Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = neonatal invasive GBS infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1263 KiB  
Article
Detection of Group B Streptococcus (GBS) from Antenatal Screening, Maternal GBS Colonization and Incidence of Early-Onset Neonatal Disease (GBS-EOD): A National Survey, December 2022 to February 2023, Italy
by Michela Sabbatucci, Pierangelo Clerici and Roberta Creti
Microorganisms 2025, 13(7), 1438; https://doi.org/10.3390/microorganisms13071438 - 20 Jun 2025
Viewed by 397
Abstract
Invasive neonatal GBS infections constitute a major cause of sepsis and meningitis in Western countries. Vaginal/rectal GBS colonization during pregnancy is the main risk factor for the development of early-onset infections (GBS-EOD) in newborn by vertical transmission at birth, in addition to prematurity [...] Read more.
Invasive neonatal GBS infections constitute a major cause of sepsis and meningitis in Western countries. Vaginal/rectal GBS colonization during pregnancy is the main risk factor for the development of early-onset infections (GBS-EOD) in newborn by vertical transmission at birth, in addition to prematurity and stillbirth. In Italy, intrapartum antibiotic prophylaxis (IAP) to prevent GBS-EOD is offered to pregnant women who tested as GBS-positive in late pregnancy. Passive surveillance in Italy showed that a non-negligible number of GBS-EOD cases (about 50%) occurred from GBS-negative pregnant women. This finding prompted the launch of a national online survey from 15 December 2022 to 12 February 2023 to investigate the microbiological procedures followed for GBS identification in Italian public and private microbiology laboratories, the prevalence of maternal GBS colonization, and the incidence of GBS-EOD cases. The survey results demonstrated that national guidelines for the prevention of EOD-GBS cases as well as harmonization of microbiological methodologies for GBS identification in the antenatal screening are needed. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Bacterial Infection)
Show Figures

Figure 1

13 pages, 1305 KiB  
Article
Emergence of High-Level Gentamicin Resistance in Streptococcus agalactiae Hypervirulent Serotype IV ST1010 (CC452) Strains by Acquisition of a Novel Integrative and Conjugative Element
by Roberta Creti, Monica Imperi, Uzma Basit Khan, Alberto Berardi, Simona Recchia, Giovanna Alfarone and Giovanni Gherardi
Antibiotics 2024, 13(6), 491; https://doi.org/10.3390/antibiotics13060491 - 26 May 2024
Cited by 4 | Viewed by 2560
Abstract
Streptococcus agalactiae (group B streptococci, GBS) is responsible for severe infections in both neonates and adults. Currently, empiric antimicrobial therapy for sepsis and meningitis is the combined use of penicillin and gentamicin due to the enhanced bactericidal activity. However, high-level gentamicin resistance (HLGR) [...] Read more.
Streptococcus agalactiae (group B streptococci, GBS) is responsible for severe infections in both neonates and adults. Currently, empiric antimicrobial therapy for sepsis and meningitis is the combined use of penicillin and gentamicin due to the enhanced bactericidal activity. However, high-level gentamicin resistance (HLGR) abrogates the synergism. The rate of HLGR was investigated within a dataset of 433 GBS strains collected from cases of invasive disease in both adults and neonates as well as from pregnant carriers. GBS isolates (n = 20, 4.6%) presented with HLGR (gentamicin MIC breakpoint >1024 mg/L) that was differently diffused between strains from adults or neonates (5.2% vs. 2.8%). Notably, 70% of HLGR GBS strains (14 isolates) were serotype IV. Serotype IV HLGR-GBS isolates were susceptible to all antibiotics tested, exhibited the alpha-C/HvgA/PI-2b virulence string, and belonged to sequence type 1010 (clonal complex (CC) 452). The mobile element that harbored the HLGR aac(6′)-aph(2)″ gene is a novel integrative and conjugative element (ICE) about 45 kb long, derived from GBS 515 ICE tRNALys. The clonal expansion of this HLGR hypervirulent serotype IV GBS CC452 sublineage may pose a threat to the management of infections caused by this strain type. Full article
(This article belongs to the Special Issue Sepsis Management and Antibiotic Therapy)
Show Figures

Figure 1

8 pages, 548 KiB  
Brief Report
Anovaginal Colonization by Group B Streptococcus and Streptococcus anginosus among Pregnant Women in Brazil and Its Association with Clinical Features
by Natalia Silva Costa, Laura Maria Andrade Oliveira, Andre Rio-Tinto, Isabella Bittencourt Ferreira Pinto, Ana Elisa Almeida Santos Oliveira, Julia de Deus Santana, Laiane Ferreira Santos, Rayssa Santos Nogueira Costa, Penelope Saldanha Marinho, Sergio Eduardo Longo Fracalanzza, Lucia Martins Teixeira and Tatiana Castro Abreu Pinto
Antibiotics 2024, 13(1), 85; https://doi.org/10.3390/antibiotics13010085 - 16 Jan 2024
Cited by 1 | Viewed by 3388
Abstract
Streptococcus agalactiae (Group B Streptococcus; GBS) is a leading cause of neonatal invasive disease worldwide. GBS can colonize the human gastrointestinal and genitourinary tracts, and the anovaginal colonization of pregnant women is the main source for neonatal infection. Streptococcus anginosus, in [...] Read more.
Streptococcus agalactiae (Group B Streptococcus; GBS) is a leading cause of neonatal invasive disease worldwide. GBS can colonize the human gastrointestinal and genitourinary tracts, and the anovaginal colonization of pregnant women is the main source for neonatal infection. Streptococcus anginosus, in turn, can colonize the human upper respiratory, gastrointestinal, and genitourinary tracts but has rarely been observed causing disease. However, in the last years, S. anginosus has been increasingly associated with human infections, mainly in the bloodstream and gastrointestinal and genitourinary tracts. Although anovaginal screening for GBS is common during pregnancy, data regarding the anovaginal colonization of pregnant women by S. anginosus are still scarce. Here, we show that during the assessment of anovaginal GBS colonization rates among pregnant women living in Rio de Janeiro, Brazil, S. anginosus was also commonly detected, and S. anginosus isolates presented a similar colony morphology and color pattern to GBS in chromogenic media. GBS was detected in 48 (12%) while S. anginosus was detected in 17 (4.3%) of the 399 anovaginal samples analyzed. The use of antibiotics during pregnancy and history of urinary tract infections and sexually transmitted infections were associated with the presence of S. anginosus. In turn, previous preterm birth was associated with the presence of GBS (p < 0.05). The correlation of GBS and S. anginosus with relevant clinical features of pregnant women in Rio de Janeiro, Brazil, highlights the need for the further investigation of these important bacteria in relation to this special population. Full article
(This article belongs to the Special Issue Streptococcus: Biology, Pathogenesis, Epidemiology and Evolution)
Show Figures

Figure 1

15 pages, 2789 KiB  
Article
Enhanced Vulnerability of Diabetic Mice to Hypervirulent Streptococcus agalactiae ST-17 Infection
by Jéssica da Conceição Mendonça, João Matheus Sobral Pena, Noemi dos Santos Macêdo, Dayane de Souza Rodrigues, Dayane Alvarinho de Oliveira, Brady L. Spencer, Eduardo José Lopes-Torres, Lindsey R. Burcham, Kelly S. Doran and Prescilla Emy Nagao
Pathogens 2023, 12(4), 580; https://doi.org/10.3390/pathogens12040580 - 11 Apr 2023
Cited by 1 | Viewed by 2596
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is the leading cause of neonatal sepsis and meningitis but has been recently isolated from non-pregnant adults with underlying medical conditions like diabetes. Despite diabetes being a key risk factor for invasive disease, the pathological consequences [...] Read more.
Streptococcus agalactiae (Group B Streptococcus, GBS) is the leading cause of neonatal sepsis and meningitis but has been recently isolated from non-pregnant adults with underlying medical conditions like diabetes. Despite diabetes being a key risk factor for invasive disease, the pathological consequences during GBS infection remain poorly characterized. Here, we demonstrate the pathogenicity of the GBS90356-ST17 and COH1-ST17 strains in streptozotocin-induced diabetic mice. We show that GBS can spread through the bloodstream and colonize several tissues, presenting a higher bacterial count in diabetic-infected mice when compared to non-diabetic-infected mice. Histological sections of the lungs showed inflammatory cell infiltration, collapsed septa, and red blood cell extravasation in the diabetic-infected group. A significant increase in collagen deposition and elastic fibers were also observed in the lungs. Moreover, the diabetic group presented red blood cells that adhered to the valve wall and disorganized cardiac muscle fibers. An increased expression of KC protein, IL-1β, genes encoding immune cell markers, and ROS (reactive oxygen species) production was observed in diabetic-infected mice, suggesting GBS promotes high levels of inflammation when compared to non-diabetic animals. Our data indicate that efforts to reverse the epidemic of diabetes could considerably reduce the incidence of invasive infection, morbidity and mortality due to GBS. Full article
(This article belongs to the Special Issue The Biology of Streptococcus and Streptococcal Infection)
Show Figures

Figure 1

16 pages, 4477 KiB  
Article
Genomic Analysis Reveals New Integrative Conjugal Elements and Transposons in GBS Conferring Antimicrobial Resistance
by Uzma Basit Khan, Edward A. R. Portal, Kirsty Sands, Stephanie Lo, Victoria J. Chalker, Elita Jauneikaite and Owen B. Spiller
Antibiotics 2023, 12(3), 544; https://doi.org/10.3390/antibiotics12030544 - 9 Mar 2023
Cited by 15 | Viewed by 3708
Abstract
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of neonatal sepsis and increasingly found as an invasive pathogen in older patient populations. Beta-lactam antibiotics remain the most effective therapeutic with resistance rarely reported, while the majority of GBS isolates carry [...] Read more.
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of neonatal sepsis and increasingly found as an invasive pathogen in older patient populations. Beta-lactam antibiotics remain the most effective therapeutic with resistance rarely reported, while the majority of GBS isolates carry the tetracycline resistance gene tet(M) in fixed genomic positions amongst five predominant clonal clades. In the UK, GBS resistance to clindamycin and erythromycin has increased from 3% in 1991 to 11.9% (clindamycin) and 20.2% (erythromycin), as reported in this study. Here, a systematic investigation of antimicrobial resistance genomic content sought to fully characterise the associated mobile genetic elements within phenotypically resistant GBS isolates from 193 invasive and non-invasive infections of UK adult patients collected during 2014 and 2015. Resistance to erythromycin and clindamycin was mediated by erm(A) (16/193, 8.2%), erm(B) (16/193, 8.2%), mef(A)/msr(D) (10/193, 5.1%), lsa(C) (3/193, 1.5%), lnu(C) (1/193, 0.5%), and erm(T) (1/193, 0.5%) genes. The integrative conjugative elements (ICEs) carrying these genes were occasionally found in combination with high gentamicin resistance mediating genes aac(6′)-aph(2″), aminoglycoside resistance genes (ant(6-Ia), aph(3′-III), and/or aad(E)), alternative tetracycline resistance genes (tet(O) and tet(S)), and/or chloramphenicol resistance gene cat(Q), mediating resistance to multiple classes of antibiotics. This study provides evidence of the retention of previously reported ICESag37 (n = 4), ICESag236 (n = 2), and ICESpy009 (n = 3), as well as the definition of sixteen novel ICEs and three novel transposons within the GBS lineage, with no evidence of horizontal transfer. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

20 pages, 3203 KiB  
Article
Gamma-Irradiated Non-Capsule Group B Streptococcus Promotes T-Cell Dependent Immunity and Provides a Cross-Protective Reaction
by Yong Zhi, Fengjia Chen, Guangxu Cao and Fang Li
Pharmaceuticals 2023, 16(2), 321; https://doi.org/10.3390/ph16020321 - 20 Feb 2023
Viewed by 3780
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium commonly found in the genitourinary tract and is also a leading cause of neonatal sepsis and pneumonia. Despite the current antibiotic prophylaxis (IAP), the disease burdens of late-onset disease in newborns and non-pregnant adult infections [...] Read more.
Group B Streptococcus (GBS) is a Gram-positive bacterium commonly found in the genitourinary tract and is also a leading cause of neonatal sepsis and pneumonia. Despite the current antibiotic prophylaxis (IAP), the disease burdens of late-onset disease in newborns and non-pregnant adult infections are increasing. Recently, inactivation of the pathogens via gamma radiation has been proven to eliminate their replication ability but cause less damage to the antigenicity of the key epitopes. In this study, the non-capsule GBS strain was inactivated via radiation (Rad-GBS) or formalin (Che-GBS), and we further determined its immunogenicity and protective efficacy as vaccines. Notably, Rad-GBS was more immunogenic and gave rise to higher expression of costimulatory molecules in BMDCs in comparison with Che-GBS. Flow cytometric analysis revealed that Rad-GBS induced a stronger CD4+ IFN-γ+ and CD4+IL-17A+ population in mice. The protective efficacy was measured through challenge with the highly virulent strain CNCTC 10/84, and the adoptive transfer results further showed that the protective role is reversed by functionally neutralizing antibodies and T cells. Finally, cross-protection against challenges with prevalent serotypes of GBS was induced by Rad-GBS. The higher opsonophagocytic killing activity of sera against multiple serotypes was determined in sera from mice immunized with Rad-GBS. Overall, our results showed that the inactivated whole-cell encapsulated GBS could be an alternative strategy for universal vaccine development against invasive GBS infections. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

15 pages, 964 KiB  
Review
Group B Streptococcus: Virulence Factors and Pathogenic Mechanism
by Yuxin Liu and Jinhui Liu
Microorganisms 2022, 10(12), 2483; https://doi.org/10.3390/microorganisms10122483 - 15 Dec 2022
Cited by 39 | Viewed by 11887
Abstract
Group B Streptococcus (GBS) or Streptococcus agalactiae is a major cause of neonatal mortality. When colonizing the lower genital tract of pregnant women, GBS may cause premature birth and stillbirth. If transmitted to the newborn, it may result in life-threatening illnesses, including sepsis, [...] Read more.
Group B Streptococcus (GBS) or Streptococcus agalactiae is a major cause of neonatal mortality. When colonizing the lower genital tract of pregnant women, GBS may cause premature birth and stillbirth. If transmitted to the newborn, it may result in life-threatening illnesses, including sepsis, meningitis, and pneumonia. Moreover, through continuous evolution, GBS can use its original structure and unique factors to greatly improve its survival rate in the human body. This review discusses the key virulence factors that facilitate GBS invasion and colonization and their action mechanisms. A comprehensive understanding of the role of virulence factors in GBS infection is crucial to develop better treatment options and screen potential candidate molecules for the development of the vaccine. Full article
(This article belongs to the Special Issue Bacterial Genomics and Epidemiology)
Show Figures

Figure 1

16 pages, 1929 KiB  
Article
Differential Interaction between Invasive Thai Group B Streptococcus Sequence Type 283 and Caco-2 Cells
by Siriphan Boonsilp, Marea Jikka Nealiga, Kinley Wangchuk, Anchalee Homkaew, Thanwa Wongsuk, Huttaya Thuncharoon, Paveesuda Suksomchit, Daranee Wasipraphai, Soraya Chaturongakul and Padungsri Dubbs
Microorganisms 2022, 10(10), 1917; https://doi.org/10.3390/microorganisms10101917 - 27 Sep 2022
Cited by 2 | Viewed by 2204
Abstract
The emergence in Southeast Asia of invasive group B Streptococcus (GBS) infections in adults by sequence type (ST) 283 is suggested to be associated with fish consumption. Genotyping of 55 GBS clinical isolates revealed that 33/44 invasive isolates belonged to ST283/capsular polysaccharide type [...] Read more.
The emergence in Southeast Asia of invasive group B Streptococcus (GBS) infections in adults by sequence type (ST) 283 is suggested to be associated with fish consumption. Genotyping of 55 GBS clinical isolates revealed that 33/44 invasive isolates belonged to ST283/capsular polysaccharide type (CPS) III. This included 15/16 isolates recovered from younger adults aged 16–36 years. Seven ST283/CPSIII isolates from the blood, cerebrospinal fluid, or joint fluid were selected by the patient’s age at random to perform interaction studies with intestinal epithelial Caco-2 monolayers. The invasion efficiency profiles from this study classified these isolates into two groups; a higher invasion efficiency group 1 recovered from patients aged between 23 and 36 years, and a lower invasion efficiency group 2 recovered from the elderly and neonate. Intracellular survival tests revealed that only group 1 members could survive inside Caco-2 cells up to 32 h without replication. Additionally, all isolates tested were able to traverse across polarized Caco-2 monolayers. However, the timing of translocation varied among the isolates. These results indicated the potential of GBS invasion via the gastrointestinal tract and showed phenotypic variations in invasiveness, intracellular survival, and translocation efficiency between genetically closely related ST283 isolates infecting young adults and those infecting the elderly. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

9 pages, 253 KiB  
Article
Protective Effect of Lactobacillus crispatus against Vaginal Colonization with Group B Streptococci in the Third Trimester of Pregnancy
by Maja Starc, Miha Lučovnik, Petra Eržen Vrlič and Samo Jeverica
Pathogens 2022, 11(9), 980; https://doi.org/10.3390/pathogens11090980 - 27 Aug 2022
Cited by 9 | Viewed by 3007
Abstract
Background: A normal vaginal microbiota may protect the vaginal mucosa from colonization by potentially pathogenic bacteria, including group B streptococci (GBS). The aim of this study was to investigate the association between colonization with GBS and the presence of specific vaginal microbiota isolated [...] Read more.
Background: A normal vaginal microbiota may protect the vaginal mucosa from colonization by potentially pathogenic bacteria, including group B streptococci (GBS). The aim of this study was to investigate the association between colonization with GBS and the presence of specific vaginal microbiota isolated from vaginal swabs in the third trimester of pregnancy. Methods: A semiquantitative culture of 1860 vaginal swabs from consecutive pregnant women in their third trimester was analyzed. The dominant bacteria, including lactobacilli, were identified using MALDI-TOF mass spectrometry. An enrichment culture for GBS was performed on the swabs. GBS colonization correlated with the bacteria isolated at the same time. Results: Lactobacilluscrispatus was isolated in 27.5% of the cultures, followed by L. jensenii (13.9%), L. gasseri (12.6%), and L. iners (10.1%). The presence of lactobacilli as a group, and of L. crispatus, inversely correlated with GBS colonization (OR = 0.44 and OR = 0.5, respectively; both with p < 0.001). Other microorganisms, including Gardnerella vaginalis, mixed aerobic bacteria and yeasts, were not associated with GBS colonization. Conclusions: Lactobacilli, especially L. crispatus, may prevent GBS colonization in pregnancy. Maintaining a normal vaginal microbiota could be an effective method for the antibiotic-free prevention of invasive GBS infections in neonates. Full article
(This article belongs to the Special Issue Group B-Streptococcus (GBS))
13 pages, 1380 KiB  
Article
Group B Streptococcus-Induced Macropinocytosis Contributes to Bacterial Invasion of Brain Endothelial Cells
by Eric R. Espinal, Teralan Matthews, Brianna M. Holder, Olivia B. Bee, Gabrielle M. Humber, Caroline E. Brook, Mustafa Divyapicigil, Jerod Sharp and Brandon J. Kim
Pathogens 2022, 11(4), 474; https://doi.org/10.3390/pathogens11040474 - 15 Apr 2022
Cited by 18 | Viewed by 3318
Abstract
Bacterial meningitis is defined as serious inflammation of the central nervous system (CNS) in which bacteria infect the blood–brain barrier (BBB), a network of highly specialized brain endothelial cells (BECs). Dysfunction of the BBB is a hallmark of bacterial meningitis. Group B Streptococcus [...] Read more.
Bacterial meningitis is defined as serious inflammation of the central nervous system (CNS) in which bacteria infect the blood–brain barrier (BBB), a network of highly specialized brain endothelial cells (BECs). Dysfunction of the BBB is a hallmark of bacterial meningitis. Group B Streptococcus (GBS) is one of the leading organisms that cause bacterial meningitis, especially in neonates. Macropinocytosis is an actin-dependent form of endocytosis that is also tightly regulated at the BBB. Previous studies have shown that inhibition of actin-dependent processes decreases bacterial invasion, suggesting that pathogens can utilize macropinocytotic pathways for invasion. The purpose of this project is to study the factors that lead to dysfunction of the BBB. We demonstrate that infection with GBS increases rates of endocytosis in BECs. We identified a potential pathway, PLC-PKC-Nox2, in BECs that contributes to macropinocytosis regulation. Here we demonstrate that downstream inhibition of PLC, PKC, or Nox2 significantly blocks GBS invasion of BECs. Additionally, we show that pharmacological activation of PKC can turn on macropinocytosis and increase bacterial invasion of nonpathogenic yet genetically similar Lactococcus lactis. Our results suggest that GBS activates BEC signaling pathways that increase rates of macropinocytosis and subsequently the invasion of GBS. Full article
(This article belongs to the Special Issue Group B-Streptococcus (GBS))
Show Figures

Figure 1

14 pages, 437 KiB  
Article
Invasive Group B Streptococcal Disease in Neonates and Infants, Italy, Years 2015–2019
by Roberta Creti, Monica Imperi, Alberto Berardi, Erika Lindh, Giovanna Alfarone, Marco Pataracchia, Simona Recchia and The Italian Network on Neonatal and Infant GBS Infections
Microorganisms 2021, 9(12), 2579; https://doi.org/10.3390/microorganisms9122579 - 13 Dec 2021
Cited by 14 | Viewed by 3434
Abstract
Invasive infections by group B streptococci (iGBS) are the leading cause of sepsis and meningitis in the first three months of life worldwide. The clinical and microbiological characteristics of neonatal and infant iGBS in Italy during the years 2015–2019 were investigated. Voluntary-based surveillance [...] Read more.
Invasive infections by group B streptococci (iGBS) are the leading cause of sepsis and meningitis in the first three months of life worldwide. The clinical and microbiological characteristics of neonatal and infant iGBS in Italy during the years 2015–2019 were investigated. Voluntary-based surveillance reported 191 cases (67 early-onset (EOD) and 124 late-onset disease (LOD)) and 89 bacterial isolates were received. The main clinical manifestations were sepsis (59.2%) followed by meningitis (21.5%), bacteremia (12.0%) and septic shock (6.3%). Hospitalized preterm babies accounted for one third of iGBS and constituted the most fragile population in terms of mortality (8.2%) and brain damage (16.4%). GBS serotype III was predominant in EOD (56%) and caused almost all LOD (95%). The rate of resistance to clindamycin reached 28.8%. Most of clindamycin-resistant GBS strains (76%) were serotype III-ST17 and possessed the genetic markers of the emerging multidrug resistant (MDR) CC-17 sub-clone. Our data revealed that iGBS is changing since it is increasingly reported as a healthcare-associated infection (22.6%), mainly caused by MDR-CC17. Continuous monitoring of the clinical and microbiological characteristics of iGBS remains of primary importance and it represents, at present, the most effective tool to support prevention strategies and the research on the developing GBS vaccine. Full article
(This article belongs to the Special Issue Pathogenic Streptococci: Virulence, Host Response and Therapy)
Show Figures

Figure 1

10 pages, 556 KiB  
Review
Group B Streptococcal Colonization in African Countries: Prevalence, Capsular Serotypes, and Molecular Sequence Types
by Sarah Shabayek, Patricia Ferrieri and Barbara Spellerberg
Pathogens 2021, 10(12), 1606; https://doi.org/10.3390/pathogens10121606 - 10 Dec 2021
Cited by 11 | Viewed by 4051
Abstract
Streptococcus agalactiae or group B streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts of healthy women and an important cause of neonatal invasive infections worldwide. Transmission of bacteria to the newborn occurs at birth and can be prevented by intrapartum [...] Read more.
Streptococcus agalactiae or group B streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts of healthy women and an important cause of neonatal invasive infections worldwide. Transmission of bacteria to the newborn occurs at birth and can be prevented by intrapartum antibiotic prophylaxis. However, this not available in resource limited settings in Africa, which carries a particular high burden of disease. Serotype based vaccines are in development and present a suitable alternative to prevent neonatal infections. To be able to assess vaccine efficacy, knowledge and surveillance of GBS epidemiological data are required. This review summarizes investigations about the serotype distribution and the multi-locus sequence types (MLST) found in different African countries. While most serotypes and MLST data are comparable to findings from other continents, some specific differences exist. Serotype V is predominant among colonizing maternal strains in many different African countries. Serotypes that are rarely detected in western industrialized nations, such as serotypes VI, VII and IX, are prevalent in studies from Ghana and Egypt. Moreover, some specific MLST sequence types that seem to be more or less unique to Africa have been detected. However, overall, the data confirm that a hexavalent vaccine can provide broad coverage for the African continent and that a protein vaccine could represent a promising alternative. Full article
(This article belongs to the Special Issue Beta-Hemolytic Streptococci as Human Pathogens)
Show Figures

Figure 1

13 pages, 714 KiB  
Article
Clustered Regularly Interspaced Short Palindromic Repeat Analysis of Clonal Complex 17 Serotype III Group B Streptococcus Strains Causing Neonatal Invasive Diseases
by Jen-Fu Hsu, Jang-Jih Lu, Chih Lin, Shih-Ming Chu, Lee-Chung Lin, Mei-Yin Lai, Hsuan-Rong Huang, Ming-Chou Chiang and Ming-Horng Tsai
Int. J. Mol. Sci. 2021, 22(21), 11626; https://doi.org/10.3390/ijms222111626 - 27 Oct 2021
Cited by 5 | Viewed by 2136
Abstract
Group B Streptococcus (GBS) is an important pathogen of neonatal infections, and the clonal complex (CC)-17/serotype III GBS strain has emerged as the dominant strain. The clinical manifestations of CC17/III GBS sepsis may vary greatly but have not been well-investigated. A total of [...] Read more.
Group B Streptococcus (GBS) is an important pathogen of neonatal infections, and the clonal complex (CC)-17/serotype III GBS strain has emerged as the dominant strain. The clinical manifestations of CC17/III GBS sepsis may vary greatly but have not been well-investigated. A total of 103 CC17/III GBS isolates that caused neonatal invasive diseases were studied using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) loci and restriction fragment length polymorphism (RFLP) analyses. All spacers of CRISPR loci were sequenced and analyzed with the clinical presentations. After CRISPR-RFLP analyses, a total of 11 different patterns were observed among the 103 CRISPR-positive GBS isolates. GBS isolates with the same RFLP patterns were found to have highly comparable spacer contents. Comparative sequence analysis of the CRISPR1 spacer content revealed that it is highly diverse and consistent with the dynamics of this system. A total of 29 of 43 (67.4%) spacers displayed homology to reported phage and plasmid DNA sequences. In addition, all CC17/III GBS isolates could be categorized into three subgroups based on the CRISPR-RFLP patterns and eBURST analysis. The CC17/III GBS isolates with a specific CRISPR-RFLP pattern were more significantly associated with occurrences of severe sepsis (57.1% vs. 29.3%, p = 0.012) and meningitis (50.0% vs. 20.8%, p = 0.009) than GBS isolates with RFLP lengths between 1000 and 1300 bp. Whole-genome sequencing was also performed to verify the differences between CC17/III GBS isolates with different CRISPR-RFLP patterns. We concluded that the CRISPR-RFLP analysis is potentially applicable to categorizing CC17/III GBS isolates, and a specific CRISPR-RFLP pattern could be used as a new biomarker to predict meningitis and illness severity after further verification. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 1392 KiB  
Article
Genomic Characterization of Serotype III/ST-17 Group B Streptococcus Strains with Antimicrobial Resistance Using Whole Genome Sequencing
by Jen-Fu Hsu, Ming-Horng Tsai, Lee-Chung Lin, Shih-Ming Chu, Mei-Yin Lai, Hsuan-Rong Huang, Ming-Chou Chiang, Peng-Hong Yang and Jang-Jih Lu
Biomedicines 2021, 9(10), 1477; https://doi.org/10.3390/biomedicines9101477 - 15 Oct 2021
Cited by 9 | Viewed by 2670
Abstract
Background: Antibiotic-resistant type III/ST-17 Streptococcus agalactiae (group B Streptococcus, GBS) strain is predominant in neonatal invasive GBS diseases. We aimed to investigate the antibiotic resistance profiles and genetic characteristics of type III/ST-17 GBS strains. Methods: A total of 681 non-duplicate GBS isolates [...] Read more.
Background: Antibiotic-resistant type III/ST-17 Streptococcus agalactiae (group B Streptococcus, GBS) strain is predominant in neonatal invasive GBS diseases. We aimed to investigate the antibiotic resistance profiles and genetic characteristics of type III/ST-17 GBS strains. Methods: A total of 681 non-duplicate GBS isolates were typed (MLST, capsular types) and their antibiotic resistances were performed. Several molecular methods (WGS, PCR, sequencing and sequence analysis) were used to determine the genetic context of antibiotic resistant genes and pili genes. Results: The antibiotic resistant rates were significantly higher in type Ib (90.1%) and type III (71.1%) GBS isolates. WGS revealed that the loss of PI-1 genes and absence of ISSag5 was found in antibiotic-resistant III/ST-17 GBS isolates, which is replaced by a ~75-kb integrative and conjugative element, ICESag37, comprising multiple antibiotic resistance and virulence genes. Among 190 serotype III GBS isolates, the most common pilus island was PI-2b (58.4%) alone, which was found in 81.3% of the III/ST-17 GBS isolates. Loss of PI-1 and ISSag5 was significantly associated with antibiotic resistance (95.5% vs. 27.8%, p < 0.001). The presence of ICESag37 was found in 83.6% of all III/ST-17 GBS isolates and 99.1% (105/106) of the antibiotic-resistant III/ST-17 GBS isolates. Conclusions: Loss of PI-1 and ISSag5, which is replaced by ICESag37 carrying multiple antibiotic resistance genes, accounts for the high antibiotic resistance rate in III/ST-17 GBS isolates. The emerging clonal expansion of this hypervirulent strain with antibiotic resistance after acquisition of ICESag37 highlights the urgent need for continuous surveillance of GBS infections. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

4 pages, 191 KiB  
Case Report
Fatal, Fulminant and Invasive Non-Typeable Haemophilus influenzae Infection in a Preterm Infant: A Re-Emerging Cause of Neonatal Sepsis
by Sudipta Roy Chowdhury, Srabani Bharadwaj and Suresh Chandran
Trop. Med. Infect. Dis. 2020, 5(1), 30; https://doi.org/10.3390/tropicalmed5010030 - 20 Feb 2020
Cited by 10 | Viewed by 3634
Abstract
Early-onset neonatal sepsis (EOS) is a major cause of neonatal death and long-term neurodevelopmental disabilities among survivors. The common pathogens causing EOS are group B streptococcus (GBS) and Escherichia coli. Haemophilus influenzae (H. influenzae) is a Gram-negative coccobacillus that can [...] Read more.
Early-onset neonatal sepsis (EOS) is a major cause of neonatal death and long-term neurodevelopmental disabilities among survivors. The common pathogens causing EOS are group B streptococcus (GBS) and Escherichia coli. Haemophilus influenzae (H. influenzae) is a Gram-negative coccobacillus that can cause severe invasive disease and can be divided into either typeable or non-typeable strains. H. influenzae serotype b (Hib) is the most virulent and the major cause of bacterial meningitis in young children prior to routine immunization against Hib. Hib infection rates have dramatically reduced since then. However, a number of studies have reported an increasing incidence of non-typeable H. influenzae (NTHi) sepsis in neonates worldwide and concluded that pregnant women may have an increased risk to invasive NTHi disease with poor pregnancy outcomes. We present a case of fulminant neonatal sepsis caused by NTHi in an extremely preterm infant and discuss potential preventative measures to reduce its re-emergence. Full article
Back to TopTop