Alexander Velasquez-Valencia, Alejandra Martínez-Salinas and Fernando Casanoves
Diversity 2025, 17(5), 305; https://doi.org/10.3390/d17050305 - 23 Apr 2025
Viewed by 1212
Abstract
The expansion of anthropogenic activities drives changes in the composition, structure, and spatial configuration of natural landscapes, influencing both the taxonomic and functional diversity of bird communities. This pattern is evident in the Colombian Amazon, where agricultural and livestock expansion has altered ecological [...] Read more.
The expansion of anthropogenic activities drives changes in the composition, structure, and spatial configuration of natural landscapes, influencing both the taxonomic and functional diversity of bird communities. This pattern is evident in the Colombian Amazon, where agricultural and livestock expansion has altered ecological dynamics, avifaunal assemblages, and the provision of regulating ecosystem services. This study analyzed the influence of agroforestry (cocoa-based agroforestry systems—SAFc) and silvopastoral systems (SSP) on the functional diversity of birds and their potential impact on ecosystem services in eight productive landscape mosaics within the Colombian Amazon. Each mosaic consisted of a 1 km2 grid, within which seven types of vegetation cover were classified, and seven landscape metrics were calculated. Bird communities were surveyed through visual observations and mist-net captures, during which functional traits were measured. Additionally, functional guilds were assigned to each species based on a literature review. Five multidimensional indices of functional diversity were computed, along with community-weighted means per guild. A total of 218 bird species were recorded across both land-use systems. Bird richness, abundance, and functional diversity—as well as the composition of functional guilds—varied according to vegetation cover. Functional diversity increased in mosaics containing closed vegetation patches with symmetrical configurations. Variations in functional guilds were linked to low functional redundancy, which may also lead to differences in the provision of regulating ecosystem services such as biological pest control and seed dispersal—both of which are critical for the regeneration and connectivity of productive rural landscapes. In conclusion, functional diversity contributes to the resilience of bird communities in landscapes with Amazonian agroforestry and silvopastoral systems, highlighting the need for landscape management that promotes structural heterogeneity to sustain regulating ecosystem services and ecological connectivity. Full article
Show Figures

Graphical abstract

23 pages, 5167 KiB  
Article
Optimal and Sustainable Operation of Energy Communities Organized in Interconnected Microgrids
by Epameinondas K. Koumaniotis, Dimitra G. Kyriakou and Fotios D. Kanellos
Energies 2025, 18(8), 2087; https://doi.org/10.3390/en18082087 - 18 Apr 2025
Cited by 1 | Viewed by 523
Abstract
Full dependence on the main electrical grid carries risks, including high electricity costs and increased power losses due to the distance between power plants and consumers. An energy community consists of distributed generation resources and consumers within a localized area, aiming to produce [...] Read more.
Full dependence on the main electrical grid carries risks, including high electricity costs and increased power losses due to the distance between power plants and consumers. An energy community consists of distributed generation resources and consumers within a localized area, aiming to produce electricity economically and sustainably while minimizing long-distance power transfers and promoting renewable energy integration. In this paper, a method for the optimal and sustainable operation of energy communities organized in interconnected microgrids is developed. The microgrids examined in this work consist of residential buildings, plug-in electric vehicles (PEVs), renewable energy sources (RESs), and local generators. The primary objective of this study is to minimize the operational costs of the energy community resulting from the electricity exchange with the main grid and the power production of local generators. To achieve this, microgrids efficiently share electric power, regulate local generator production, and leverage energy storage in PEVs for power management, reducing the need for traditional energy storage installation. Additionally, this work aims to achieve net-zero energy exchange with the main grid, reduce greenhouse gas (GHG) emissions, and decrease power losses in the distribution lines connecting microgrids, while adhering to numerous technical and operational constraints. Detailed simulations were conducted to prove the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Advances in Sustainable Power and Energy Systems)
Show Figures

Figure 1

20 pages, 4184 KiB  
Article
R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images
by Mirna Castro-Bello, V. M. Romero-Juárez, J. Fuentes-Pacheco, Cornelio Morales-Morales, Carlos V. Marmolejo-Vega, Sergio R. Zagal-Barrera, D. E. Gutiérrez-Valencia and Carlos Marmolejo-Duarte
Sustainability 2025, 17(8), 3502; https://doi.org/10.3390/su17083502 - 14 Apr 2025
Viewed by 652
Abstract
Municipal solid waste (MSW) accumulation is a critical global challenge for society and governments, impacting environmental and social sustainability. Efficient separation of MSW is essential for resource recovery and advancing sustainable urban management practices. However, manual classification remains a slow and inefficient practice. [...] Read more.
Municipal solid waste (MSW) accumulation is a critical global challenge for society and governments, impacting environmental and social sustainability. Efficient separation of MSW is essential for resource recovery and advancing sustainable urban management practices. However, manual classification remains a slow and inefficient practice. In response, advances in artificial intelligence, particularly in machine learning, offer more precise and efficient alternative solutions to optimize this process. This research presents the development of a light deep neural network called R3sNet (three “Rs” for Reduce, Reuse, and Recycle) with residual modules trained end-to-end for the binary classification of MSW, with the capability for faster inference. The results indicate that the combination of processing techniques, optimized architecture, and training strategies contributes to an accuracy of 87% for organic waste and 94% for inorganic waste. R3sNet outperforms the pre-trained ResNet50 model by up to 6% in the classification of both organic and inorganic MSW, while also reducing the number of hyperparameters by 98.60% and GFLOPS by 65.17% compared to ResNet50. R3sNet contributes to sustainability by improving the waste separation processes, facilitating higher recycling rates, reducing landfill dependency, and promoting a circular economy. The model’s optimized computational requirements also translate into lower energy consumption during inference, making it well-suited for deployment in resource-constrained devices in smart urban environments. These advancements support the following Sustainable Development Goals (SDGs): SDG 11: Sustainable Cities and Communities, SDG 12: Responsible Consumption and Production, and SDG 13: Climate Action. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 459 KiB  
Article
Climate Change Impacts on Household Food Security in Sri Lanka’s Dry Zones: A Qualitative Analysis
by Sisira Kumara Naradda Gamage, Solanga Arachchige U. Niranjala, Jayasooriya Mudiyanselage Harshana M. Upulwehera, Allayarov Piratdin, Kumara Bandage Thilini Udesha K. Bandara, Hatharakorale Gedara Kolitha N. Bandara, Hetti Arachchige Buddhika W. Hettiarachchi, Adikari Mudiyanselage P. Adikari, Sumanapalage D. Amasha Sumanapala, Manamendra K. Nilakshi Pabasara and Ran Pathige Indika R. Prasanna
Challenges 2025, 16(2), 20; https://doi.org/10.3390/challe16020020 - 10 Apr 2025
Cited by 2 | Viewed by 2002
Abstract
Climate change is a substantial threat to worldwide food security, affecting the supply, stability, accessibility, and quality of food. This study aimed to explore the impact of climate change on household food security of farming communities in dry zones in Sri Lanka, focusing [...] Read more.
Climate change is a substantial threat to worldwide food security, affecting the supply, stability, accessibility, and quality of food. This study aimed to explore the impact of climate change on household food security of farming communities in dry zones in Sri Lanka, focusing on water resource limitations and agricultural productivity, using a qualitative case study method with 13 cases. The impact of climate change on farming and food security was identified under the key themes of food production and yield, income and economic stability, water resources and management, food availability and access, nutrition quality, and dietary diversity. The findings revealed that climate change can indirectly affect food security by impacting household and personal incomes. It also influences health, access to clean water, and the ability to utilize food effectively. Such climatic changes significantly impact household food security and distinctly affect nutrition quality and dietary diversity, which are identifiable as the primary food security elements. This study suggests moving other income sources to enhance the economic stability of farming households, adopting new farming techniques, organizing government assistance programs, and establishing social safety nets such as food aid programs and financial support for affected households. Such activities will help to address the decline of yield production that is caused by climate change, and will mitigate the effect that climate change has on household food security. It further emphasizes the need to combine modern policy interventions and the existing domestic adaptation framework. This investigation employs a qualitative research method to explore how communities experience actual climate change effects, including water issues and farm failures. It effectively captures and contributes detailed knowledge to the current research on this subject. Full article
Show Figures

Figure 1

Back to TopTop