Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = near β Ti alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2573 KiB  
Article
Influence of Laser Remelting on Creep Resistance in Ti-6Al-4V Alloy with Thermal Barrier Coating
by Filipe Estevão de Freitas, Roberta Aguiar Luna da Silva, Renata Jesuina Takahashi, Adriano Gonçalves dos Reis, Aline Gonçalves Capella and Danieli Aparecida Pereira Reis
Coatings 2025, 15(2), 220; https://doi.org/10.3390/coatings15020220 - 12 Feb 2025
Cited by 1 | Viewed by 885
Abstract
Ti-6Al-4V alloys with a thermal barrier coating (TBC) have been applied in aeronautical components as turbine blades to provide oxidation resistance and thermal protection, enabling higher operating temperatures and extending component lifespan. Research into TBCs with laser surface modification has investigated improving their [...] Read more.
Ti-6Al-4V alloys with a thermal barrier coating (TBC) have been applied in aeronautical components as turbine blades to provide oxidation resistance and thermal protection, enabling higher operating temperatures and extending component lifespan. Research into TBCs with laser surface modification has investigated improving their mechanical and thermal properties. This study assessed the creep behavior of Ti-6Al-4V alloy with a TBC, where the coating was applied via CO2 laser-remelted plasma spraying. Creep tests were conducted at a constant temperature and a load ranging from 500 to 700 °C at 125 MPa. The microstructure and fractography of the specimens were also investigated. The investigation also included microstructural and fractographic analyses of the specimens. The results indicate that the laser-remelted TBC provided effective thermal protection and increased oxidation resistance, with the stationary creep rate at 600 °C reduced by 50% and the creep rupture life extended by 20%. Observations revealed typical ductile fractures characterized by equiaxed dimples and a homogeneous microstructure with an equiaxed dual-phase (α+β) structure near the fracture zone. Full article
(This article belongs to the Special Issue Laser-Assisted Processes and Thermal Treatments of Materials)
Show Figures

Figure 1

18 pages, 7831 KiB  
Article
New Insights into the Ingot Breakdown Mechanism of Near-β Titanium Alloy: An Orientation-Driven Perspective
by Xianghong Liu, Tao Wang, Xiaolong Ren, Jie Fu, Liang Cheng, Bin Zhu and Kaixuan Wang
Metals 2024, 14(7), 792; https://doi.org/10.3390/met14070792 - 7 Jul 2024
Cited by 1 | Viewed by 1438
Abstract
The ingot breakdown behavior of a typical near-β titanium alloy, Ti-55511, was investigated by various multi-pass upsetting processes. Particular emphasis was placed on the breakdown mechanism of the ultra-large β grains. The results showed that the upsetting far above the β-transus yielded uniform [...] Read more.
The ingot breakdown behavior of a typical near-β titanium alloy, Ti-55511, was investigated by various multi-pass upsetting processes. Particular emphasis was placed on the breakdown mechanism of the ultra-large β grains. The results showed that the upsetting far above the β-transus yielded uniform and refined macrostructure with relatively coarse grain size. In contrast, subtransus deformation within the (α + β) dual-phase field caused severe strain localization and macroscale shear bands. It was found that the static recrystallization during the post-deformation annealing was determined by the preferential grain orientations, which were closely related to the processing conditions. During β-working, the stable <001>-oriented grains were predominant and fragmentized mainly via a so-called “low-angle grain boundary merging” mechanism, even under a fairly low deformation. However, the vast <001> grain area was unbeneficial for microstructural conversion since it provided minor nucleation sites for the subsequent annealing. In contrast, the α/β-working produced the majority <111>-orientated grains, which were strongly inclined to strain localization. Highly misoriented deformation/shear bands were massively produced within the <111> grains, providing abundant nucleation sites for static recrystallization and, hence, were favorable for microstructural refinement. Furthermore, the intrinsic causes for deformation nonuniformity were discussed in detail, as well as the competition between microstructural homogeneity and refinement. Full article
Show Figures

Figure 1

16 pages, 17924 KiB  
Article
Revealing the Effect of α’ Decomposition on Microstructure Evolution and Mechanical Properties in Ti80 Alloy
by Chunhong Xiao, Bin Hu, Jinyang Ge, Bin Kong, Deng Luo, Xiaoyong Zhang and Kechao Zhou
Materials 2024, 17(10), 2238; https://doi.org/10.3390/ma17102238 - 9 May 2024
Cited by 1 | Viewed by 1583
Abstract
Three types of solution treatment and aging were designed to reveal the α’ decomposition and its effect on the mechanical properties of near-α Ti-80 alloy, as follows: solution at 970 °C then quenching (ST), ST + aging at 600 °C for 5 h [...] Read more.
Three types of solution treatment and aging were designed to reveal the α’ decomposition and its effect on the mechanical properties of near-α Ti-80 alloy, as follows: solution at 970 °C then quenching (ST), ST + aging at 600 °C for 5 h (STA-1), and ST + aging 600 °C for 24 h (STA-2). The results show that the microstructures of the ST samples were mainly composed of equiaxed αp and acicular α’, with a large number of dislocations confirmed by the KAM results. After subsequent aging for 5 h, α’ decomposed into acicular fine αs and nano-β (intergranular β, intragranular β) in the STA-1 specimen, which obstructed dislocation motion during deformation, resulting in the STA-1 specimen exhibiting the most excellent yield strength (1012 MPa) and maintaining sufficient elongation (8.1%) compared with the ST (898 MPa) and STA-2 (871 MPa) samples. By further extending the aging time to 24 h, the size of acicular αs and nano-β gradually increased while the density of dislocations decreased, which resulted in a decrease in strength and an increase in plasticity. Based on this, a microstructures–properties correlation model was proposed. This study provides a new method for strength–plasticity matching of near-α titanium alloys through α’ decomposition to acicular αs+nano-β. Full article
(This article belongs to the Special Issue Review and Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

19 pages, 8413 KiB  
Article
Photocatalytic Activity and Antibacterial Properties of Mixed-Phase Oxides on Titanium Implant Alloy Substrates
by Haden A. Johnson, Darby Donaho, Aya Ali, Amisha Parekh, Randall S. Williamson, Mary E. Marquart, Joel D. Bumgardner, Amol V. Janorkar and Michael D. Roach
Coatings 2024, 14(5), 595; https://doi.org/10.3390/coatings14050595 - 9 May 2024
Viewed by 1514
Abstract
Titanium alloys are commonly used for implants, but the naturally forming oxides are bioinert and not ideal for bacterial resistance or osseointegration. Anodization processes are a modification technique that can crystallize the oxides, alter oxide surface topography, and introduce beneficial chemistries. Crystalline titanium [...] Read more.
Titanium alloys are commonly used for implants, but the naturally forming oxides are bioinert and not ideal for bacterial resistance or osseointegration. Anodization processes are a modification technique that can crystallize the oxides, alter oxide surface topography, and introduce beneficial chemistries. Crystalline titanium oxides are known to exhibit photocatalytic activity (PCA) under UVA light. Anodization was used to create mixed-phase oxides on six titanium alloys including commercially pure titanium (CPTi), Ti-6Al-4V (TAV), Ti-6Al-7Nb (TAN), two forms of Ti-15Mo (TiMo-β and TiMo-αβ), and Ti-35Nb-7Zr-5Ta (TNZT). Combined EDS and XPS analyses showed uptake of the electrolyte and substrate alloying elements into the oxides. The relative oxide PCA was measured using methylene blue degradation assays. CPTi and TAN oxides exhibited increased PCA compared to other alloys. Combined XRD and EBSD oxide phase analyses revealed an unfavorable arrangement of anatase and rutile phases near the outermost surfaces, which may have reduced PCA for other oxides. The relative Staphylococcus aureus attachment to each oxide was also assessed. The CPTi and TiMo-αβ oxides showed significantly reduced S. aureus attachment after 1 h of UVA compared to un-anodized CPTi. Cell culture results verified that the UVA irradiation did not negatively influence the MC3T3-E1 attachment or proliferation on the mixed-phase oxides. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

24 pages, 39872 KiB  
Article
Investigation of Deposition Parameters for Near-Beta Alloy Ti-55511 Fabricated by Directed Energy Deposition
by Addison J. Rayner, Greg A. W. Sweet, Owen Craig, Mahdi Habibnejad-Korayem and Paul Bishop
J. Manuf. Mater. Process. 2024, 8(2), 72; https://doi.org/10.3390/jmmp8020072 - 10 Apr 2024
Viewed by 1818
Abstract
The directed energy deposition (DED) parameters were determined for near-β alloy Ti-55511 by employing statistical design of experiments (DOEs) methods. Parameters resulting in fully dense freeform deposits were identified using two sequential DOEs. Single laser tracks were printed with several laser power, traverse [...] Read more.
The directed energy deposition (DED) parameters were determined for near-β alloy Ti-55511 by employing statistical design of experiments (DOEs) methods. Parameters resulting in fully dense freeform deposits were identified using two sequential DOEs. Single laser tracks were printed with several laser power, traverse rate, and powder feed rate settings in an initial DOE to identify promising build parameters. The capture efficiency and effective deposition rate were used to characterize and rank the single track deposits. The best parameters were then used to print a solid cube with various X–Y and Z overlaps (different hatch spacing, HS, and layer thickness, ZS) in a second DOE. Suitable deposition parameters were selected based on the cube density and microstructure and were used to fabricate larger tensile samples for mechanical testing. Multiple parameter sets were found to provide dense Ti-55511 deposits with acceptable mechanical properties and the parametric models showed statistical significance. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

37 pages, 19071 KiB  
Article
On the Microstructure and Properties of Complex Concentrated bcc Solid Solution and Tetragonal D8m M5Si3 Silicide Phases in a Refractory Complex Concentrated Alloy
by Nik Tankov, Claire Utton and Panos Tsakiropoulos
Alloys 2024, 3(1), 59-95; https://doi.org/10.3390/alloys3010005 - 7 Mar 2024
Cited by 1 | Viewed by 3248
Abstract
In this work, the refractory complex concentrated alloy (RCCA) 3.5Al–4Cr–6Ge–1Hf–5Mo–36Nb–22Si–1.5Sn–20Ti–1W (at.%) was studied in the as cast and heat treated conditions (100 h or 200 h at 1500 °C). There was strong macrosegregation of Si in the 0.6 kg button/ingot of the cast [...] Read more.
In this work, the refractory complex concentrated alloy (RCCA) 3.5Al–4Cr–6Ge–1Hf–5Mo–36Nb–22Si–1.5Sn–20Ti–1W (at.%) was studied in the as cast and heat treated conditions (100 h or 200 h at 1500 °C). There was strong macrosegregation of Si in the 0.6 kg button/ingot of the cast alloy, in which A2 solid solution, D8m βNb5Si3, C14-NbCr2 Laves phase and Tiss and a ternary eutectic of the A2, D8m and C14 phases were formed. The partitioning of Ti in the as cast and heat treated microstructure and its relationships with other solutes was shown to be important for the properties of the A2 solid solution and the D8m βNb5Si3, which were the stable phases at 1500 °C. The near surface microstructure of the alloy was contaminated with oxygen after heat treatment under flowing Ar. For the aforementioned phases, it was shown, for the first time, that there are relationships between solutes, between solutes and the parameters VEC, Δχ and δ, between the said parameters, and between parameters and phase properties. For the contaminated with oxygen solid solution and silicide, trends in relationships between solutes, between solutes and oxygen content and between the aforementioned parameters and oxygen content also were shown for the first time. The nano-hardness and Young’s modulus of the A2 solid solution and the D8m βNb5Si3 of the as cast and heat-treated alloy were measured using nanoindentation. Changes of nano-hardness and Young’s modulus of the A2 solid solution and D8m βNb5Si3 per solute addition for this multiphase RCCA were discussed. The nano-hardness and Young’s modulus of the solid solution and the βNb5Si3, respectively, were 9.5 ± 0.2 GPa and 177.4 ± 5.5 GPa, and 17.55 ± 0.5 GPa and 250.27 ± 6.3 GPa after 200 h at 1500 °C. The aforementioned relationships and properties of the two phases demonstrated the importance of synergy and entanglement of solutes, parameters and phases in the microstructure and properties of the RCCA. Implications of synergy and entanglement for the design of metallic ultra-high temperature materials were emphasised. Full article
(This article belongs to the Collection Feature Paper Collection of Advanced Research on Alloys)
Show Figures

Figure 1

19 pages, 2953 KiB  
Article
Decision Science-Driven Assessment of Ti Alloys for Aircraft Landing Gear Beams
by Ramachandra Canumalla and Tanjore V. Jayaraman
Aerospace 2024, 11(1), 51; https://doi.org/10.3390/aerospace11010051 - 4 Jan 2024
Cited by 5 | Viewed by 3170
Abstract
Titanium alloys, with their low density, exceptional mechanical properties, and outstanding corrosion resistance, play a vital role in various aerospace applications. Our decision science-driven assessment focused on metastable β, near-β, α + β, and near-α Ti alloys for [...] Read more.
Titanium alloys, with their low density, exceptional mechanical properties, and outstanding corrosion resistance, play a vital role in various aerospace applications. Our decision science-driven assessment focused on metastable β, near-β, α + β, and near-α Ti alloys for landing gear applications, integrating multiple-attribute decision-making (MADM) methods, principal component analysis (PCA), and hierarchical clustering (HC) is based on current literature. The ranks of the alloys evaluated by diverse MADM methods were consistent. The methodology identifies five top-ranked Ti alloys assists and verifies the guidelines for alloy design. The top-ranked alloy, Ti1300-BM-nano-α (alloy chemistry: Ti-5Al-4V-4Mo-3Zr-4Cr, solution treatment: 800 °C for 1 h followed by air cooling—solution treated below β transus, and aging: 500 °C for 4 h followed by air cooling), stands out with a percentage elongation (%EL) ~3.3 times greater than the benchmark or goal (density, d = ~4.6 g/cm3; yield strength YS = ~1250 MPa; %El = ~5), while maintaining similar density and yield strength. The analyses underline that metastable β Ti alloys comprising globular primary α + trans β matrix coupled with α precipitates in trans β are the base optimal microstructure to fine-tune using thermomechanical processing for aircraft landing gear applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

11 pages, 3246 KiB  
Article
Fatigue and Fracture Evaluations in Ti-10V-2Fe-3Al (Ti 10-2-3)
by Martin Bache
Metals 2023, 13(12), 1986; https://doi.org/10.3390/met13121986 - 7 Dec 2023
Cited by 4 | Viewed by 1610
Abstract
A mechanical assessment was conducted to characterise the near β titanium alloy Ti-10V-2Fe-3Al (Ti 10-2-3), which was heat-treated to provide two strength variants. Low cycle fatigue and crack propagation tests were performed under standard laboratory air plus a salt fog environment. The differences [...] Read more.
A mechanical assessment was conducted to characterise the near β titanium alloy Ti-10V-2Fe-3Al (Ti 10-2-3), which was heat-treated to provide two strength variants. Low cycle fatigue and crack propagation tests were performed under standard laboratory air plus a salt fog environment. The differences in static strength were also demonstrated under fatigue conditions utilising plain specimens. However, the alloy was essentially insensitive to the test environment when comparing LCF performance in air and salt fog. Salt fog also provided no effect on crack growth behaviour. A double edge notch specimen geometry was employed to measure free initiation and the growth of cracks from a stress-raising feature. The current data now supplement previous studies aimed at expanding the mechanical database for Ti 10-2-3 component design and in-service life predictions. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

17 pages, 9774 KiB  
Article
Investigation on the Optimal Amount of Y and B Elements in High-Temperature Titanium Alloy Ti-5.9Al-4Sn-3.9Zr-3.8Mo-0.4Si-xY-yB
by Yingbo Zhang, Yuanhui Peng, Pu Zhang, Yunfeng Hu, Dongliang Wu and Xing Tu
Alloys 2023, 2(4), 271-287; https://doi.org/10.3390/alloys2040019 - 30 Oct 2023
Viewed by 1514
Abstract
This article presents a novel and feasible approach for researching the quantity of the ceramic phase and component optimization in high-temperature titanium alloys with small trace amounts of ceramic phases. Different near-α titanium alloys with varying yttrium and boron contents were prepared through [...] Read more.
This article presents a novel and feasible approach for researching the quantity of the ceramic phase and component optimization in high-temperature titanium alloys with small trace amounts of ceramic phases. Different near-α titanium alloys with varying yttrium and boron contents were prepared through the utilization of a vacuum non-consumable arc furnace melting method. The alloy used was a Ti-5.9Al-4Sn-3.9Zr-3.8Mo-0.4Si base. Its microstructure, texture, mechanical properties, and fracture behavior were studied. The observation of the as-cast structure shows that the addition of different doses of trace Y and B elements significantly refines both the original β grains and α grains. Moreover, the addition of the B element transforms the Widmanstätten structure in the titanium alloy structure into a basketweave structure. The addition of Y can refine the grain structure, improve the uniformity of the matrix structure, and act as a strong deoxidizer, which will take away the oxygen in the matrix and purify it. The TiB whiskers generated with the addition of B promotes dynamic recrystallization behavior and leads to more equiaxed α grains being precipitated around them, resulting in a significant refinement of the microstructure of the as-cast alloy. After adding a small amount of B, the texture strength of the α phase is significantly reduced, indicating that TiB whiskers inhibit the formation of texture. After conducting performance screening and structure analysis, the study supplements the analysis of Y’s regulation of the titanium alloy structure. The regulation is primarily explained by combining the results of the analysis of boron content, phase diagram analysis, mechanical properties, and fracture analysis. The mechanical analysis introduces the unique load transfer strengthening of TiB whiskers combined with an analysis of high-temperature mechanical properties, as the threshold for addition. The optimal amounts of Y and B additions are 0.6 wt% and 0.8 wt%, respectively. The optimized alloy obtained under this condition can achieve a tensile strength of 950 Mpa at 500 °C without any plastic deformation or heat treatment. Full article
Show Figures

Figure 1

16 pages, 15609 KiB  
Article
TEM Study of a Layered Composite Structure Produced by Ion-Plasma Treatment of Aluminum Coating on the Ti-6Al-4V Alloy
by Aleksey Nikolaev, Kamil’ Ramazanov, Almaz Nazarov, Vener Mukhamadeev, Elena Zagibalova and Elena Astafurova
J. Compos. Sci. 2023, 7(7), 271; https://doi.org/10.3390/jcs7070271 - 30 Jun 2023
Cited by 4 | Viewed by 1909
Abstract
Using the methods of transmission electron microscopy and energy-dispersive spectroscopy, we study the microstructure and phase composition of the coating and modified intermetallic layers obtained in a Ti-6Al-4V alloy by the deposition of the Al coating and subsequent processing in low-pressure non-self-sustained arc [...] Read more.
Using the methods of transmission electron microscopy and energy-dispersive spectroscopy, we study the microstructure and phase composition of the coating and modified intermetallic layers obtained in a Ti-6Al-4V alloy by the deposition of the Al coating and subsequent processing in low-pressure non-self-sustained arc discharge plasma (CIPT—complex ion-plasma treatment). The deposition of the aluminum coating on the Ti-6Al-4V alloy is accompanied by the formation of a layered and a gradient microstructure: nanocrystalline near the “coating/substrate” interface and ultrafine-grained in the outer part of the aluminum coating, with α-stabilized region of ≈5 µm thick in the surface layer in base titanium alloy. After the CIPT, the coating and the surface of the base titanium alloy have a layered morphology: each of the layers possesses different grain structure and composition. In the direction from the outer surface of the specimen to the base material, the following phase sequence has been confirmed by diffraction and elemental analysis: TiAl3 → TiAl3 + nc-(Al(Ti) + α-Ti) → nc-(Al(Ti) + α-Ti) → TiAl3 → TiAl3 + TiAl → TiAl → Ti3Al → α-Ti alloy → (α + β)-Ti alloy. The nanocrystalline aluminum layer, which has been formed during the deposition of the aluminum coating, does not undergo phase transformation and recrystallization under the CIPT. Nanocrystalline structure can favor the interdiffusion of the elements between the coating and base material, and stimulate phase transformation in coarser grains situated under and over it. Full article
(This article belongs to the Special Issue Metal Composites)
Show Figures

Figure 1

33 pages, 93733 KiB  
Article
Corrosion Resistance of the Welded Joints from the Ultrafine-Grained Near-α Titanium Alloys Ti-5Al-2V Obtained by Spark Plasma Sintering
by Vladimir Chuvil’deev, Aleksey Nokhrin, Constantin Likhnitskii, Vladimir Kopylov, Pavel Andreev, Maksim Boldin, Nataliya Tabachkova and Aleksander Malkin
Metals 2023, 13(4), 766; https://doi.org/10.3390/met13040766 - 14 Apr 2023
Cited by 2 | Viewed by 1764
Abstract
A solid-phase diffusion welding of coarse-grained and ultrafine-grained (UFG) specimens of titanium near-α alloy Ti-5Al-2V used in nuclear power engineering was made by Spark Plasma Sintering. The failure of the welded specimens in the conditions of hot salt corrosion and electrochemical corrosion was [...] Read more.
A solid-phase diffusion welding of coarse-grained and ultrafine-grained (UFG) specimens of titanium near-α alloy Ti-5Al-2V used in nuclear power engineering was made by Spark Plasma Sintering. The failure of the welded specimens in the conditions of hot salt corrosion and electrochemical corrosion was shown to have a preferentially intercrystalline character. In the case of the presence of macrodefects, crevice corrosion of the welded joints was observed. The resistance of the alloys against the intercrystalline corrosion was found to be determined by the concentration of vanadium at the titanium grain boundaries, by the size and volume fraction of the β-phase particles, and by the presence of micro- and macropores in the welded joints. The specimens of the welded joints of the UFG alloy are harder and have a higher resistance to hot salt corrosion and electrochemical corrosion. Full article
Show Figures

Figure 1

17 pages, 9527 KiB  
Article
High Temperature Deformation Behavior of Near-β Titanium Alloy Ti-3Al-6Cr-5V-5Mo at α + β and β Phase Fields
by Haoyu Zhang, Shuo Zhang, Shuai Zhang, Xuejia Liu, Xiaoxi Wu, Siqian Zhang and Ge Zhou
Crystals 2023, 13(3), 371; https://doi.org/10.3390/cryst13030371 - 21 Feb 2023
Cited by 5 | Viewed by 2180
Abstract
Most near-β titanium alloy structural components should be plastically deformed at high temperatures. Inappropriate high-temperature deformed processes can lead to macro-defects and abnormally coarse grains. Ti-3Al-6Cr-5V-5Mo alloy is a near-β titanium alloy with the potential application. The available information on the high-temperature deformation [...] Read more.
Most near-β titanium alloy structural components should be plastically deformed at high temperatures. Inappropriate high-temperature deformed processes can lead to macro-defects and abnormally coarse grains. Ti-3Al-6Cr-5V-5Mo alloy is a near-β titanium alloy with the potential application. The available information on the high-temperature deformation behavior of the alloy is limited. To provide guidance for the actual hot working of the alloy, the flow stress behavior and processing map at α + β phase field and β phase field were studied, respectively. Based on the experimental data obtained from hot compressing simulations at the range of temperature from 700 °C to 820 °C and at the range of strain rate from 0.001 s−1 to 10 s−1, the constitutive models, as well as the processing map, were obtained. For the constitutive models at the α + β phase field and β phase field, the correlated coefficients between actual stress and predicted stress are 0.986 and 0.983, and the predictive mean relative errors are 2.7% and 4.1%. The verification of constitutive models demonstrates that constitutive equations can predict flow stress well. An instability region in the range of temperature from 700 °C to 780 °C and the range of strain rates from 0.08 s−1 to 10 s−1, as well as a suitable region for thermomechanical processing in the range of temperature from 790 °C to 800 °C and the range of strain rates from 0.001 s−1 to 0.007 s−1, was predicted by the processing map and confirmed by the hot-deformed microstructural verification. After the deformation at 790 °C/0.001 s−1, the maximum number of dynamic recrystallization grains and the minimum average grain size of 17 μm were obtained, which is consistent with the high power-dissipation coefficient region predicted by the processing map. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials)
Show Figures

Figure 1

17 pages, 9130 KiB  
Article
Effect of High-Pressure Torsion and Annealing on the Structure, Phase Composition, and Microhardness of the Ti-18Zr-15Nb (at. %) Alloy
by Dmitry Gunderov, Karina Kim, Sofia Gunderova, Anna Churakova, Yuri Lebedev, Ruslan Nafikov, Mikhail Derkach, Konstantin Lukashevich, Vadim Sheremetyev and Sergey Prokoshkin
Materials 2023, 16(4), 1754; https://doi.org/10.3390/ma16041754 - 20 Feb 2023
Cited by 9 | Viewed by 2167
Abstract
The Ti-18Zr-15Nb shape memory alloys are a new material for medical implants. The regularities of phase transformations during heating of this alloy in the coarse-grained quenched state and the nanostructured state after high-pressure torsion have been studied. The specimens in quenched state (Q) [...] Read more.
The Ti-18Zr-15Nb shape memory alloys are a new material for medical implants. The regularities of phase transformations during heating of this alloy in the coarse-grained quenched state and the nanostructured state after high-pressure torsion have been studied. The specimens in quenched state (Q) and HPT state were annealed at 300–550 °C for 0.5, 3, and 12 h. The α-phase formation in Ti-18Zr-15Nb alloy occurs by C-shaped kinetics with a pronounced peak near 400–450 °C for Q state and near 350–450 °C for HPT state, and stops or slows down at higher and lower annealing temperatures. The formation of a nanostructured state in the Ti-18Zr-15Nb alloy as a result of HPT suppresses the β→ω phase transformation during low-temperature annealing (300–350 °C), but activates the β→α phase transformation. In the Q-state the α-phase during annealing at 450–500 °C is formed in the form of plates with a length of tens of microns. The α-phase formed during annealing of nanostructured specimens has the appearance of nanosized particle-grains of predominantly equiaxed shape, distributed between the nanograins of β-phase. The changes in microhardness during annealing of Q-specimens correlate with changes in phase composition during aging. Full article
(This article belongs to the Special Issue Design and Applications of Functional Materials, Volume II)
Show Figures

Figure 1

22 pages, 7721 KiB  
Article
Microstructure and Properties of Ti-Zr-Mo Alloys Fabricated by Laser Directed Energy Deposition
by Jingtao Zhang, Cunshan Wang and Nisha Shareef
Materials 2023, 16(3), 1054; https://doi.org/10.3390/ma16031054 - 25 Jan 2023
Cited by 6 | Viewed by 2480
Abstract
The binary Ti-Zr congruent alloys have been a potential candidate for laser-directed energy deposition owing to an excellent combination of high structural stability and good formability. To solve its insufficient strength, a new series of Ti-Zr-Mo alloys with different Mo contents were designed [...] Read more.
The binary Ti-Zr congruent alloys have been a potential candidate for laser-directed energy deposition owing to an excellent combination of high structural stability and good formability. To solve its insufficient strength, a new series of Ti-Zr-Mo alloys with different Mo contents were designed based on a cluster model and then made by laser-directed energy deposition on a high-purity titanium substrate. The effect of Mo content on the microstructure and properties of the L-DEDed alloys was investigated. The consequences exhibit that the microstructure of all designed alloys is featured with near-equiaxed β grains without obvious texture. However, increasing Mo content induces a gradual refinement of the grain and a steady decrease in the lattice constant, which effectively improves the hardness, strength, wear and corrosion resistance of the designed alloys, but slightly weakens ductility and formability. From the viewpoint of both properties and forming quality, the Ti60.94Zr36.72Mo2.34 (at.%) alloy owns a proper match in mechanical, tribological, chemical, and forming properties, which is widely used in aeroengine components. Full article
Show Figures

Graphical abstract

11 pages, 6787 KiB  
Article
Direct Powder Forging—A New Approach for near Net Shape Processing of Titanium Powders
by Sébastien Germain Careau, Elena Ulate-Kolitsky and Bernard Tougas
Powders 2023, 2(1), 21-31; https://doi.org/10.3390/powders2010002 - 4 Jan 2023
Cited by 4 | Viewed by 3115
Abstract
This study investigates direct powder forging (DPF) as a new approach for near-net-shape processing of titanium alloys using a coarse particle size distribution (PSD) between 90 and 250 μm. This route was utilised to takes advantage of DPF’s enclosed nature to make near-net-shape [...] Read more.
This study investigates direct powder forging (DPF) as a new approach for near-net-shape processing of titanium alloys using a coarse particle size distribution (PSD) between 90 and 250 μm. This route was utilised to takes advantage of DPF’s enclosed nature to make near-net-shape components with conventional forging equipment, making it attractive and viable even for reactive powder such as titanium. In this study, the uncompacted Ti-6Al-4V ELI powder was sealed under vacuum in a stainless-steel canister and hot forged in air to produce a fully dense titanium femoral stem. After the final forging stage, the excess material in the flash region was cut, which efficiently released the canister, revealing the forged part with minimal surface contamination. The as-forged microstructure comprises coarse β grains with a martensitic structure. The subsequent annealing was able to generate a fine and homogenous lamellar microstructure with mechanical properties that respects the surgical implant standard, showing that DPF offers significant potential for forged titanium parts. Therefore, the DPF process provides a suitable alternative to produce titanium components using basic equipment, making it more available to the industry. Full article
(This article belongs to the Special Issue Feature Papers in Powders)
Show Figures

Figure 1

Back to TopTop