Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,238)

Search Parameters:
Keywords = nervous system damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3834 KiB  
Article
Therapeutic Potential of BMX-001 for Preventing Chemotherapy-Induced Peripheral Neuropathic Pain
by Tianshu Pan, Olawale A. Alimi, Bo Liu, Mena A. Krishnan, Mitchell Kuss, Wei Shi, Jairam Krishnamurthy, Jianghu James Dong, Rebecca E. Oberley-Deegan and Bin Duan
Pharmaceuticals 2025, 18(8), 1159; https://doi.org/10.3390/ph18081159 - 5 Aug 2025
Abstract
Background/Objectives: Chemotherapy-induced neuropathic pain (CINP) represents a critical challenge in oncology, emerging as a common and debilitating side effect of widely used chemotherapeutic agents, such as paclitaxel (PTX). Current therapeutic interventions and preventive strategies for CINP are largely insufficient, as they fail [...] Read more.
Background/Objectives: Chemotherapy-induced neuropathic pain (CINP) represents a critical challenge in oncology, emerging as a common and debilitating side effect of widely used chemotherapeutic agents, such as paclitaxel (PTX). Current therapeutic interventions and preventive strategies for CINP are largely insufficient, as they fail to address the underlying peripheral nerve damage, highlighting an urgent need for the development of new drugs. This study aimed to investigate the dual-function effects on normal cell protection and tumor suppression of BMX-001, a redox-active manganese metalloporphyrin that has demonstrated antioxidant and anti-inflammatory properties, which offers potential in protecting central nervous system tissues and treating CINP. Methods: This study assessed BMX-001’s different roles in protecting normal cells while acting as a pro-oxidant and pro-inflammatory molecule in cancer cells in vitro. We also evaluated its neuroprotective effect in preclinical PTX-induced CINP models in vivo. Results: Our results showed significant reductions in mechanical and cold allodynia, decreased pro-inflammatory cytokine levels, and restored antioxidant capacity in peripheral nerves and dorsal root ganglia (DRGs) following BMX-001 treatment. Conclusions: Overall, our study highlights the therapeutic potential of BMX-001 to mitigate CINP and enhance anticancer efficiency. Its dual-selective mechanism supports the future clinical investigation of BMX-001 as a novel adjunct to chemotherapeutic regimens. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

19 pages, 2606 KiB  
Article
Influence of Monosodium Glutamate on Astroglia of Rat Habenula
by Aleksandra Krawczyk, Karol Rycerz, Jadwiga Jaworska-Adamu and Marcin B. Arciszewski
Biomolecules 2025, 15(8), 1111; https://doi.org/10.3390/biom15081111 - 1 Aug 2025
Viewed by 95
Abstract
The habenula (Hb) of the epithalamus is formed of the medial (MHb) and lateral (LHb) parts. The improper functioning of the Hb may lead to depression and anxiety. The glutamate excitotoxicity is accompanied by astroglia reactivity and leads to the damage of nervous [...] Read more.
The habenula (Hb) of the epithalamus is formed of the medial (MHb) and lateral (LHb) parts. The improper functioning of the Hb may lead to depression and anxiety. The glutamate excitotoxicity is accompanied by astroglia reactivity and leads to the damage of nervous system structures. The aim of the study was to assess the influence of monosodium glutamate (MSG) administrated subcutaneously to rats in doses of 2 g/kg b.w. (I) and 4 g/kg b.w. (II), on astroglia in the MHb and LHb. Based on immunohistochemical reactions, the morphology, number of astrocytes immunoreactive for glial fibrillary acidic protein (GFAP-IR) and S100β protein (S100β-IR), and their surface area, perimeter, number and length of processes, and cytoplasmic-nuclear immunostaining intensity for the studied proteins were assessed. In the MHb of animals receiving MSG, especially at a high dose, hypertrophy and an increase in the number of GFAP-IR and S100β-IR cells were demonstrated. In the LHb, only hypertrophy of processes in S100β-positive glia was observed. The immunostaining intensity increased in GFAP-IR glia and decreased in S100β-IR cells only in animals from group I. The results revealed that astroglia respond to MSG depending on its dose and the Hb part. This different behavior of glia may indicate their different sensitivity and resistance to damaging factors. Full article
Show Figures

Figure 1

9 pages, 477 KiB  
Opinion
Underlying Piezo2 Channelopathy-Induced Neural Switch of COVID-19 Infection
by Balázs Sonkodi
Cells 2025, 14(15), 1182; https://doi.org/10.3390/cells14151182 - 31 Jul 2025
Viewed by 161
Abstract
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the [...] Read more.
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the multiorgan SARS-CoV-2 infection-induced vascular pathologies and brain–body-wide systemic pro-inflammatory signaling, depending on the concentration and exposure to infecting SARS-CoV-2 viruses. This common initiating microdamage is suggested to be the primary damage or the acquired channelopathy of the Piezo2 ion channel, leading to a principal gateway to pathophysiology. This Piezo2 channelopathy-induced neural switch could not only explain the initiation of disrupted cell–cell interactions, metabolic failure, microglial dysfunction, mitochondrial injury, glutamatergic synapse loss, inflammation and neurological states with the central involvement of the hippocampus and the medulla, but also the initiating pathophysiology without SARS-CoV-2 viral intracellular entry into neurons as well. Therefore, the impairment of the proposed Piezo2-induced quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling seems to be the principal and critical underlying COVID-19 infection-induced primary damage along the brain axes, depending on the loci of SARS-CoV-2 viral infection and intracellular entry. Moreover, this initiating Piezo2 channelopathy may also explain resultant autonomic dysregulation involving the medulla, hippocampus and heart rate regulation, not to mention sleep disturbance with altered rapid eye movement sleep and cognitive deficit in the short term, and even as a consequence of long COVID. The current opinion piece aims to promote future angles of science and research in order to further elucidate the not entirely known initiating pathophysiology of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Insights into the Pathophysiology of NeuroCOVID: Current Topics)
Show Figures

Figure 1

21 pages, 719 KiB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 - 31 Jul 2025
Viewed by 398
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

26 pages, 5080 KiB  
Review
Reviewing Breakthroughs and Limitations of Implantable and External Medical Device Treatments for Spinal Cord Injury
by Tooba Wallana, Konstantinos Banitsas and Wamadeva Balachandran
Appl. Sci. 2025, 15(15), 8488; https://doi.org/10.3390/app15158488 (registering DOI) - 31 Jul 2025
Viewed by 279
Abstract
Spinal cord injury (SCI) is a major disability that, to this day, does not have a permanent cure. The spinal cord extends caudally through the body structure of the vertebral column and is part of the central nervous system (CNS). The spinal cord [...] Read more.
Spinal cord injury (SCI) is a major disability that, to this day, does not have a permanent cure. The spinal cord extends caudally through the body structure of the vertebral column and is part of the central nervous system (CNS). The spinal cord enables neural communication and motor coordination, so injuries can disrupt sensation, movement, and autonomic functions. Mechanical and traumatic damage to the spinal cord causes lesions to the nerves, resulting in the disruption of relayed messages to the extremities. Various forms of treatment for the spinal cord include functional electrical stimulation (FES), epidural electrical stimulation (EES), ‘SMART’ devices, exoskeleton and robotic systems, transcranial magnetic stimulation, and neuroprostheses using AI for the brain–computer interface. This research is going to analyse and review these current treatment methods for spinal cord injury and identify the current gaps and limitations in these, such as long-term biocompatibility, wireless adaptability, cost, regulatory barriers, and risk of surgery. Future advancements should work on implementing wireless data logging with AI algorithms to increase SCI device adaptability, as well as maintaining regulatory and health system integration. Full article
Show Figures

Figure 1

16 pages, 956 KiB  
Review
The Potential Therapeutic Role of Bruton Tyrosine Kinase Inhibition in Neurodegenerative Diseases
by Francesco D’Egidio, Housem Kacem, Giorgia Lombardozzi, Michele d’Angelo, Annamaria Cimini and Vanessa Castelli
Appl. Sci. 2025, 15(15), 8239; https://doi.org/10.3390/app15158239 - 24 Jul 2025
Viewed by 255
Abstract
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. [...] Read more.
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. Recent evidence implicates aberrant BTK signaling in the exacerbation of neuroinflammatory cascades contributing to neuronal damage in disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, ischemic stroke, and Huntington’s disease. Pharmacological inhibition of BTK has shown promise in attenuating microglial-mediated neurotoxicity, reducing pro-inflammatory cytokine release, and promoting neuroprotection in preclinical models. BTK inhibitors, originally developed for hematological malignancies, demonstrate favorable blood–brain barrier penetration and immunomodulatory effects relevant to central nervous system pathology. This therapeutic approach may counteract detrimental neuroimmune interactions without broadly suppressing systemic immunity, thus preserving host defense. Ongoing clinical trials are evaluating the safety and efficacy of BTK inhibitors in patients with neurodegenerative conditions, with preliminary results indicating potential benefits in slowing disease progression and improving neurological outcomes. This review consolidates current knowledge on BTK signaling in neurodegeneration and highlights the rationale for BTK inhibition as a novel, targeted therapeutic strategy to modulate neuroinflammation and mitigate neurodegenerative processes. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 298
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

5 pages, 165 KiB  
Editorial
Molecular Physiological and Pathological Progression of Neurological Diseases
by Daniele Bottai and Raffaella Adami
Int. J. Mol. Sci. 2025, 26(15), 7084; https://doi.org/10.3390/ijms26157084 - 23 Jul 2025
Viewed by 187
Abstract
Neurological diseases encompass a variety of conditions that vary in terms of when they first manifest, who is affected, what area of the nervous system is impacted, what type of neurons are damaged, whether they are genetically or spontaneously inherited, and whether they [...] Read more.
Neurological diseases encompass a variety of conditions that vary in terms of when they first manifest, who is affected, what area of the nervous system is impacted, what type of neurons are damaged, whether they are genetically or spontaneously inherited, and whether they are curable [...] Full article
31 pages, 2740 KiB  
Review
Lipid Accumulation and Insulin Resistance: Bridging Metabolic Dysfunction-Associated Fatty Liver Disease and Chronic Kidney Disease
by Xinyi Cao, Na Wang, Min Yang and Chun Zhang
Int. J. Mol. Sci. 2025, 26(14), 6962; https://doi.org/10.3390/ijms26146962 - 20 Jul 2025
Viewed by 508
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), a recently proposed term to replace non-alcoholic fatty liver disease (NAFLD), emphasizes the critical role of metabolic dysfunction and applies broader diagnostic criteria. Diagnosis of MAFLD requires evidence of hepatic steatosis combined with obesity, type 2 diabetes [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD), a recently proposed term to replace non-alcoholic fatty liver disease (NAFLD), emphasizes the critical role of metabolic dysfunction and applies broader diagnostic criteria. Diagnosis of MAFLD requires evidence of hepatic steatosis combined with obesity, type 2 diabetes mellitus, or other metabolic dysregulation conditions, all of which significantly elevate the risk of chronic kidney disease (CKD). This review discusses the pathological mechanisms of lipid accumulation and insulin resistance in MAFLD and CKD, highlighting their mechanistic connections. Specifically, ectopic fat accumulation triggered by metabolic reprogramming, oxidative stress and inflammation induced by energy overload, modified lipids, uremic toxins, and senescence, as well as insulin resistance pathways activated by pro-inflammatory factors and lipotoxic products, collectively exacerbate simultaneous hepatic and renal injury. Moreover, interactions among hyperinsulinemia, the sympathetic nervous system, the renin–angiotensin system (RAS), and altered adipokine and hepatokine profiles further amplify insulin resistance, ectopic lipid deposition, and systemic damage. Finally, the review explores potential therapeutic strategies targeting lipid metabolism, insulin sensitivity, and RAS activity, which offer promise for dual-organ protection and improved outcomes in both hepatic and renal systems. Full article
(This article belongs to the Special Issue Nonalcoholic Liver Disease: Mechanisms, Prevention, and Treatment)
Show Figures

Figure 1

12 pages, 612 KiB  
Article
Treatment of Chronic Neck Pain with Transcranial Direct Current Stimulation: A Single-Blinded Randomized Clinical Trial
by Manuel Rodríguez-Huguet, Miguel Ángel Rosety-Rodríguez, Daniel Rodríguez-Almagro, Rocío Martín-Valero, Maria Jesus Vinolo-Gil, Jorge Bastos-Garcia and Jorge Góngora-Rodríguez
Biomedicines 2025, 13(7), 1746; https://doi.org/10.3390/biomedicines13071746 - 17 Jul 2025
Viewed by 471
Abstract
Background/Objectives: Neck pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, affecting the cervical region. It represents one of the leading causes of disability, with a prevalence of 30%. Transcranial direct current stimulation (tDCS) [...] Read more.
Background/Objectives: Neck pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, affecting the cervical region. It represents one of the leading causes of disability, with a prevalence of 30%. Transcranial direct current stimulation (tDCS) is a non-invasive electrotherapy technique that enables direct modulation of cortical excitability. It involves the application of a low-intensity electrical current to the scalp, targeting the central nervous system. The aim of this study was to analyze the effects of tDCS on functionality, pain, mobility, and pressure pain threshold in patients with chronic nonspecific neck pain. Methods: Thirty participants (18–60 years) were selected to receive ten treatment sessions over a four-week period using tDCS (CG = 15) or transcutaneous electrical nerve stimulation (TENS) (CG = 15), with the following various related variables evaluated: functionality (Neck Disability Index), pain intensity (NPRS), cervical range of motion (ROM), and pressure pain threshold (PPT). Assessments were conducted at baseline, post-treatment, one month, and three months after the intervention. Results: The within-group analysis revealed statistically significant improvements for both groups at post-treatment, one-month follow-up, and three-month follow-up. Conclusions: The comparison between groups shows favorable changes in the tDCS group for PPT measurements. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

8 pages, 1643 KiB  
Case Report
Neuromyelitis Optica Diagnosis in Two Elderly Patients with Systematic Lupus Erythematosus: A Case Series
by Kyriaki Astara, Maria Lypiridou, Konstantinos Kalafatakis, Georgios Nikolaou and Georgios Stouraitis
Reports 2025, 8(3), 110; https://doi.org/10.3390/reports8030110 - 16 Jul 2025
Viewed by 328
Abstract
Background and Clinical Significance: Neuromyelitis optica (NMO) is a chronic demyelinating inflammatory disease of the central nervous system (CNS), mediated by autoantibodies against aquaporin-4 (AQ4) receptors. In the spectrum of NMO, other autoimmune diseases also coexist, though their association with systemic lupus erythematosus [...] Read more.
Background and Clinical Significance: Neuromyelitis optica (NMO) is a chronic demyelinating inflammatory disease of the central nervous system (CNS), mediated by autoantibodies against aquaporin-4 (AQ4) receptors. In the spectrum of NMO, other autoimmune diseases also coexist, though their association with systemic lupus erythematosus (SLE) is rare. Case Presentation: We present two cases of patients in their 70s who were diagnosed with NMO in the context of SLE. The first case concerns a 78-year-old woman with drug-induced SLE and thoracic myelitis who developed T4-level incomplete paraplegia over three weeks. The second case involves a 71-year-old woman with a history of SLE and myasthenia gravis, presenting with cervical myelitis with progressive worsening of walking and C4-level paraparesis over two months. In both cases, elevated serum anti-AQ4 titers were detected, establishing the diagnosis of NMO and differentiation from an atypical manifestation of SLE-related myelitis. High doses of intravenous corticosteroids with gradual tapering, along with cyclophosphamide, followed by rituximab, were administered in both patients. The first patient showed a poor response, while the second showed improvement. Conclusions: The coexistence of NMO with SLE is rare, but the occurrence of myelitis in patients with connective tissue diseases should raise the suspicion of NMO, especially in elderly women and several years after the diagnosis of SLE. Time to treatment is critical, as delays in treating NMO can result in cumulative and disabling damage. Full article
(This article belongs to the Section Allergy/Immunology)
Show Figures

Figure 1

25 pages, 2198 KiB  
Review
Oxidative Stress in HIV-Associated Neurodegeneration: Mechanisms of Pathogenesis and Therapeutic Targets
by Sophia Gagliardi, Tristan Hotchkin, Grace Hillmer, Maeve Engelbride, Alexander Diggs, Hasset Tibebe, Coco Izumi, Cailyn Sullivan, Cecelia Cropp, Olive Lantz, Dacia Marquez, Jason Chang, Jiro Ezaki, Alexander George Zestos, Anthony L. Riley and Taisuke Izumi
Int. J. Mol. Sci. 2025, 26(14), 6724; https://doi.org/10.3390/ijms26146724 - 13 Jul 2025
Viewed by 1654
Abstract
Treatment for HIV infection has become more manageable due to advances in combination antiretroviral therapy (cART). However, HIV still significantly affects the central nervous system (CNS) in infected individuals, even with effective plasma viral suppression, due to persistent viral reservoirs and chronic neuroinflammation. [...] Read more.
Treatment for HIV infection has become more manageable due to advances in combination antiretroviral therapy (cART). However, HIV still significantly affects the central nervous system (CNS) in infected individuals, even with effective plasma viral suppression, due to persistent viral reservoirs and chronic neuroinflammation. This ongoing inflammation contributes to the development of HIV-associated neurocognitive disorders (HANDs), including dementia and Alzheimer’s disease-like pathology. These complications are particularly prevalent among the aging population with HIV. This review aims to provide a comprehensive overview of HAND, with a focus on the contribution of oxidative stress induced by HIV-mediated reactive oxygen species (ROS) production through viral proteins such as gp120, Tat, Nef, Vpr, and reverse transcriptase. In addition, we discuss current and emerging therapeutic interventions targeting HAND, including antioxidant strategies and poly (ADP-ribose) polymerase (PARP) inhibitors. These are potential adjunctive approaches to mitigate neuroinflammation and oxidative damage in the CNS. Full article
Show Figures

Figure 1

18 pages, 538 KiB  
Article
Polymorphisms in Base Excision Repair Genes and Association with Multiple Sclerosis in a Pilot Study on a Central European Population
by Beata Filipek, Anna Macieja, Aleksandra Binda, Elzbieta Miller, Mariola Swiderek-Matysiak, Mariusz Stasiolek, Maksymilian Stela, Ireneusz Majsterek and Tomasz Poplawski
Int. J. Mol. Sci. 2025, 26(14), 6612; https://doi.org/10.3390/ijms26146612 - 10 Jul 2025
Viewed by 290
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and neurodegeneration. While its etiology remains unclear, both genetic and environmental factors, including oxidative stress, have been implicated in the development of the disease. The base excision [...] Read more.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and neurodegeneration. While its etiology remains unclear, both genetic and environmental factors, including oxidative stress, have been implicated in the development of the disease. The base excision repair (BER) pathway plays a critical role in repairing oxidative DNA damage. This study investigated the association between polymorphisms in BER-related genes and MS susceptibility in a Central European population. Ten SNPs across seven BER genes were genotyped in 102 patients with MS and 118 healthy controls. Six SNPs were significantly associated with MS. Increased risk was observed for rs25478 in XRCC1 (OR = 2.37, 95% CI: 1.44–3.91, p < 0.0001), rs3087404 in SMUG1 (OR = 2.80, 95% CI: 1.49–5.26, p = 0.0012), and rs3219493 in MUTYH (OR = 2.23, 95% CI: 1.35–3.67, p = 0.0018). Conversely, reduced risk was associated with rs2307293 in MBD4 (OR = 0.42, 95% CI: 0.23–0.78, p = 0.006), rs3219489 in MUTYH (OR = 0.55, 95% CI: 0.31–0.97, p = 0.038), and rs4135054 in TDG (OR = 0.52, 95% CI: 0.29–0.94, p = 0.031). Haplotype analysis was performed for SNPs in strong linkage disequilibrium. Only rs3219489 and rs3219472 within the MUTYH gene showed strong LD (r2 = 0.90), justifying haplotype-based analysis. Among four inferred haplotypes, the rare G–C haplotype was significantly associated with reduced MS risk (Score = −2.10, p = 0.035), suggesting a protective effect of this allele combination. Other SNPs not in LD were analyzed using a multivariable logistic regression model. Significant associations with decreased MS risk were found for rs1052133 in OGG1 (OR = 0.57, p = 0.043), rs2307293 in MBD4 (OR = 0.16, p = 0.010), and rs4135054 in TDG (OR = 0.38, p < 0.001), while rs3087404 in SMUG1 increased MS risk (OR = 1.98, p = 0.013). These results suggest that genetic variation in BER genes, including both single SNP effects and haplotypes, contributes to MS susceptibility. Further studies are warranted to explore the functional consequences of these variants and validate findings in larger, independent cohorts. Full article
(This article belongs to the Special Issue Multiple Sclerosis: From Molecular Mechanisms to Pathophysiology)
Show Figures

Figure 1

30 pages, 925 KiB  
Review
Review: Enhancing the Bioavailability and Stability of Anthocyanins for the Prevention and Treatment of Central Nervous System-Related Diseases
by Lan Zhang, Yan Wang, Yalong Cao, Fangxu Wang and Fang Li
Foods 2025, 14(14), 2420; https://doi.org/10.3390/foods14142420 - 9 Jul 2025
Viewed by 691
Abstract
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. [...] Read more.
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. As natural antioxidants, anthocyanins have attracted extensive attention due to their significant functions in scavenging free radicals, antioxidation, anti-inflammation, and anti-apoptosis. The application of anthocyanins in the field of central nervous system injury, particularly in neurodegenerative diseases, neurotoxicity induced by chemical drugs, stress-related nerve damage, and cerebrovascular diseases, has achieved remarkable research outcomes. However, anthocyanins often exhibit low chemical stability, a short half-life, and relatively low bioavailability, which limit their clinical application. Recent studies have found that the stability and bioavailability of anthocyanins can be significantly improved through nanoencapsulation, acylation, and copigmentation, as well as the preparation of nanogels, nanoemulsions, and liposomes. These advancements offer the potential for the development of anthocyanins as a new type of neuroprotective agent. Future research will focus on the innovative design of nano-delivery systems and structural modification based on artificial intelligence. Such research is expected to break through the bottleneck of anthocyanin application and enable it to become a core component of next-generation intelligent neuroprotective agents. Full article
Show Figures

Figure 1

28 pages, 2586 KiB  
Review
Diagnostic, Therapeutic, and Prognostic Applications of Artificial Intelligence (AI) in the Clinical Management of Brain Metastases (BMs)
by Kyriacos Evangelou, Panagiotis Zemperligkos, Anastasios Politis, Evgenia Lani, Enrique Gutierrez-Valencia, Ioannis Kotsantis, Georgios Velonakis, Efstathios Boviatsis, Lampis C. Stavrinou and Aristotelis Kalyvas
Brain Sci. 2025, 15(7), 730; https://doi.org/10.3390/brainsci15070730 - 8 Jul 2025
Viewed by 661
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults. Their heterogeneity, potential multifocality, and complex biomolecular behavior pose significant diagnostic and therapeutic challenges. Artificial intelligence (AI) has the potential to revolutionize BM diagnosis by facilitating early lesion detection, precise imaging segmentation, [...] Read more.
Brain metastases (BMs) are the most common intracranial tumors in adults. Their heterogeneity, potential multifocality, and complex biomolecular behavior pose significant diagnostic and therapeutic challenges. Artificial intelligence (AI) has the potential to revolutionize BM diagnosis by facilitating early lesion detection, precise imaging segmentation, and non-invasive molecular characterization. Machine learning (ML) and deep learning (DL) models have shown promising results in differentiating BMs from other intracranial tumors with similar imaging characteristics—such as gliomas and primary central nervous system lymphomas (PCNSLs)—and predicting tumor features (e.g., genetic mutations) that can guide individualized and targeted therapies. Intraoperatively, AI-driven systems can enable optimal tumor resection by integrating functional brain maps into preoperative imaging, thus facilitating the identification and safeguarding of eloquent brain regions through augmented reality (AR)-assisted neuronavigation. Even postoperatively, AI can be instrumental for radiotherapy planning personalization through the optimization of dose distribution, maximizing disease control while minimizing adjacent healthy tissue damage. Applications in systemic chemo- and immunotherapy include predictive insights into treatment responses; AI can analyze genomic and radiomic features to facilitate the selection of the most suitable, patient-specific treatment regimen, especially for those whose disease demonstrates specific genetic profiles such as epidermal growth factor receptor mutations (e.g., EGFR, HER2). Moreover, AI-based prognostic models can significantly ameliorate survival and recurrence risk prediction, further contributing to follow-up strategy personalization. Despite these advancements and the promising landscape, multiple challenges—including data availability and variability, decision-making interpretability, and ethical, legal, and regulatory concerns—limit the broader implementation of AI into the everyday clinical management of BMs. Future endeavors should thus prioritize the development of generalized AI models, the combination of large and diverse datasets, and the integration of clinical and molecular data into imaging, in an effort to maximally enhance the clinical application of AI in BM care and optimize patient outcomes. Full article
(This article belongs to the Section Neuro-oncology)
Show Figures

Figure 1

Back to TopTop