Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,968)

Search Parameters:
Keywords = natural resource

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

27 pages, 3806 KiB  
Article
Dynamic Evolution and Resilience Enhancement of the Urban Tourism Ecological Health Network: A Case Study in Shanghai, China
by Man Wei and Tai Huang
Systems 2025, 13(8), 654; https://doi.org/10.3390/systems13080654 (registering DOI) - 2 Aug 2025
Abstract
Urban tourism has evolved into a complex adaptive system, where unregulated expansion disrupts the ecological balance and intensifies resource stress. Understanding the dynamic evolution and resilience mechanisms of the tourism ecological health network (TEHN) is essential for supporting sustainable urban tourism as a [...] Read more.
Urban tourism has evolved into a complex adaptive system, where unregulated expansion disrupts the ecological balance and intensifies resource stress. Understanding the dynamic evolution and resilience mechanisms of the tourism ecological health network (TEHN) is essential for supporting sustainable urban tourism as a coupled human–natural system. Using Shanghai as a case study, we applied the "vigor–organization–resilience–services" (VORS) framework to evaluate ecosystem health, which served as a constraint for constructing the TEHN, using the minimum cumulative resistance (MCR) model for the period from 2001 to 2023. A resilience framework integrating structural and functional dimensions was further developed to assess spatiotemporal evolution and guide targeted enhancement strategies. The results indicated that as ecosystem health degraded, particularly in peripheral areas, the urban TEHN in Shanghai shifted from a dispersed to a centralized structure, with limited connectivity in the periphery. The resilience of the TEHN continued to grow, with structural resilience remaining at a high level, while functional resilience still required enhancement. Specifically, the low integration and limited choice between the tourism network and the transportation system hindered tourists from selecting routes with higher ecosystem health indices. Enhancing functional resilience, while sustaining structural resilience, is essential for transforming the TEHN into a multi-centered, multi-level system that promotes efficient connectivity, ecological sustainability, and long-term adaptability. The results contribute to a systems-level understanding of tourism–ecology interactions and support the development of adaptive strategies for balancing network efficiency and environmental integrity. Full article
(This article belongs to the Section Complex Systems and Cybernetics)
19 pages, 865 KiB  
Article
What Are US Undergraduates Taught and What Have They Learned About US Continental Crust and Its Sedimentary Basins?
by Clinton Whitaker Crowley and Robert James Stern
Geosciences 2025, 15(8), 296; https://doi.org/10.3390/geosciences15080296 (registering DOI) - 2 Aug 2025
Abstract
We need to educate students and the public about addressing natural resource challenges to maintain civilization moving into a sustainable future. Because US mineral and energy resources are found in its continental crust and sedimentary basins, introductory geology students need to be well-informed [...] Read more.
We need to educate students and the public about addressing natural resource challenges to maintain civilization moving into a sustainable future. Because US mineral and energy resources are found in its continental crust and sedimentary basins, introductory geology students need to be well-informed about US crust and basins. We think that creating effective videos about these topics is the best way to engage students to want to learn more. In preparation for making these videos, we researched what introductory geology students are taught and what they learn about these topics. Student interviews informed us about learned curriculum, and taught curriculum was analyzed using a novel keyword-counting method applied to textbook indices. We found that geophysics is stressed twice as much as geology, radiometric dating, and sedimentary basins. We expected that students would have learned more about geophysics and less about the other topics; however, this was not the case. Students knew more about geology, and less about geophysics, radiometric dating, and sedimentary basins. To make effective videos on these topics, we need to explain the following threshold concepts: seismic refraction to scaffold student understanding of crustal geophysics, as well as radiometric dating and deep time to understand crustal geology and the economic importance of sedimentary basins. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

20 pages, 16128 KiB  
Article
Water-Yield Variability and Its Attribution in the Yellow River Basin of China over Four Decades
by Luying Li, Xin Chen, Yayuan Che, Hao Yang, Ziqiang Du, Zhitao Wu, Tao Liu, Zhenrong Du, Xiangcheng Li and Yaoyao Li
Land 2025, 14(8), 1579; https://doi.org/10.3390/land14081579 (registering DOI) - 2 Aug 2025
Abstract
The water-yield function in the Yellow River Basin (YRB) of China for maintaining the basin’s ecological water balance plays a crucial role. Understanding its spatiotemporal variation and the underlying drivers in the basin is crucial for the management, utilization, and development of water [...] Read more.
The water-yield function in the Yellow River Basin (YRB) of China for maintaining the basin’s ecological water balance plays a crucial role. Understanding its spatiotemporal variation and the underlying drivers in the basin is crucial for the management, utilization, and development of water resources. Thus, we used the InVEST model to explore its spatiotemporal dynamics across multiple scales (“basin–county–pixel”). Then, we integrated socio-economic and natural factors to elucidate the driving forces and spatial heterogeneity of water-yield dynamics. Our findings indicated that water-yield trends increased in 71.76% of the YRB, and significant water-yield increases were detected in 13.9% of the basin over the past 40 years. A phase-wise comparison revealed a shift in water yield from a decreasing trend in the first two decades to a significant increasing trend in the last two decades. Hotspot analysis revealed that hotspots of increasing water-yield trends have shifted from the downstream section of the basin toward the southwest, while hotspots of decreasing water-yield trends first concentrated in the basin’s southern part and then disappeared. Both natural and socioeconomic factors have exerted positive and negative impacts on water-yield dynamics. Among them, the dynamics of water yield have been predominantly driven by natural variables. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

18 pages, 1390 KiB  
Review
Fantastic Ferulic Acid Esterases and Their Functions
by Savvina Leontakianakou, Patrick Adlercreutz and Eva Nordberg Karlsson
Int. J. Mol. Sci. 2025, 26(15), 7474; https://doi.org/10.3390/ijms26157474 (registering DOI) - 2 Aug 2025
Abstract
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester [...] Read more.
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester bond between FA and the substituted carbohydrate moieties in FA-containing polysaccharides in the plant cell wall. This enzymatic reaction facilitates the degradation of lignocellulosic materials and is crucial for the efficient utilization of biomass resources. This review focuses on the occurrence of ferulic acid in nature and its different forms and outlines the various classification systems of FAEs, their substrate specificity, and the synergistic interactions of these enzymes with other CAZymes. Additionally, it highlights the various methods that have been developed for detecting hydroxycinnamic acids and estimating the enzyme activity, as well as the versatile applications of ferulic acid. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Figure 1

22 pages, 1620 KiB  
Article
Economic Resilience in Intensive and Extensive Pig Farming Systems
by Lorena Giglio, Tine Rousing, Dagmara Łodyga, Carolina Reyes-Palomo, Santos Sanz-Fernández, Chiara Serena Soffiantini and Paolo Ferrari
Sustainability 2025, 17(15), 7026; https://doi.org/10.3390/su17157026 (registering DOI) - 2 Aug 2025
Abstract
European pig farmers are challenged by increasingly stringent EU regulations to protect the environment from pollution, to meet animal welfare standards and to make pig farming more sustainable. Economic sustainability is defined as the ability to achieve higher profits by respecting social and [...] Read more.
European pig farmers are challenged by increasingly stringent EU regulations to protect the environment from pollution, to meet animal welfare standards and to make pig farming more sustainable. Economic sustainability is defined as the ability to achieve higher profits by respecting social and natural resources. This study is focused on the analysis of the economic resilience of intensive and extensive farming systems, based on data collected from 56 farms located in Denmark, Poland, Italy and Spain. Productive and economic performances of these farms are analyzed, and economic resilience is assessed through a survey including a selection of indicators, belonging to different themes: [i] resilience of resources, [ii] entrepreneurship, [iii] propensity to extensification. The qualitative data from the questionnaire allow for an exploration of how production systems relate to the three dimensions of resilience. Different levels of resilience were found and discussed for intensive and extensive farms. The findings suggest that intensive farms benefit from high standards and greater bargaining power within the supply chain. Extensive systems can achieve profitability through value-added strategies and generally display good resilience. Policies that support investment and risk reduction are essential for enhancing farm resilience and robustness, while strengthening farmer networks can improve adaptability. Full article
(This article belongs to the Special Issue Advanced Agricultural Economy: Challenges and Opportunities)
Show Figures

Figure 1

24 pages, 3888 KiB  
Article
Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods
by Amare Assefa Bogale, Zoltan Kende, István Balla, Péter Mikó, Boglárka Bozóki and Attila Percze
Agriculture 2025, 15(15), 1668; https://doi.org/10.3390/agriculture15151668 (registering DOI) - 1 Aug 2025
Abstract
Enhancing the nutritional content of crops is crucial for safeguarding human health and mitigating global hunger. A viable method for attaining this goal is the planned implementation of various agronomic practices, including tillage and nutrient provision. A field experiment was executed at the [...] Read more.
Enhancing the nutritional content of crops is crucial for safeguarding human health and mitigating global hunger. A viable method for attaining this goal is the planned implementation of various agronomic practices, including tillage and nutrient provision. A field experiment was executed at the Hungarian University of Agriculture and Life Sciences in Gödöllő in the 2023 and 2024 growing seasons. The study aimed to assess the effects of foliar nutrient supply and soil tillage methods on the grain nutritional composition and mineral content of winter barley. Employing a split-plot design with three replications, the experiment included four nutrient treatments (control, bio-cereal, bio-algae, and MgSMnZn blend) and two soil tillage types (i.e., plowing and cultivator). The results indicated that while protein content was not influenced by the main effects of nutrients and tillage, the levels of β-glucan, starch, crude ash, and moisture content were significantly (p < 0.05) affected by the nutrient treatments and by growing year, treated as a random factor. Notably, bio-algae and bio-cereal nutrients, combined with cultivator tillage, enhanced β-glucan content. All applied nutrient treatments increased the level of starch compared to the control. With regard to grain mineral content, the iron and zinc content responded to the nutrient supply, tillage, and growing year. However, applying a multiple-nutrient composition-based treatment did not increase iron and zinc levels, suggesting that individual applications may be more effective for increasing the content of these minerals in grains. Cultivator tillage improved iron and zinc levels. Moreover, manganese (Mn) and copper (Cu) were predominantly affected by nutrient availability and by growing seasons as a random factor. Therefore, to improve grain quality, this study emphasizes the significance of proper nutrient and tillage methods by focusing on the intricate relationships between agronomic techniques and environmental factors that shape barley’s nutritional profile. Full article
Show Figures

Figure 1

20 pages, 7986 KiB  
Article
Investigating the Gender-Climate Nexus: Strengthening Women’s Roles in Adaptation and Mitigation in the Sidi Bouzid Region
by Houda Mazhoud, Arij Boucif, Abir Ouhibi, Lobna Hajji-Hedfi and Fraj Chemak
Climate 2025, 13(8), 164; https://doi.org/10.3390/cli13080164 (registering DOI) - 1 Aug 2025
Abstract
Tunisia faces significant challenges related to climate change, which deeply affect its natural and agricultural resources. This reality threatens not only food security but also the economic stability of rural communities and mainly rural women. This research aims to assess the impact of [...] Read more.
Tunisia faces significant challenges related to climate change, which deeply affect its natural and agricultural resources. This reality threatens not only food security but also the economic stability of rural communities and mainly rural women. This research aims to assess the impact of climate change on rural women in the agricultural development group in Sidi Bouzid, focusing on the strategies adopted and the support provided by various stakeholders to mitigate this impact. To achieve this, we developed a rigorous methodology that includes structured questionnaires, focus group discussions, and topological analysis through Multiple Correspondence Analysis (MCA). The results revealed that rural women were categorized into three groups based on their vulnerability to climate change: severely vulnerable, vulnerable, and adaptive. The findings highlighted the significant impact of climate change on water resources, which has increased family tensions and reduced agricultural incomes, making daily life more challenging for rural women. Furthermore, a deeper analysis of interactions with external stakeholders emphasized the important role of civil society, public organizations, and research institutions in strengthening the climate resilience of rural women. Given these findings, strategic recommendations aim to enhance stakeholder coordination, expand partnerships, and improve access to essential technologies and resources for women in agricultural development groups. Full article
Show Figures

Figure 1

23 pages, 4589 KiB  
Review
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research
by Elena V. Uspenskaya, Ainaz Safdari, Denis V. Antonov, Iuliia A. Valko, Ilaha V. Kazimova, Aleksey A. Timofeev and Roman A. Zubarev
Med. Sci. 2025, 13(3), 107; https://doi.org/10.3390/medsci13030107 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the [...] Read more.
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the leading causes of death worldwide: as of 2022, approximately 20 million new cases were diagnosed globally, accounting for about 0.25% of the total population. Given prognostic models predicting a steady increase in cancer incidence to 35 million cases by 2050, there is an urgent need for the latest developments in physics, chemistry, molecular biology, pharmacy, and strict adherence to oncological vigilance. The purpose of this work is to demonstrate the relationship between the nature and mechanisms of past diagnostic and therapeutic oncology approaches, their current improvements, and future prospects. Particular emphasis is placed on isotope technologies in the production of therapeutic nuclides, focusing on the mechanisms of formation of simple and complex theranostic compounds and their classification according to target specificity. Methods. The methodology involved searching, selecting, and analyzing information from PubMed, Scopus, and Web of Science databases, as well as from available official online sources over the past 20 years. The search was structured around the structure–mechanism–effect relationship of active pharmaceutical ingredients (APIs). The manuscript, including graphic materials, was prepared using a narrative synthesis method. Results. The results present a sequential analysis of materials related to isotope technology, particularly nucleus stability and instability. An explanation of theranostic principles enabled a detailed description of the action mechanisms of radiopharmaceuticals on various receptors within the metabolite–antimetabolite system using specific drug models. Attention is also given to radioactive nanotheranostics, exemplified by the mechanisms of action of radioactive nanoparticles such as Tc-99m, AuNPs, wwAgNPs, FeNPs, and others. Conclusions. Radiotheranostics, which combines the diagnostic properties of unstable nuclei with therapeutic effects, serves as an effective adjunctive and/or independent method for treating cancer patients. Despite the emergence of resistance to both chemotherapy and radiotherapy, existing nuclide resources provide protection against subsequent tumor metastasis. However, given the unfavorable cancer incidence prognosis over the next 25 years, the development of “preventive” drugs is recommended. Progress in this area will be facilitated by modern medical knowledge and a deeper understanding of ligand–receptor interactions to trigger apoptosis in rapidly proliferating cells. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

14 pages, 990 KiB  
Article
Comparative Analysis of the Biomass Production and Nutritional Profiles of Two Wild-Type Strains of Yarrowia lipolytica
by David Torres-Añorve and Georgina Sandoval
Appl. Microbiol. 2025, 5(3), 77; https://doi.org/10.3390/applmicrobiol5030077 (registering DOI) - 1 Aug 2025
Abstract
Sustainability represents a significant global challenge, requiring a balance between environmental impact and the use of natural resources. White biotechnology, which uses microorganisms and enzymes for environmentally friendly products and processes, offers promising solutions to support a growing population. Within this context, the [...] Read more.
Sustainability represents a significant global challenge, requiring a balance between environmental impact and the use of natural resources. White biotechnology, which uses microorganisms and enzymes for environmentally friendly products and processes, offers promising solutions to support a growing population. Within this context, the yeast Yarrowia lipolytica stands out, so we investigated the generation of biomass from two wild strains (ATCC 9773 and NRRL Y-50997) using different carbon sources. Additionally, protein content and amino acid profiles were assessed via standardized analytical methods to evaluate their potential as nutritional yeasts. Both strains demonstrated potential as nutritional yeasts, with biomass productivities of up to 35.5 g/L and 42 g/L, respectively. The protein content was high, with 58.8% for ATCC 9773 and 58.2% for NRRL Y-50997. Furthermore, the strains presented essential amino acid contents of 62.6% and 41.5%, with lysine being the most abundant amino acid. These findings underscore the versatility and productivity of Y. lipolytica, highlighting its potential for sustainable biotechnological applications such as single-cell protein production. Full article
Show Figures

Graphical abstract

19 pages, 1654 KiB  
Article
New Weighting System for the Ordered Weighted Average Operator and Its Application in the Balanced Expansion of Urban Infrastructures
by Matheus Pereira Libório, Petr Ekel, Marcos Flávio Silveira Vasconcelos D’Angelo, Chris Brunsdon, Alexandre Magno Alves Diniz, Sandro Laudares and Angélica C. G. dos Santos
Urban Sci. 2025, 9(8), 300; https://doi.org/10.3390/urbansci9080300 (registering DOI) - 1 Aug 2025
Abstract
Urban infrastructure, such as water supply networks, sewage systems, and electricity networks, is essential for the functioning of cities and, consequently, for the well-being of citizens. Despite its essentiality, the distribution of infrastructure in urban areas is not homogeneous, especially in cities in [...] Read more.
Urban infrastructure, such as water supply networks, sewage systems, and electricity networks, is essential for the functioning of cities and, consequently, for the well-being of citizens. Despite its essentiality, the distribution of infrastructure in urban areas is not homogeneous, especially in cities in developing countries. Socially vulnerable areas often face significant deficiencies in sewage and road paving, exacerbating urban inequalities. In this regard, urban planners must consider the multiple elements of urban infrastructure and assess the compensation levels between them to reduce inequality effectively. In particular, the complexity of the problem necessitates considering the multidimensionality and heterogeneity of urban infrastructure. This complexity qualifies the operational framework of composite indicators as the natural solution to the problem. This study develops a new weighting system for the balanced expansion of urban infrastructures through composite indicators constructed by the Ordered Weighted Average operator. Implementing these weighting systems provides an opportunity to analyze urban infrastructure from different perspectives, offering transparency regarding the weaknesses and strengths of each perspective. This prevents unreliable representations from being used in decision-making and provides a solid basis for allocating investments in urban infrastructure. In particular, the study suggests that adopting weighting systems that prioritize intermediate values and avoid extreme values can lead to better resource allocation, helping to identify areas with deficient infrastructure and promoting more equitable urban development. Full article
Show Figures

Figure 1

22 pages, 7156 KiB  
Communication
Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
by Tseren Ochir Soyol-Erdene, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther and Ulrich Kamp
Geographies 2025, 5(3), 38; https://doi.org/10.3390/geographies5030038 (registering DOI) - 1 Aug 2025
Abstract
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized [...] Read more.
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized by the international organization Birdlife. However, the construction of the Taishir Hydroelectric Power Station, aimed at supplying electricity to the western provinces of Mongolia, had a detrimental effect on the flow of the Zavkhan River, resulting in a drying-up and pollution of Lake Ereen, which relies on the river as its water source. This study assesses the pollution levels in Ereen Lake and determines the feasibility of its rehabilitation by redirecting the flow of the Zavkhan River. Field studies included the analysis of water quality, sediment contamination, and the composition of flora. The results show that the concentrations of ammonium, chlorine, fluorine, and sulfate in the lake water exceed the permissible levels set by the Mongolian standard. Analyses of elements from sediments revealed elevated levels of arsenic, chromium, and copper, exceeding international sediment quality guidelines and posing risks to biological organisms. Furthermore, several species of diatoms indicative of polluted water were discovered. Lake Ereen is currently in a eutrophic state and, based on a water quality index (WQI) of 49.4, also in a “polluted” state. Mass balance calculations and box model analysis determined the period of pollutant replacement for two restoration options: drying-up and complete removal of contaminated sediments and plants vs. dilution-flushing without direct interventions in the lake. We recommend the latter being the most efficient, eco-friendly, and cost-effective approach to rehabilitate Lake Ereen. Full article
Show Figures

Figure 1

40 pages, 1548 KiB  
Article
Real-Time Service Migration in Edge Networks: A Survey
by Yutong Zhang, Ke Zhao, Yihong Yang and Zhangbing Zhou
J. Sens. Actuator Netw. 2025, 14(4), 79; https://doi.org/10.3390/jsan14040079 (registering DOI) - 1 Aug 2025
Abstract
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, [...] Read more.
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, the dynamic nature and limited resources of edge networks bring challenges such as load imbalance and high latency while satisfying user requests. Service migration, the dynamic redeployment of service instances across distributed edge nodes, has become a key enabler for solving these challenges and optimizing edge network characteristics. Moreover, the low-latency nature of edge computing requires that service migration strategies must be in real time in order to ensure latency requirements. Thus, this paper presents a systematic survey of real-time service migration in edge networks. Specifically, we first introduce four network architectures and four basic models for real-time service migration. We then summarize four research motivations for real-time service migration and the real-time guarantee introduced during the implementation of migration strategies. To support these motivations, we present key techniques for solving the task of real-time service migration and how these algorithms and models facilitate the real-time performance of migration. We also explore latency-sensitive application scenarios, such as smart cities, smart homes, and smart manufacturing, where real-time service migration plays a critical role in sustaining performance and adaptability under dynamic conditions. Finally, we summarize the key challenges and outline promising future research directions for real-time service migration. This survey aims to provide a structured and in-depth theoretical foundation to guide future research on real-time service migration in edge networks. Full article
Show Figures

Figure 1

12 pages, 1346 KiB  
Article
A Language Vision Model Approach for Automated Tumor Contouring in Radiation Oncology
by Yi Luo, Hamed Hooshangnejad, Xue Feng, Gaofeng Huang, Xiaojian Chen, Rui Zhang, Quan Chen, Wil Ngwa and Kai Ding
Bioengineering 2025, 12(8), 835; https://doi.org/10.3390/bioengineering12080835 (registering DOI) - 31 Jul 2025
Abstract
Background: Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence (AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), [...] Read more.
Background: Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence (AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), offers potential solutions yet is challenged by high false positive rates. Purpose: The Oncology Contouring Copilot (OCC) system is developed to leverage oncologist expertise for precise tumor contouring using textual descriptions, aiming to increase the efficiency of oncological workflows by combining the strengths of AI with human oversight. Methods: Our OCC system initially identifies nodule candidates from CT scans. Employing Language Vision Models (LVMs) like GPT-4V, OCC then effectively reduces false positives with clinical descriptive texts, merging textual and visual data to automate tumor delineation, designed to elevate the quality of oncology care by incorporating knowledge from experienced domain experts. Results: The deployment of the OCC system resulted in a 35.0% reduction in the false discovery rate, a 72.4% decrease in false positives per scan, and an F1-score of 0.652 across our dataset for unbiased evaluation. Conclusions: OCC represents a significant advance in oncology care, particularly through the use of the latest LVMs, improving contouring results by (1) streamlining oncology treatment workflows by optimizing tumor delineation and reducing manual processes; (2) offering a scalable and intuitive framework to reduce false positives in radiotherapy planning using LVMs; (3) introducing novel medical language vision prompt techniques to minimize LVM hallucinations with ablation study; and (4) conducting a comparative analysis of LVMs, highlighting their potential in addressing medical language vision challenges. Full article
(This article belongs to the Special Issue Novel Imaging Techniques in Radiotherapy)
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland
by Stanisław Rolbiecki, Barbara Jagosz, Roman Rolbiecki and Renata Kuśmierek-Tomaszewska
Sustainability 2025, 17(15), 6975; https://doi.org/10.3390/su17156975 (registering DOI) - 31 Jul 2025
Abstract
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios [...] Read more.
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios RCP 4.5 and RCP 8.5 for the period 2031–2100. The analysis was conducted for Kraków and Rzeszów Counties in southern Poland using projected monthly temperature and precipitation data from the Klimada 2.0 portal. Potential evapotranspiration (ETp) during the growing season (May–October) was estimated using Treder’s empirical model and the crop coefficient method adapted for Polish conditions. The reference period for comparison was 1951–2020. The results reveal a significant upward trend in water demand for both crops, with the highest increases under the RCP 8.5 scenario–seasonal ETp values reaching up to 517 mm for cabbage and 497 mm for carrot. Rainfall deficits are projected to intensify, especially during July and August, with greater shortages in Rzeszów County compared to Kraków County. Irrigation demand varies depending on soil type and drought severity, becoming critical in medium and very dry years. These findings underscore the necessity of adapting irrigation strategies and water resource management to ensure sustainable vegetable production under changing climate conditions. The data provide valuable guidance for farmers, advisors, and policymakers in planning effective irrigation infrastructure and optimizing water-use efficiency in southern Poland. Full article
Show Figures

Figure 1

Back to TopTop