Corrosion Resistance of the Welded Joints from the Ultrafine-Grained Near-α Titanium Alloys Ti-5Al-2V Obtained by Spark Plasma Sintering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Properties of the Alloy in the Initial State
3.2. Macrostructure of the Specimens after Diffusion Welding
3.3. Microstructure of Specimens after Diffusion Welding
3.4. Hot Salt Corrosion Test
3.5. Electrochemical Corrosion Test
3.6. Microhardness Test
4. Discussion
4.1. Corrosion Resistance of Welded Joints. Crevice Corrosion
4.2. Corrosion Resistance of the Metal. Pitting and Intercrystalline Corrosion
5. Conclusions
- The effect of the regimes of high-speed diffusion welding by SPS on the density and microstructure of the near-α titanium alloy Ti-5Al-2V (Russian industrial grade PT-3V) has been investigated. The UFG specimens have been shown to have higher weldability compared to the coarse-grained alloys in the welded joints wherein the macrodefects and macropores provoking the crevice corrosion were observed. In the UFG specimens, the joint macrodefects were practically absent, and the volume fractions of the macro- and micropores were very small which makes the welded joints highly resistant to crevice corrosion.
- The corrosion resistance of the coarse-grained Ti-5Al-2V alloy specimens after the diffusion welding was shown to exceed the corrosion resistance of the alloy in the initial state. Outside of the welded joints, the HSC of the coarse-grained specimens goes by the intercrystalline and pitting corrosion mechanisms. The corrosion defects were distributed over the surfaces of coarse-grained specimens nonuniformly and were concentrated mainly in the area of the fine-grained elongated α-grain, at the grain boundaries of which an increased volume fraction of the β-particles was observed. The HSC of the coarse-grained specimens has a two-stage character—at the first stage, the intercrystalline corrosion is developing, which then transforms into pitting corrosion.
- The corrosion resistance of the UFG alloy Ti-5Al-2V was found to depend mainly on the concentration of the corrosion-active alloying elements (vanadium) at the titanium grain boundaries. Increasing the local concentration of vanadium on the migrating grain boundaries in the titanium alloy with increasing temperatures and diffusion welding times negatively affects resistance against the HSC. The diffusion welding performed by the temperature close to the α→β phase transition boundary (700 °C) at the stress 50 MPa while holding (t = 10 min) was shown to be the most preferable. It ensures the formation of the fine-grained microstructure with simultaneously increased hardness and corrosion resistance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lütjering, G.; Williams, J.C. Titanium, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007; p. 442. [Google Scholar]
- Jafee, R.I.; Burte, H.M. (Eds.) Titanium Science and Technology; Springer: New York, NY, USA, 1973; p. 2739. [Google Scholar]
- Gorynin, I.V.; Chechulin, B.B. Titan in Mechanical Engineering; Mashinostroenie: Moscow, Russia, 1990; p. 400. (In Russian) [Google Scholar]
- Bilobrov, I.; Trachevsky, V. Approach to modify the properties of titanium alloys for use in nuclear industry. J. Nucl. Mater. 2011, 415, 222–225. [Google Scholar] [CrossRef]
- Oryshchenko, A.S.; Gorynin, I.V.; Leonov, V.P.; Kudryavtsev, A.S.; Mikhaylov, V.I.; Chudakov, E.V. Marine titanium alloys: Present and future. Inorg. Mater. Appl. Res. 2015, 6, 571–579. [Google Scholar] [CrossRef]
- Leonov, V.P.; Gorynin, I.V.; Kudryavtsev, A.S.; Ivanova, L.A.; Travin, V.V.; Lysenko, L.V. Titanium alloys in steam turbine construction. Inorg. Mater. Appl. Res. 2015, 6, 580–590. [Google Scholar] [CrossRef]
- Gorynin, I.V. Titanium alloys for marine application. Mater. Sci. Eng. A. 1999, 263, 112–116. [Google Scholar] [CrossRef]
- Leonov, V.P.; Chudakov, E.V.; Malinkina, Y.Y. The influence of microadditives of ruthenium on the structure, corrosive-mechanical strength, and fractography of destruction of pseudo-alpha-titanium alloys. Inorg. Mater. Appl. Res. 2017, 8, 556–565. [Google Scholar] [CrossRef]
- Kozhevnikov, O.A.; Nesterova, E.V.; Rybin, V.V.; Yarmolovich, I.I. Influence of neutron irradiation of deformability and fracture micromechanisms of titanium α-alloys. J. Nucl. Mater. 1999, 271–272, 472–477. [Google Scholar] [CrossRef]
- Malinkina, Y.Y.; Chudakov, E.V.; Leonov, V.P. The influence of ruthenium on structure, corrosion and mechanical properties, and fatigue characteristics of titanium α-alloys in corrosive environment. Inorg. Mater. Appl. Res. 2017, 8, 906–913. [Google Scholar] [CrossRef]
- Murashov, A.A.; Berendeyev, N.N.; Nokhrin, A.V.; Galaeva, E.A.; Chuvil’deev, V.N. Investigation of the process of fatigue and corrosion-fatigue destruction of pseudo-α titanium alloy. Inorg. Mater. Appl. Res. 2022, 13, 349–356. [Google Scholar] [CrossRef]
- Segal, V. Review: Modes and Processes of Severe Plastic Deformation. Materials 2018, 11, 1175. [Google Scholar] [CrossRef] [Green Version]
- Segal, V.M.; Beyerlein, I.J.; Tome, C.N.; Chuvil’deev, V.N.; Kopylov, V.I. Fundamentals and Engineering of Severe Plastic Deformation; Nova Science Publishers: New York, NY, USA, 2010; p. 542. [Google Scholar]
- Gornakova, A.S.; Straumal, A.B.; Khodos, I.I.; Gnesin, I.B.; Mazilkin, A.A.; Afonikova, N.S.; Straumal, B.B. Effect of composition, annealing temperature, and high pressure torsion on structure and hardness of Ti-V and Ti-V-Al alloys. J. Appl. Phys. 2019, 125, 082522. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kilmametov, A.R.; Ivanisenko, Y.; Mazilkin, A.A.; Valiev, R.Z.; Afonikova, N.S.; Gornakova, A.S.; Hahn, H. Diffusive and displacive phase transitions in Ti-Fe and Ti-Co alloys under high pressure torsion. J. Alloys Compd. 2018, 735, 2281–2286. [Google Scholar] [CrossRef]
- Alkazraji, H.; El-Danaf, E.; Wolfmann, M.; Wagner, L. Enhanced fatigue strength of commercially pure Ti processed by rotary swaging. Adv. Mater. Sci. Eng. 2015, 2015, 301837. [Google Scholar] [CrossRef] [Green Version]
- Pachla, W.; Kulczyk, M.; Prybysz, S.; Skiba, J.; Wojciechowski, K.; Przybysz, M.; Topolsky, K.; Sobolewski, A.; Charkiewics, M. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2. J. Mater. Process. Techn. 2015, 221, 255–268. [Google Scholar] [CrossRef]
- Zherebtsov, S.; Kudryavtsev, E.; Kostjuchenko, S.; Kostjuchenko, S.; Malysheva, S.; Salichchev, G. Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging. Mater. Sci. Eng. A. 2012, 536, 190–196. [Google Scholar] [CrossRef]
- Zherebtsov, S.V.; Kudryavtsev, E.A.; Salishchev, G.A.; Straumal, B.B.; Semiatin, S.L. Microstructure evolution and mechanical behavior of ultrafine Ti-6Al-4V during low-temperature superplastic deformation. Acta Mater. 2016, 121, 152–163. [Google Scholar] [CrossRef]
- Czervinski, A.; Lapovok, R.; Tomus, D.; Estrin, Y.; Vinogradov, A. The influence of temporary hydrogenation on ECAP formability and low cycle fatigue life of CP titanium. J. Alloys Compd. 2011, 509, 2709–2715. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Fatigue behavior of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview. Int. J. Fatigue 2010, 32, 898–907. [Google Scholar] [CrossRef]
- Vinogradov, A.Y.; Stolyarov, V.V.; Hashimoto, S.; Valiev, R.Z. Cyclic behavior of ultrafine-grain titanium processed by severe plastic deformation. Mater. Sci. Eng. A. 2001, 318, S0921–S5093. [Google Scholar] [CrossRef]
- Kral, P.; Dvorak, J.; Zherebtsov, S.; Salishchev, G.; Kvapilova, M.; Sklenichka, V. Effect of severe plastic deformation on creep behaviour of a Ti-6Al-4V alloy. J. Mater. Sci. 2013, 48, 4789–4795. [Google Scholar] [CrossRef]
- Kral, P.; Dvorak, J.; Blum, W.; Kudryavtsev, E.; Zherebtsov, S.; Salishchev, G.; Kvapilova, M.; Sklenichka, V. Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD. Mater. Charact. 2016, 116, 84–90. [Google Scholar] [CrossRef]
- Balyanov, A.; Kutnyakova, J.; Amirkhanova, N.A.; Stolyarov, V.V.; Valiev, R.Z.; Liao, X.Z.; Zhao, Y.H.; Jiang, Y.B.; Xu, H.F.; Lowe, T.C.; et al. Corrosion resistance of ultrafine-grained Ti. Scr. Mat. 2004, 51, 225–229. [Google Scholar] [CrossRef]
- huvil’Deev, V.N.; Kopylov, V.I.; Nokhrin, A.V.; Tryaev, P.V.; Kozlova, N.A.; Tabachkova, N.Y.; Lopatin, Y.G.; Ershova, A.V.; Mikhaylov, A.S.; Gryaznov, M.Y.; et al. Study of mechanical properties and corrosive resistance of ultrafine-grained α-titanium alloy Ti-5Al-2V. J. Alloys Compd. 2017, 723, 354–367. [Google Scholar] [CrossRef]
- Mosleh, A.O.; Mikhaylovskaya, A.V.; Kotov, A.D.; Sitkina, M.; Mestre-Rinn, P.; Kwame, J.S. Superplastic deformation behavior of ultra-fine-grained Ti-1V-4Al-3Mo alloy: Constitutive modeling and processing map. Mater. Res. Expr. 2019, 6, 096584. [Google Scholar] [CrossRef]
- Raltson, K.; Birbilis, N. Effect of grain size on corrosion: A review. Corrosion 2010, 66, 0750051–07500513. [Google Scholar] [CrossRef]
- Gu, Y.; Ma, A.; Jiang, J.; Li, H.; Song, D.; Wu, H.; Yuan, Y. Simultaneously improving mechanical properties and corrosion resistance of pure Ti by continuous ECAP plus short-duration annealing. Mater. Charact. 2018, 138, 38–47. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Imantalab, O.; Ansari, G. The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank’s physiological solution. Mater. Sci. Eng. C. 2017, 71, 827–834. [Google Scholar] [CrossRef]
- Chojnaka, A.; Kawalko, J.; Koscielny, H.; Guspiel, J.; Drewienkiewicz, A.; Bieda, M.; Pachla, W.; Kulczyk, M.; Sztwierthia, K.; Beltowska-Lehman, E. Corrosion anisotropy of titanium deformed by the hydrostatic extrusion. Appl. Surf. Sci. 2017, 426, 987–994. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, W.J. Annealing effects on the corrosion resistance of ultrafine-grained pure titanium. Cor. Sci. 2014, 89, 331–337. [Google Scholar] [CrossRef]
- Kim, H.S.; Yoo, S.J.; Ahn, J.W.; Kim, D.H.; Kim, W.J. Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater. Sci. Eng. A. 2011, 528, 8479–8485. [Google Scholar] [CrossRef]
- Gurao, N.P.; Manivasagam, G.; Govindaraj, P.; Asokamani, R.; Suwas, S. Effect of texture and grain size on bio-corrosion response of ultrafine-grained titanium. Metall. Mater. Trans. A 2013, 44, 5602–5610. [Google Scholar] [CrossRef]
- Korshunov, A.V.; Il’in, A.P.; Lotkov, A.I.; Ratochka, I.V.; Morozova, T.P.; Lykova, O.N. Reactivity of submicrocrystalline titanium: I. Regulation of oxidation when heated in air. Inorg. Mater. Appl. Res. 2012, 4, 5–12. (In Russian) [Google Scholar]
- Bozhko, P.V.; Korshunov, A.V.; Il’in, A.P.; Lotkov, A.I.; Ratochka, I.V. Reactivity of submicrocrystalline titanium: II. Electrochemical properties and corrosion stability in sulfuric acid solutions. Inorg. Mater. Appl. Res. 2013, 4, 85–91. [Google Scholar] [CrossRef]
- Topol’s’kyi, V.P.; Petrychenko, I.K.; Akhonin, S.V.; Mishchenko, R.M. Weldability of T110 high-strength titanium alloy. Mater. Sci. 2008, 44, 413–417. [Google Scholar] [CrossRef]
- Lukoyanov, A.V. Formation of pores in the weld metal in automatic argon-shielded arc welding of titanium alloys. Welding Int. 2014, 28, 301–303. [Google Scholar] [CrossRef]
- Gao, F.; Li, P.; Jiang, P.; Liao, Z. The effect of constraint conditions on microstructure and properties of titanium alloy electron beam welding. Mater. Sci. Eng. A 2018, 721, 117–124. [Google Scholar] [CrossRef]
- Su, M.-L.; Li, J.-N.; Liu, K.-G.; Qi, W.-J.; Weng, F.; Zhang, Y.-B.; Li, J.-S. Mechanical property and characterization of TA1 titanium alloy sheets welded by vacuum electron beam welding. Vacuum 2019, 159, 315–318. [Google Scholar] [CrossRef]
- Mironov, S.; Sato, Y.S.; Kokawa, H. Friction-stir welding and processing of Ti-6Al-4V titanium alloy: A review. J. Mater. Sci. Techn. 2018, 34, 58–72. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Y.; Cao, J.; Shen, J.; dos Santos, J.F. Recent progress on control strategies for inherent issues in friction stir welding. Progr. Mater. Sci. 2021, 115, 100706. [Google Scholar] [CrossRef]
- Medvedev, A.Y.; Bychkov, V.M.; Selivanov, A.S.; Pavlinich, S.P.; Dautov, S.K.; Supov, A.V. Linear friction welding of two-phase titanium alloys VT6 and VT8-1. Welding Int. 2015, 29, 66–69. [Google Scholar] [CrossRef]
- Nasresfahani, A.R.; Soltanipur, A.R.; Farmanesh, K.; Ghasemi, A. The effect of friction stir welding on corrosion behavior of Ti-6Al-4V. J. Mater. Eng. Perform. 2017, 26, 4311–4318. [Google Scholar] [CrossRef]
- Olevsky, E.; Dudina, D. Field-Assisted Sintering; Springer: Basel, Switzerland, 2018; p. 425. [Google Scholar] [CrossRef]
- Tokita, M. Spark Plasma Sintering (SPS) Method, Systems, and Applications. In Handbook of Advanced Ceramics, 2nd ed.; Somiya, S., Ed.; Academic Press: London, UK, 2013; pp. 1149–1177. [Google Scholar] [CrossRef]
- Hulbert, D.M.; Anders, A.; Dudina, D.V.; Andresson, J.; Jiang, D.; Unuvar, C.; Anselmi-Tamburini, U.; Lavernia, E.J.; Mukherjee, A.K. The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 2008, 104, 033305. [Google Scholar] [CrossRef] [Green Version]
- Ozerov, M.; Klimova, M.; Sokolovsky, V.; Stepanov, N.; Popov, A.; Boldin, M.; Zherebtsov, S. Evolution of microstructure and mechanical properties of Ti/TiB metal-matrix composite during isothermal multiaxial forging. J. Alloys Compd. 2019, 770, 840–848. [Google Scholar] [CrossRef]
- Weston, N.S.; Derguti, F.; Tudball, A.; Jackson, M. Spark plasma sintering of commercial and development titanium alloys powders. J. Mater. Sci. 2015, 50, 4860–4878. [Google Scholar] [CrossRef]
- Chuvil’deev, V.N.; Nokhrin, A.V.; Kopylov, V.I.; Boldin, M.S.; Vostokov, M.M.; Gryaznov, M.Y.; Tabachkova, N.Y.; Tryaev, P. Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti-5Al-2V alloy with high strength and corrosion resistance for nuclear engineering. J. Mater. Sci. 2019, 54, 14926–14949. [Google Scholar] [CrossRef]
- Yang, J.; Wang, G.; Jiao, X.; Gu, Y.; Liu, Q.; Li, Y. Current-assisted diffusion bonding of extruded Ti-22Al-25Nb alloy by Spark Plasma Sintering: Interfacial microstructure and mechanical properties. J. Mater. Engin. Perform. 2018, 27, 3035–3043. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, G.; Zhang, Y.; Wang, Y.; Hou, H. Fast recrystallization and phase transformation in ECAP deformed Ti-6Al-4V alloy induced by pulsed electric current. J. Alloys Compd. 2019, 786, 733–741. [Google Scholar] [CrossRef]
- Nokhrin, A.; Andreev, P.; Boldin, M.; Chuvil’deev, V.; Chegurov, M.; Smetanina, K.; Gryaznov, M.; Shotin, S.; Nazarov, A.; Shcherbak, G.; et al. Investigation of microstructure and corrosion resistance of Ti-Al-V titanium alloys obtained by Spark Plasma Sintering. Metals 2021, 11, 945. [Google Scholar] [CrossRef]
- Chevrot, T. Pressure Effects on the Holt-Salt Stress-Corrosion Cracking of Titanium Alloys. Ph.D. Thesis, Cranfield University, School of Industrial and Manufacturing Science, Bedford, UK, 1994. Available online: https://dspace.lib.cranfield.ac.uk/handle/1826/7745 (accessed on 12 April 2023).
- Sinigaglia, D.; Taccani, G.; Vicentini, B. Hot-salt-stress-corrosion cracking of titanium alloys. Cor. Sci. 1998, 18, 781–796. [Google Scholar] [CrossRef]
- Pustode, M.D.; Raja, V.S.; Paulose, N. The stress-corrosion cracking suspeptibility of near-α titanium alloy IMI 834 in presence of hot salt. Cor. Sci. 2014, 82, 191–196. [Google Scholar] [CrossRef]
- Ciszaka, C.; Popa, I.; Brossard, J.-M.; Monceau, D.; Chevalier, S. NaCl induced corrosion of Ti-6Al-4V alloy at high temperature. Cor. Sci. 2016, 110, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.R.; Hall, J.A. Hat salt corrosion cracking of titanium alloys: An improved model for the mechanism. Corrosion 1977, 33, 252–257. [Google Scholar] [CrossRef]
- Pustode, M.D.; Raja, V.S. Hot salt stress corrosion cracking behavior of Ti-6242S alloy. Metall. Mater. Trans. A 2015, 46, 6081–6089. [Google Scholar] [CrossRef]
- Pustode, M.D.; Raja, V.S.; Dewangan, B.; Paulose, N. Effect of long term exposure and hydrogen effects on HSSCC behaviour of titanium alloy IMI 834. Mater. Des. 2015, 86, 841–847. [Google Scholar] [CrossRef]
- Joseph, S.; Lindley, T.C.; Dye, D.; Saunders, E.A. The mechanisms of hot salt stress corrosion cracking in titanium alloy Ti-6Al-2Sn-4Zr-6Mo. Cor. Sci. 2018, 134, 169–178. [Google Scholar] [CrossRef]
- Pyshmintsev, I.Y.; Kosmatskii, Y.I.; Filyaeva, E.A.; Illarionov, A.G.; Vodolazskii, F.V.; Barannikova, N.A. Alloy Ti-3Al-2.5V hot-extruded pipe metal structure and properties. Metallurgist 2018, 62, 374–379. [Google Scholar] [CrossRef]
- Illarionov, A.G.; Kostamatskii, Y.I.; Filyaeva, E.A.; Vodolazskii, F.V.; Barannikova, N.A. Experimental determination of temperature parameters for evaluating the possibility of manufacturing alloy Ti-3Al-2.5V hot-extruded tubes. Metallurgist 2017, 60, 983–988. [Google Scholar] [CrossRef]
- Illarionov, A.G.; Vodolazskiy, F.V.; Barannikova, N.A.; Kosmatskiy, Y.I.; Khudorozhkova, Y.V. Influence of phase composition on thermal expansion of Ti-0.4Al, Ti-2.2Al-2.5Zr and Ti-3Al-2.5V alloys. J. Alloys Compd. 2021, 857, 158049. [Google Scholar] [CrossRef]
- Chuvil’deev, V.N.; Kopylov, V.I.; Nokhrin, A.V.; Tryaev, P.V.; Tabachkova, N.Y.; Chegurov, M.K.; Kozlova, N.A.; Mikhaylov, A.S.; Ershova, A.V.; Gryaznov, M.Y.; et al. Effect of severe plastic deformation realized by rotary swaging on the mechanical properties and corrosion resistance of near-α-titanium alloy Ti-2.5Al-2.6Zr. J. Alloys Compd. 2019, 785, 1233–1244. [Google Scholar] [CrossRef]
- Bykh, O.; Bakhmetev, A.; Sandler, N.; Tryaev, P.V.; Ershova, A.V.; Mikhaylov, A.S.; Sozinov, A.N. Hot-salt corrosion of alloys PT-7M, 42XHM, Inconel 690 and Incoloy 800. Appl. Solid State Chem. 2019, 1, 23–31. [Google Scholar] [CrossRef]
- Andreev, P.V.; Gudz, D.A.; Smetanina, K.E. Surface treatment of titanium alloys for the X-ray diffraction study. AIP Conf. Proc. 2020, 2315, 03001. [Google Scholar] [CrossRef]
- Tomashov, N.D.; Chernova, G.P. Theory of Corrosion and Corrosion-Resistant Structural Alloys; Metallurgiya: Moscow, Russia, 1986; p. 358. (In Russian) [Google Scholar]
- Tavadze, F.N.; Mandzhgaladze, S.N. Corrosion Resistance of Titanium Alloys; Metallurgiya: Moscow, Russia, 1969; p. 208. (In Russian) [Google Scholar]
- Tomashov, N.D. Titanium and Titanium-Based Corrosion-Resistance Alloys; Metallurgiya: Moscow, Russia, 1985; p. 80. (In Russian) [Google Scholar]
- Ratochka, I.V.; Lykova, O.N.; Naydenkin, E.V. Influence of low-temperature annealing time on the evolution of the structure and mechanical properties of a titanium Ti-Al-V alloy in the submicrocrystalline state. Phys. Metals Metallogr. 2015, 116, 302–308. [Google Scholar] [CrossRef]
- Ratochka, I.; Lykova, O.; Mishin, I.; Naydenkin, E. Superplastic deformation behavior of Ti-4Al-2V alloy governed by its structure and precipitation phase evolution. Mater. Sci. Eng. A 2018, 731, 577–582. [Google Scholar] [CrossRef]
- Sherbinin, V.F.; Leonov, V.P.; Malinkina, Y.Y. Increase in corrosion resistance of titanium alloy in concentrated aqueous solutions of chlorides at high temperatures. Inorg. Mater. Appl. Res. 2013, 4, 537–541. [Google Scholar] [CrossRef]
- Bokhonov, B.; Ukhina, A.; Dudina, D.; Anisimov, A.G.; Mali, V.I.; Batraev, I.S. Carbon uptake during Spark Plasma Sintering: Investigation through the analysis of the carbide “footprint” in a Ni-W alloy. RSC Adv. 2015, 5, 80228–80237. [Google Scholar] [CrossRef]
- Dudina, D.V.; Bokhonov, B.B.; Ukhina, A.V.; Anisimov, A.G.; Mali, V.I.; Esikov, M.A.; Batraev, I.S.; Kuznechik, O.O.; Pilinevich, L.P. Reactivity of materials towards carbon of graphite foil during Spark Plasma Sintering: A case study using Ni-W powders. Mater. Lett. 2016, 168, 62–67. [Google Scholar] [CrossRef]
- Gornakova, A.S.; Straumal, B.B.; Prokofiev, S.I. Coarsening of (αTi) + (βTi) microstructure in the Ti-Al-V alloy at constant temperature. Adv. Eng. Mater. 2018, 20, 1800510. [Google Scholar] [CrossRef]
- Gornakova, A.S.; Prokofjev, S.I. Energetics of intergranular and Interphase boundaries in Ti-6Al-4V alloys. J. Mater. Sci. 2020, 55, 9225–9236. [Google Scholar] [CrossRef]
- Kristallisationaus Schmelzen; Hein, K.; Buhrig, E. (Eds.) VEB Deutscher Verlag für Grundstoffindustrie: E. Leipzig, Germany, 1983; p. 356. (In Germany) [Google Scholar]
- Huang, S.; Zhang, J.; Ma, Y.; Zhang, S.; Youssef, S.S.; Qi, M.; Wang, H.; Qiu, J.; Xu, D.; Lei, J.; et al. Influence of thermal treatment on element partitioning in α+β titanium alloy. J. Alloys Compd. 2019, 791, 575–585. [Google Scholar] [CrossRef]
Contents of Alloying Elements, wt.% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ti | Al | V | Zr | Fe | Si | O | N | C | H | |
Tested alloy | Balance | 4.73 | 1.88 | 0.019 | 0.11 | 0.03 | 0.042 | 0.01 | 0.0024 | 0.004 |
Russian standard GOST 19807-91 | Balance | 3.5–5.0 | 1.2–2.5 | ≤0.30 | ≤0.25 | ≤0.12 | ≤0.15 | ≤0.04 | ≤0.1 | ≤0.006 |
No. | Welding Regime | Coarse-Grained Alloy | UFG Alloy | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T, °C | Vh, °C/min | t, min | P, MPa | dα, µm | dβ, µm | Weld Porosity (Zone II) | Hv, GPa | dα, µm | dβ, µm | Weld Porosity (Zone II) | Hv, GPa | |||
Weld | Alloy | Weld | Alloy | |||||||||||
0 | State before welding | 10–100 | 3–15 | - | - | 2.0–2.1 | 0.5 | - | - | - | 3.1–3.2 | |||
1 | 600 | 100 | 10 | 50 | ~16 | 3.2 | High | 2.5 | 2.4–2.5 | 4.8 | 2.4 | High | 3.0 | 3.0–3.1 |
2 | 700 | ~17 | 3.0 | Medium | 2.5 | 2.5–2.6 | 5.9 | 3.0 | Low | 2.8 | 2.8–2.9 | |||
3 | 800 | ~18–19 | 5.1 | Medium | 2.3 | 2.3–2.4 | 6.9 | 3.3 | Medium | 3.2 | 3.2 | |||
4 | 1030 | ~12 | – | Low | 2.5 | 2.4 | - | - | - | |||||
1142 | - | - | - | - | - | 5.2 | Low | 2.6 | 2.6–2.7 | |||||
5 | 700 | 10 | 10 | 50 | ~16–18 | 5.0 | Low | 2.6 | 2.5 | 6.8 | 3.1 | High | 2.5 | 2.5–2.6 |
6 | 50 | ~17–18 | 3.5 | Medium | 2.6 | 2.4–2.3 | 5.5 | 3.3 | Medium | 2.7 | 2.8–2.9 | |||
7 | 100 | ~18–19 | 3.0 | Medium | 2.4 | 2.5 | 5.9 | 3.0 | Low | 2.7 | 2.7–2.9 | |||
8 | 350 | ~18 | 3.0 | High | 2.4 | 2.5 | 3.8 | 3.3 | Low | 2.9 | 3.0–3.1 | |||
9 | 700 | 100 | 10 | 50 | ~18–19 | 3.5 | Medium | 2.5 | 2.4–2.6 | 5.9 | 3.3 | Low | 2.7 | 2.8–2.9 |
10 | 70 | ~15 | 3.2 | High | 2.7 | 2.6–2.7 | 5.3 | 2.6 | High | 2.7 | 2.9–3.0 | |||
11 | 100 | ~10 | 2.9 | High | 2.7 | 2.5–2.6 | 4.9 | 2.5 | High | 2.7 | 3.0–3.1 | |||
12 | 700 | 100 | 0 | 50 | ~18–19 | 3.5 | High | 2.5 | 2.5–2.6 | 4.7 | 2.0 | High | 2.9 | 2.9–3.1 |
13 | 10 | ~18–19 | 3.0 | Medium | 2.4 | 2.4–2.5 | 5.9 | 3.3 | Medium | 2.7 | 2.8–2.9 | |||
14 | 50 | ~16–17 | 2.0 | Medium | 2.3 | 2.3–2.6 | 9.1 | 3.5 | Low | 2.6 | 2.8 | |||
15 | 90 | ~12–13 | 2.0 | Medium | 2.4 | 2.4–2.6 | 9.3 | 3.5 | Low | 2.5 | 2.5–2.6 |
No. | Welding Regime | Coarse-Grained Alloy | UFG Alloy | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T, °C | Vh, °C/min | t, min | P, MPa | HSC Test | Tafel Test | HSC Test | Tafel Test | |||||||||
HSC Character 1 | hmax, μm | hav, μm | icorr, mA/cm2 | Ecorr, mV | HSC Character 1 | hmax, μm | hav, μm | icorr, mA/cm2 | Ecorr, mV | |||||||
Zone I | Zone II | Zone I | Zone II | |||||||||||||
0 | State before welding | ICC | ~600 | ~400 | - | - | ICC | ~150 | ~100 | - | - | |||||
1 | 600 | 100 | 10 | 50 | C | P, ICC | 223 | 162 ± 43 | 1.21 | −471 | C | P, ICC | 188 | 124 ± 34 | 1.03 | −486 |
2 | 700 | C | P, ICC | 235 | 231 ± 39 | 1.69 | −500 | - | P, ICC | 420 | 273 ± 62 | 0.92 | −507 | |||
3 | 800 | C | P | 280 | 265 ± 48 | 1.30 | −456 | C | P, ICC | 400 | 285 ± 59 | 0.66 | −468 | |||
4 | 1030 | - | P | 358 | 184 ± 35 | 1.74 | −467 | - | - | - | - | - | - | |||
1142 | - | - | - | - | - | - | C | P, ICC | 557 | 211 ± 45 | 0.82 | −499 | ||||
5 | 700 | 10 | 10 | 50 | - | P, ICC | 238 | 182 ± 45 | 1.12 | −473 | - | P | 171 | 132 ± 24 | 0.66 | −500 |
6 | 50 | C | P, ICC | 235 | 231 ± 39 | 1.51 | −476 | - | P, ICC | 442 | 304 ± 51 | 1.32 | −479 | |||
7 | 100 | C | P, ICC | 358 | 185 ± 75 | 1.69 | −500 | - | P, ICC | 420 | 273 ± 42 | 0.92 | −507 | |||
8 | 350 | C | P, ICC | 444 | 220 ± 92 | 0.99 | −509 | - | P, ICC | 451 | 189 ± 36 | 0.16 | −180 | |||
9 | 700 | 100 | 10 | 50 | C | P, ICC | 290 | 215 ± 49 | 0.66 | −470 | - | P, ICC | 430 | 280 ± 30 | 0.92 | −507 |
10 | 70 | C | P, ICC | 132 | 108 ± 21 | 0.69 | −495 | - | P | 138 | 113 ± 28 | 1.09 | −502 | |||
11 | 100 | C | P, ICC | 246 | 178 ± 77 | 1.04 | −495 | - | P | 163 | 93 ± 40 | 1.12 | −494 | |||
12 | 700 | 100 | 0 | 50 | C | P, ICC | 390 | 211 ± 82 | 1.24 | −475 | C | P, ICC | 385 | 249 ± 58 | 1.77 | −507 |
13 | 10 | C | P, ICC | 358 | 184 ± 75 | 1.62 | −486 | - | P, ICC | 358 | 284 ± 55 | 0.92 | −507 | |||
14 | 50 | C | P, ICC | 354 | 191 ± 67 | 1.27 | −452 | - | P, ICC | 495 | 237 ± 40 | 1.24 | −498 | |||
15 | 90 | C | P, ICC | 163 | 125 ± 62 | - | - | P, ICC | 512 | 297 ± 47 | 1.20 | −488 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuvil’deev, V.; Nokhrin, A.; Likhnitskii, C.; Kopylov, V.; Andreev, P.; Boldin, M.; Tabachkova, N.; Malkin, A. Corrosion Resistance of the Welded Joints from the Ultrafine-Grained Near-α Titanium Alloys Ti-5Al-2V Obtained by Spark Plasma Sintering. Metals 2023, 13, 766. https://doi.org/10.3390/met13040766
Chuvil’deev V, Nokhrin A, Likhnitskii C, Kopylov V, Andreev P, Boldin M, Tabachkova N, Malkin A. Corrosion Resistance of the Welded Joints from the Ultrafine-Grained Near-α Titanium Alloys Ti-5Al-2V Obtained by Spark Plasma Sintering. Metals. 2023; 13(4):766. https://doi.org/10.3390/met13040766
Chicago/Turabian StyleChuvil’deev, Vladimir, Aleksey Nokhrin, Constantin Likhnitskii, Vladimir Kopylov, Pavel Andreev, Maksim Boldin, Nataliya Tabachkova, and Aleksander Malkin. 2023. "Corrosion Resistance of the Welded Joints from the Ultrafine-Grained Near-α Titanium Alloys Ti-5Al-2V Obtained by Spark Plasma Sintering" Metals 13, no. 4: 766. https://doi.org/10.3390/met13040766
APA StyleChuvil’deev, V., Nokhrin, A., Likhnitskii, C., Kopylov, V., Andreev, P., Boldin, M., Tabachkova, N., & Malkin, A. (2023). Corrosion Resistance of the Welded Joints from the Ultrafine-Grained Near-α Titanium Alloys Ti-5Al-2V Obtained by Spark Plasma Sintering. Metals, 13(4), 766. https://doi.org/10.3390/met13040766