Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (930)

Search Parameters:
Keywords = natural killer cell activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 865 KB  
Article
Genetic Variability in NKG2 Receptors and Their Ligands: Associations with SARS-CoV-2 Infection and COVID-19 Severity
by Jagoda Siemaszko, Katarzyna Grad, Jerzy Świerkot and Katarzyna Bogunia-Kubik
Genes 2025, 16(10), 1193; https://doi.org/10.3390/genes16101193 (registering DOI) - 13 Oct 2025
Abstract
Background: The emergence of the COVID-19 pandemic has accelerated research into diverse immune response mechanisms. One key area of interest is the regulation of cytotoxic activity by Natural Killer (NK) cells. These cells rely on a dynamic interplay between activating and inhibitory surface [...] Read more.
Background: The emergence of the COVID-19 pandemic has accelerated research into diverse immune response mechanisms. One key area of interest is the regulation of cytotoxic activity by Natural Killer (NK) cells. These cells rely on a dynamic interplay between activating and inhibitory surface receptors that recognize specific ligands on target cells. Among these, receptors from the NKG2 family are particularly important, as maintaining their proper balance and function is essential for controlling NK cell cytotoxicity. Methods: In this study we employed qPCR to assess the genetic variability using single-nucleotide polymorphisms (SNPs) of NKG2A and NKG2D receptors and their ligands HLA-E and MICA/MICB. NKG2C deletion was determined by PCR-SSP, and serum-soluble levels of HLA-E and MICA/MICB molecules were measured by ELISA and Luminex methods. Results: Genotyping studies revealed that both NKG2A rs7301582 T and HLA-E rs1264457 A (HLA-E*01:01) alleles were predominant among infected individuals (OR = 2.21, p = 0.0258 and OR = 2.84, p = 0.0257, respectively). In contrast to MICB rs1065075 A, the MICA rs1051792 A (129Met) allele was most commonly found in hospitalized patients (OR = 14.95, p = 0.0114). The presence of the NKG2C del variant tended to be associated with an increased risk of SARS-CoV-2 infection (OR = 2.02, p = 0.0694). Moreover, higher concentrations of serum-soluble MICB was detected in infected individuals as compared to the control group (p = 0.008). Conclusions: Genetic variability of NK cell receptors and ligands as well as serum levels of their soluble forms showed associations with the risk of development of COVID-19 and the severity of its symptoms. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

58 pages, 1997 KB  
Review
Immunomodulatory Activities of Emerging Rare Ginsenosides F1, Rg5, Rk1, Rh1, and Rg2: From Molecular Mechanisms to Therapeutic Applications
by Chang-Eui Hong and Su-Yun Lyu
Pharmaceuticals 2025, 18(10), 1529; https://doi.org/10.3390/ph18101529 - 11 Oct 2025
Abstract
Ginsenosides, the primary bioactive components of Panax ginseng, have demonstrated significant immunomodulatory potential. While major ginsenosides have been extensively studied, rare ginsenosides produced through deglycosylation, heating, and steaming show enhanced biological activities with improved bioavailability. This review aimed to comprehensively analyze the [...] Read more.
Ginsenosides, the primary bioactive components of Panax ginseng, have demonstrated significant immunomodulatory potential. While major ginsenosides have been extensively studied, rare ginsenosides produced through deglycosylation, heating, and steaming show enhanced biological activities with improved bioavailability. This review aimed to comprehensively analyze the immunomodulatory mechanisms, structure-activity relationships (SARs), therapeutic applications, and clinical translation strategies of five emerging rare ginsenosides: F1, Rg5, Rk1, Rh1, and Rg2. We conducted a comprehensive literature review examining the production methods, immunological effects, molecular mechanisms, pharmacokinetics, safety profiles, and clinical applications of these five compounds. Analysis focused on chemical structures, immune cell modulation, signaling pathways, disease model efficacy, and bioavailability enhancement strategies. Ginsenoside F1 uniquely demonstrated immunostimulatory effects, enhancing natural killer (NK) cell cytotoxicity and macrophage phagocytosis through mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) activation. Conversely, Rg5, Rk1, Rh1, and Rg2 exhibited anti-inflammatory properties via distinct mechanisms: Rg5 through Toll-like receptor 4 (TLR4)/NF-κB inhibition, Rk1 via triple pathway modulation (NF-κB, p38 MAPK, signal transducer and activator of transcription (STAT)), Rh1 by selective p38 MAPK and STAT1 inhibition, and Rg2 through modulation of both central nervous system (neuroinflammation) and peripheral organ systems. Structure-activity analysis revealed that sugar moiety positions critically determine immunological outcomes. Crucially, advanced delivery systems including nanostructured lipid carriers, self-microemulsifying systems, and specialized liposomes have overcome the major translational barrier of poor bioavailability, achieving up to 2.6-fold improvements and enabling clinical development. Safety assessments demonstrated favorable tolerability profiles across preclinical and clinical studies. These five rare ginsenosides represent promising immunomodulatory agents with distinct therapeutic applications. F1’s unique immunostimulatory properties position it for cancer immunotherapy, while the complementary anti-inflammatory mechanisms of Rg5, Rk1, Rh1, and Rg2 offer opportunities for precision medicine in inflammatory diseases. Advanced formulation technologies and optimized production methods now enable their significant clinical translation potential, providing promising therapeutic options for immune-related disorders pending further development. Full article
Show Figures

Graphical abstract

23 pages, 13395 KB  
Article
Identification and Validation of Iron Metabolism-Related Biomarkers in Endometriosis: A Mendelian Randomization and Single-Cell Transcriptomics Study
by Juan Du, Zili Lv and Xiaohong Luo
Curr. Issues Mol. Biol. 2025, 47(10), 831; https://doi.org/10.3390/cimb47100831 - 9 Oct 2025
Viewed by 147
Abstract
Studies have shown that the iron concentration in the peritoneal fluid of women is associated with the severity of endometriosis. Therefore, investigation of iron metabolism-related genes (IM-RGs) in endometriosis holds significant implications for both prevention and therapeutic strategies in affected patients. Differentially expressed [...] Read more.
Studies have shown that the iron concentration in the peritoneal fluid of women is associated with the severity of endometriosis. Therefore, investigation of iron metabolism-related genes (IM-RGs) in endometriosis holds significant implications for both prevention and therapeutic strategies in affected patients. Differentially expressed IM-RGs (DEIM-RGs) were identified by intersecting IM-RGs with differentially expressed genes derived from GSE86534. Mendelian randomization analysis was employed to determine DEIM-RGs causally associated with endometriosis, with subsequent verification through sensitivity analyses and the Steiger test. Biomarkers associated with IM-RGs in endometriosis were validated using expression data from GSE86534 and GSE105764. Functional annotation, regulatory network construction, and immunological profiling were conducted for these biomarkers. Single-cell RNA sequencing (scRNA-seq) (GSE213216) was utilized to identify distinctively expressed cellular subsets between endometriosis and controls. Experimental validation of biomarker expression was performed via reverse transcription–quantitative polymerase chain reaction (RT-qPCR). BMP6 and SLC48A1, biomarkers indicative of cellular BMP response, were influenced by a medicus variant mutation that inactivated PINK1 in complex I, concurrently enriched by both biomarkers. The lncRNA NEAT1 regulated BMP6 through hsa-mir-22-3p and hsa-mir-124-3p, while SLC48A1 was modulated by hsa-mir-423-5p, hsa-mir-19a-3p, and hsa-mir-19b-3p. Immune profiling revealed a negative correlation between BMP6 and monocytes, whereas SLC48A1 displayed a positive correlation with activated natural killer cells. scRNA-seq analysis identified macrophages and stromal stem cells as pivotal cellular components in endometriosis, exhibiting altered self-communication networks. RT-qPCR confirmed elevated expression of BMP6 and SLC48A1 in endometriosis samples relative to controls. Both BMP6 and SLC48A1 were consistently overexpressed in endometriosis, reinforcing their potential as biomarkers. Moreover, macrophages and stromal stem cells were delineated as key contributors. These findings provide novel insights into therapeutic and preventive approaches for patients with endometriosis. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

9 pages, 627 KB  
Review
Role of Interferon-Gamma (IFN-γ) in Pathophysiology and Management of Deep Vein Thrombosis
by Kawaljit Kaur
Immuno 2025, 5(4), 46; https://doi.org/10.3390/immuno5040046 - 4 Oct 2025
Viewed by 641
Abstract
Immune cells like neutrophils, monocytes/macrophages, and lymphocytes play key roles in the development, progression, and resolution of deep vein thrombosis (DVT) by contributing to inflammation, coagulation, and fibrinolysis. IFN-γ, a cytokine mainly secreted by natural killer (NK) and T cells, is a critical [...] Read more.
Immune cells like neutrophils, monocytes/macrophages, and lymphocytes play key roles in the development, progression, and resolution of deep vein thrombosis (DVT) by contributing to inflammation, coagulation, and fibrinolysis. IFN-γ, a cytokine mainly secreted by natural killer (NK) and T cells, is a critical factor in DVT pathogenesis. It links immune responses to coagulation activation by promoting endothelial activation, leukocyte recruitment, cytokine release, and coagulation imbalance. Its strong pro-inflammatory and prothrombotic effects make IFN-γ a promising target for DVT treatment beyond standard anticoagulants. Exploring ways to block IFN-γ signaling or its downstream effects could open doors to novel therapies for DVT, aiding in resolution and preventing post-thrombotic complications. This review delves into DVT pathophysiology, diagnostics, and management, emphasizing the importance of targeting immune cells and IFN-γ to advance treatment options. Full article
Show Figures

Figure 1

13 pages, 2422 KB  
Article
Co-Targeting PD-1 and IL-33/ST2 Pathways for Enhanced Acquired Anti-Tumor Immunity in Breast Cancer
by Marina Z. Jovanović, Milena Jurišević, Milan Jovanović, Nevena Gajović, Miodrag Jocić, Marina M. Jovanović, Boško Milev, Krstina Doklestić Vasiljev and Ivan Jovanović
Int. J. Mol. Sci. 2025, 26(19), 9600; https://doi.org/10.3390/ijms26199600 - 1 Oct 2025
Viewed by 273
Abstract
Despite advances in immunotherapy, the treatment of breast cancer still remains a major global problem. In a previous study, we showed that co-blockade of Interleukin-33/ST2 and Programmed death-1/Programmed death-ligand (PD-1/PD-L) signaling pathways strongly slows progression by enhancing the antitumor capacity of natural killer [...] Read more.
Despite advances in immunotherapy, the treatment of breast cancer still remains a major global problem. In a previous study, we showed that co-blockade of Interleukin-33/ST2 and Programmed death-1/Programmed death-ligand (PD-1/PD-L) signaling pathways strongly slows progression by enhancing the antitumor capacity of natural killer (NK) cells. The main aim of this study is to elucidate the exact effect of co-blockade on the T lymphocyte and macrophage effector cells. 4T1 cells were used to induct breast cancer in female BALB/C and BALB/C ST2−/− mice. The mice, both BALB/C and BALB/C ST2−/−, were treated with anti-PD-1 antibody on certain days. After the mice were sacrificed, T cells and macrophages were analyzed using flow cytometry; dual co-blockade increased significantly the percentage of M1 macrophages in the tumor microenvironment, followed by an increase in expression of CD86+ and TNFα+. T cell accumulation was significantly higher in the spleen and within the tumor microenvironment, with elevation in activation markers such as Interleukin-17, CD69, NKG2D, and FasL and a decrease in Interleukin-10 and FoxP3 expression. Co-blockade of the PD-1/PD-L axes and IL-33/ST2 axes shows promising results in reestablishing an effective immune response and offers a new perspective on improving immune response to breast carcinoma. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

29 pages, 1519 KB  
Review
Normalization of Immune Response via Chondroitin Sulfate and Fucoidan Targeting N-Acetylgalactosaminidase
by Jozef Zima, Eva Nováková, Miroslava Špaglová and Miroslava Šupolíková
Sci. Pharm. 2025, 93(4), 47; https://doi.org/10.3390/scipharm93040047 - 25 Sep 2025
Viewed by 513
Abstract
This review explores the pharmacological potential of chondroitin sulfate and fucoidan as immunomodulatory agents targeting N-acetylgalactosaminidase (nagalase) to normalize immune responses. Nagalase, an enzyme produced by tumor and virus-infected cells, contributes to immune suppression by deactivating macrophage-activating factor. Both chondroitin sulfate and fucoidan, [...] Read more.
This review explores the pharmacological potential of chondroitin sulfate and fucoidan as immunomodulatory agents targeting N-acetylgalactosaminidase (nagalase) to normalize immune responses. Nagalase, an enzyme produced by tumor and virus-infected cells, contributes to immune suppression by deactivating macrophage-activating factor. Both chondroitin sulfate and fucoidan, as representatives of glycosaminoglycans and heteropolysaccharides, exhibit significant potential in inhibiting nagalase activity, thereby restoring immune functionality. Chondroitin sulfate, a key component of the extracellular matrix, demonstrates anti-inflammatory and tissue-regenerative properties by modulating nuclear factor (NF)-κB pathways and cytokine expression. Fucoidan, a sulfated polysaccharide derived from brown seaweed, enhances immune responses through macrophage and natural killer cell activation, while also exhibiting antiviral and anticancer activities. This dual action positions these compounds as promising agents for therapeutic interventions in chronic inflammatory conditions, cancer, and infectious diseases. The synergistic effects of chondroitin sulfate and fucoidan highlight their potential to address the root causes of immune dysregulation. This review aims to elucidate the underlying mechanisms of action and explore the clinical applications of these compounds within the framework of innovative immunotherapeutic strategies. However, current evidence is limited by the predominance of preclinical studies and variability in experimental models. Well-designed clinical trials are needed to validate their efficacy for therapeutic use. Full article
Show Figures

Figure 1

20 pages, 49146 KB  
Article
Predicted IL-18/IL-18R Binding Improvement Through Protein Interface Modification with Computer-Aided Design
by Napat Prompat, Chariya Peeyatu, Jirakrit Saetang, Niran Roongsawang, Surasak Sangkhathat and Varomyalin Tipmanee
Biomolecules 2025, 15(10), 1360; https://doi.org/10.3390/biom15101360 - 25 Sep 2025
Viewed by 333
Abstract
Cytokine-mediated immunotherapy has rapidly emerged as an effective alternative approach for cancer treatment by modulating the anti-tumor response. Interleukin-18 (IL-18) is considered as a promising cancer therapeutic agent due to the ability of cytokines to inhibit cancer by enhancing natural killer (NK) cell [...] Read more.
Cytokine-mediated immunotherapy has rapidly emerged as an effective alternative approach for cancer treatment by modulating the anti-tumor response. Interleukin-18 (IL-18) is considered as a promising cancer therapeutic agent due to the ability of cytokines to inhibit cancer by enhancing natural killer (NK) cell and cytotoxic T cell responses. Since the activity of IL-18 is required for the specific binding to IL-18 receptors, the modification of binding residue at the protein interface is an attractive strategy for IL-18 activity enhancement. The aim of this study was to design and predict mutations increasing the activity of IL-18 through computational structure-based energy calculation and molecular dynamic simulations. Four candidate mutations, E6M, E6M+N111S+R131G, E6M+K129M+R131G, and E6M+N111S+K129M+R131G, could affect/facilitate the receptor binding and stability compared to the wild-type via electrostatic interaction. MD simulations demonstrated that the predicted mutation on IL-18 had no influence on the overall conformation stability, but increased flexibility in the β8–β9 hairpin loop. Furthermore, the dynamic behavior suggested that these candidates could be an alternative for the improvement of IL-18 biological activity, though the full simulation of the IL-18 complex remains necessary. In summary, this study offered a computer-aided design strategy which was of beneficial use in the design and development of IL-18 to increase its cytokine potency and efficiency. Full article
(This article belongs to the Special Issue Protein Structure Prediction in Drug Discovery: 2nd Edition)
Show Figures

Graphical abstract

18 pages, 946 KB  
Review
TIGIT Expression and Its Implications in Non-Small-Cell Lung Cancer Progression and Therapy: A Systematic Review
by Julia Piekarz, Natalia Picheta, Katarzyna Szklener and Sławomir Mańdziuk
Int. J. Mol. Sci. 2025, 26(19), 9307; https://doi.org/10.3390/ijms26199307 - 23 Sep 2025
Viewed by 434
Abstract
Lung cancer (LC) is the leading cause of cancer-related mortality worldwide, with non-small-cell lung cancer (NSCLC) representing 85–90% of cases. Despite the efficacy of PD-1/PD-L1 immune checkpoint inhibitors, primary and acquired resistance highlight the need for novel immunotherapeutic strategies. A systematic review of [...] Read more.
Lung cancer (LC) is the leading cause of cancer-related mortality worldwide, with non-small-cell lung cancer (NSCLC) representing 85–90% of cases. Despite the efficacy of PD-1/PD-L1 immune checkpoint inhibitors, primary and acquired resistance highlight the need for novel immunotherapeutic strategies. A systematic review of the literature from 2020 to 2025 was conducted according to the PICO model. Six studies were included, encompassing phase I–III clinical trials. The analysis focused on efficacy, safety, and emerging therapeutic strategies targeting TIGIT in NSCLC. TIGIT blockade enhances cytotoxic T lymphocyte and natural killer (NK) cell activity, strengthening antitumor immunity. Clinical trials, particularly with the monoclonal antibody tiragolumab combined with PD-1/PD-L1 inhibitors, show promising synergistic effects. Emerging strategies, including bispecific antibodies (e.g., TIGIT/PD-1 and TIGIT/PD-L1) and experimental cell therapies, are under investigation to further improve the antitumor response. Anti-TIGIT therapies represent a highly promising approach in NSCLC. While phase III data remain limited, biomarker-driven, well-designed trials are essential. If validated, TIGIT blockade could become a key addition to immuno-oncology treatment strategies for NSCLC. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Molecular Oncology)
Show Figures

Figure 1

24 pages, 1399 KB  
Review
Combination of the First-in-Class Imipridone ONC201 and Standard Anticancer Therapies as a Rational Approach for Therapeutic Benefit
by Brahmi Shenoy, Miloni Mandani, Meena Chintamaneni and Sonal M. Manohar
Curr. Issues Mol. Biol. 2025, 47(9), 775; https://doi.org/10.3390/cimb47090775 - 18 Sep 2025
Viewed by 673
Abstract
The development of drugs for cancer treatment faces critical challenges due to the heterogeneity in cancers, metastatic nature of the disease, lack of efficacy, toxicity, and drug resistance. This makes it quite important to understand the complexities of cancer as well as the [...] Read more.
The development of drugs for cancer treatment faces critical challenges due to the heterogeneity in cancers, metastatic nature of the disease, lack of efficacy, toxicity, and drug resistance. This makes it quite important to understand the complexities of cancer as well as the limitations of druggable targets. ONC201 (also known as dordaviprone/TIC10/ModeysoTM), a first-in-class member of the imipridone family, has been shown to kill cancer cells selectively. Recently, it has received FDA approval as the first and only treatment for recurrent H3K27M-mutant diffuse midline glioma. The unique pharmacophore, favorable therapeutic index, ability to induce TRAIL and the integrated stress response (ISR), activation of natural killer cells, and ability to diffuse across the blood–brain barrier are the unique characteristics of ONC201. ONC201 has shown effectiveness against various cancers, and this has been evident in many preclinical studies. ONC201 as a single agent, although useful, has some limitations, which could be addressed by using combination strategies. ONC201 has shown synergism with other drugs, leading to greater tumor cell death or reduced tumor growth. Next-generation imipridones, viz. ONC206 and ONC212, are more potent analogs of ONC201 and exhibit similar characteristics. In this review, we discuss the therapeutic potential of ONC201 and its analogs using combination strategies across different cancers. Full article
Show Figures

Figure 1

13 pages, 891 KB  
Review
Advances in Non-Small Cell Lung Cancer Cellular Immunotherapy: A Progress in Dendritic Cell, T-Cell, and NK Cell Vaccines
by Mirza Masroor Ali Beg, Mohammad Aslam, Asma Ayaz, Muhammad Saeed Akhtar and Wajid Zaman
Cells 2025, 14(18), 1453; https://doi.org/10.3390/cells14181453 - 16 Sep 2025
Viewed by 832
Abstract
Over the past decade, cellular immunotherapy has emerged as a transformative strategy for non-small cell lung cancer (NSCLC), with dendritic-cell (DC) vaccines, T-cell vaccines, and natural killer (NK)-cell therapies demonstrating distinct mechanisms and clinical potential. DC vaccines capitalize on antigen presentation to prime [...] Read more.
Over the past decade, cellular immunotherapy has emerged as a transformative strategy for non-small cell lung cancer (NSCLC), with dendritic-cell (DC) vaccines, T-cell vaccines, and natural killer (NK)-cell therapies demonstrating distinct mechanisms and clinical potential. DC vaccines capitalize on antigen presentation to prime tumor-specific T-cell responses, showing excellent safety profiles limited mainly to injection-site reactions and flu-like symptoms. While monotherapy has shown limited efficacy, combinations with checkpoint inhibitors or chemotherapy enhance immune activation and survival outcomes. Recent innovations, including neoantigen-loaded, mRNA-electroporated, and exosome-pulsed DCs, demonstrate improved immunogenicity and personalized approaches. T-cell vaccines, designed to activate cytotoxic CD8+ T-cell responses, have been tested across multiple platforms, including peptide-based (MAGE-A3), viral vector (TG4010/MUC1), and mRNA (CV9201/92) formulations. While the phase III MAGRIT trial presented no disease-free survival (DFS) benefit with adjuvant MAGE-A3 vaccination, the TG4010 vaccine improved progression-free survival (PFS; HR 0.66) and overall survival (OS; HR 0.67) in MUC1-positive NSCLC when combined with chemotherapy. Current strategies focus on personalized neoantigen vaccines and KRAS-targeted approaches (e.g., ELI-002), with ongoing phase III trials evaluating their potential in resectable NSCLC. NK-cell therapies have also shown promise, with early trials establishing the feasibility of autologous and allogeneic infusions, while engineered CAR-NK cells enhance tumor-specific targeting. Combination strategies with checkpoint inhibitors significantly improve response rates and PFS, revealing synergies between innate and adaptive immunity. Recent advances include cytokine-enhanced, memory-like NK cells to overcome immunosuppression and “off-the-shelf” products for broader clinical use. Together, these cellular immunotherapies represent a versatile and evolving frontier in NSCLC treatment, with ongoing research optimizing combinations, delivery platforms, and patient selection to maximize therapeutic benefit. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

17 pages, 299 KB  
Review
Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer
by Marcio F. Chedid, Aline C. Tregnago, Floriano Riva, Lucas Prediger, Anisha Agarwal and Jane Mattei
Life 2025, 15(9), 1447; https://doi.org/10.3390/life15091447 - 16 Sep 2025
Viewed by 740
Abstract
Skin cancer is the most common cancer worldwide. The incidence of skin cancer has been increasing worldwide. Nearly 75% of all skin cancers are basal cell carcinomas (BCC), cutaneous squamous cell carcinoma (cSCC) represents approximately 20%, and those remaining are melanomas (4%) or [...] Read more.
Skin cancer is the most common cancer worldwide. The incidence of skin cancer has been increasing worldwide. Nearly 75% of all skin cancers are basal cell carcinomas (BCC), cutaneous squamous cell carcinoma (cSCC) represents approximately 20%, and those remaining are melanomas (4%) or other rare tumors (1%). Given the high cure rates and the ability to histologically confirm tumor clearance, surgical therapy is the gold standard for the treatment of skin cancer. Conventional surgery is the most employed technique for the removal of non-melanoma skin cancer (NMSCs). Mohs Micrographic Surgery (MMS) is the most precise surgical method for the treatment of non-melanoma skin cancer, allowing for 100% margin evaluation, being the gold-standard method for surgical treatment of non-melanoma skin cancer. Whenever it is possible to obtain wide margins (4 to 6 mm), cure rates vary from 70% to 99%. Imiquimod, a synthetic imidazoquinolinone amine, is a topical immune response modifier approved by the U.S. Food and Drug Administration (FDA) for the treatment of external anogenital warts, actinic keratosis (AK), and superficial basal cell carcinoma (sBCC). The efficacy of imiquimod is primarily attributed to its ability to modulate both innate and adaptive immune responses, as well as its direct effects on cancer cells. Imiquimod exerts its immunomodulatory effects by activating Toll-like receptors 7 and 8 (TLR7/8) on various immune cells, including dendritic cells, macrophages, and natural killer (NK) cells. Upon binding to these receptors, imiquimod triggers the MyD88-dependent signaling pathway, leading to the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRFs). This cascade leads to the production of pro-inflammatory cytokines, including interferon-alpha (IFN-α), tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), and interleukin-6 (IL-6). These cytokines enhance local inflammation, recruit additional immune cells to the tumor site, and stimulate antigen presentation, thereby promoting an anti-tumor immune response. Radiation therapy (RTh) may be employed as a primary treatment to BCC. It may also be employed as an adjuvant treatment to surgery for SCC and aggressive subtypes of BCC. RTh triggers both direct and indirect DNA damage on cancer cells and generates reactive oxygen species (ROS) within cells. ROS trigger oxidative damage to DNA, proteins, and lipids, exacerbating the cellular stress and contributing to tumor cell death. Recently, immunotherapy emerged as a revolutionary treatment for all stages of SCC. Cemiplimab is a human programmed cell death 1 (PD-1)-blocking antibody that triggers a response to over 50% of patients with locally advanced and metastatic SCC. A randomized clinical trial (RCT) published in 2022 revealed that cemiplimab was highly effective in the neoadjuvant treatment of large SCCs. The drug promoted a significant tumor size decrease, enabling organ-sparing operations and a much better cosmetic effect. A few months ago, a RCT of cemiplimab on adjuvant therapy for locally aggressive SCC was published. Interestingly, cemiplimab was administered to patients with local or regional cutaneous squamous cell carcinoma after surgical resection and postoperative radiotherapy, at high risk for recurrence owing to nodal features, revealed that cemiplimab led to much lower risks both of locoregional recurrence and distant recurrence. Full article
24 pages, 1355 KB  
Review
Carotenoids and Their Interaction with the Immune System
by Miguel Medina-García, Andrés Baeza-Morales, Pascual Martínez-Peinado, Sandra Pascual-García, Carolina Pujalte-Satorre, Rosa María Martínez-Espinosa and José Miguel Sempere-Ortells
Antioxidants 2025, 14(9), 1111; https://doi.org/10.3390/antiox14091111 - 12 Sep 2025
Viewed by 755
Abstract
Carotenoids are lipophilic pigments naturally occurring in plants and, to a lesser extent, in certain non-photosynthetic organisms. They play a critical role in human health due to their antioxidant and immunomodulatory properties. Key carotenoids such as β-carotene, lycopene, lutein, and zeaxanthin are capable [...] Read more.
Carotenoids are lipophilic pigments naturally occurring in plants and, to a lesser extent, in certain non-photosynthetic organisms. They play a critical role in human health due to their antioxidant and immunomodulatory properties. Key carotenoids such as β-carotene, lycopene, lutein, and zeaxanthin are capable of neutralizing reactive oxygen species, thereby mitigating oxidative stress—a major contributor to the onset and progression of chronic diseases. These compounds also modulate immune responses by influencing lymphocyte proliferation, enhancing natural killer cell activity, and regulating the production of pro- and anti-inflammatory cytokines. Such immunomodulatory effects are associated with a reduced risk of infectious diseases and have shown potential protective roles against inflammatory conditions, cardiovascular and neurodegenerative disorders, and certain types of cancer. Moreover, diets rich in carotenoids are linked to improved immune status, particularly in vulnerable populations such as the elderly and immunocompromised individuals. Despite strong epidemiological evidence, clinical trials involving carotenoid supplementation have produced mixed results, indicating that their effectiveness may depend on the broader dietary context and interactions with other nutrients. In summary, carotenoids are important dietary compounds that contribute to immune regulation and the prevention of various diseases, although further clinical research is needed to determine optimal intake levels and assess their full therapeutic potential. Full article
(This article belongs to the Special Issue Carotenoids in Health and Disease)
Show Figures

Figure 1

14 pages, 2734 KB  
Article
Dual Therapeutic Impact of AXL Inhibitor AB-329: Chemotherapy Sensitization and Immune Microenvironment Reprogramming in TNBC
by Dileep Reddy Rampa, Jon A. Fuson, Huey Liu, Max Pan, Yujia Qin, Youping Deng, Naoto T. Ueno and Jangsoon Lee
Int. J. Mol. Sci. 2025, 26(18), 8896; https://doi.org/10.3390/ijms26188896 - 12 Sep 2025
Viewed by 468
Abstract
AXL, a receptor tyrosine kinase, has emerged as a promising therapeutic target in triple-negative breast cancer (TNBC) due to its critical roles in tumor progression, metastasis, and immune evasion. In this study, we investigated the antitumor efficacy and immunomodulatory potential of AB-329, a [...] Read more.
AXL, a receptor tyrosine kinase, has emerged as a promising therapeutic target in triple-negative breast cancer (TNBC) due to its critical roles in tumor progression, metastasis, and immune evasion. In this study, we investigated the antitumor efficacy and immunomodulatory potential of AB-329, a selective AXL kinase inhibitor, in preclinical models of TNBC. Transcriptome analysis and single-cell RNA sequencing datasets revealed elevated AXL expression in mesenchymal TNBC subtypes and a negative association with immune cell infiltration. While AB-329 demonstrated moderate antiproliferative effects as a monotherapy, its combination with paclitaxel led to substantially enhanced antiproliferative and anti-metastatic effects compared to gemcitabine, DXd, and SN-38. In murine TNBC allograft models, the combination of AB-329 and paclitaxel significantly reduced tumor growth, and AB-329 increased activated natural killer (NK) cell infiltration in humanized mouse models. Analysis of human breast cancer tissue further confirmed that low AXL expression is associated with a higher presence of NK cells in the tumor. These findings suggest that AB-329 not only augments chemotherapy efficacy but also reshapes the tumor immune microenvironment, supporting its further development as a dual-action therapeutic strategy for AXL-positive TNBC. Full article
(This article belongs to the Special Issue Progress in New Agents to Treat Breast Cancer)
Show Figures

Figure 1

21 pages, 11634 KB  
Article
Identification of Key Genes Related to Both Lipid Metabolism Disorders and Inflammation in MAFLD
by Xin Dai, Yuhong Hu, Ke Zhang, Bangmao Wang, Jie Zhang and Hailong Cao
Biomedicines 2025, 13(9), 2211; https://doi.org/10.3390/biomedicines13092211 - 9 Sep 2025
Viewed by 509
Abstract
Background: Both lipid metabolism disorders and inflammation are critical contributors to the progression of metabolic-associated fatty liver disease (MAFLD), yet integrated analyses identifying key genes linking them remain scarce. Methods: Differentially expressed genes in MAFLD were extracted from the GSE135251 dataset and intersected [...] Read more.
Background: Both lipid metabolism disorders and inflammation are critical contributors to the progression of metabolic-associated fatty liver disease (MAFLD), yet integrated analyses identifying key genes linking them remain scarce. Methods: Differentially expressed genes in MAFLD were extracted from the GSE135251 dataset and intersected with lipid metabolism- and inflammation-related genes from Molecular Signatures Database (MSigDB). Machine learning on GSE135251, followed by validation on GSE89632, identified key genes. Functional enrichment, immune microenvironment profiling, and nomogram analysis were subsequently conducted. Cellular heterogeneity was assessed using the single-cell sequencing (scRNA-seq) dataset GSE186328, and gene expression in MAFLD mice was validated via real-time Polymerase Chain Reaction (PCR). Activators targeting these genes were predicted using Drug Signatures Database (DsigDB). Results: Four genes—FADS1, FADS2, GLB1, and PNPLA3—were identified as key regulators involved in both lipid metabolism disorders and inflammation in MAFLD. These genes were co-enriched in ribosome-related pathways. GLB1 correlated strongly with CD56dim natural killer cells in immune infiltration analysis. A diagnostic nomogram integrating these genes demonstrated exceptional discriminatory power, with Area Under the Curve (AUC) values of 0.98981 for GSE135251 and 0.9204 for GSE89632. ScRNA-seq revealed elevated FADS1, FADS2, and GLB1 expression in MAFLD-associated NK/T cells compared to controls. Real-time PCR confirmed significant upregulation of all four genes in MAFLD mice. Drug prediction identified estradiol as a potential activator targeting these genes. Conclusions: This study identified FADS1, FADS2, GLB1, and PNPLA3 as key genes involved in the progression of MAFLD, linking metabolic dysfunction and inflammation. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 1565 KB  
Review
Influence of Genetic, Dietary, and Environmental Factors on Natural Killer (NK) Cell Biology and Function: Interplay Between NK Cell Activity and Cancer Onset or Progression
by Kawaljit Kaur
Cancers 2025, 17(18), 2946; https://doi.org/10.3390/cancers17182946 - 9 Sep 2025
Viewed by 1268
Abstract
The connection between NK cells and cancer offers valuable insights into disease management. Suppressing NK cells can encourage cancer growth, while cancer itself can weaken NK cell function. This review examines how genetic and environmental factors such as diet affect NK cell numbers [...] Read more.
The connection between NK cells and cancer offers valuable insights into disease management. Suppressing NK cells can encourage cancer growth, while cancer itself can weaken NK cell function. This review examines how genetic and environmental factors such as diet affect NK cell numbers and function during the early stages of cancer. It also explores the reduced NK cell activity in cancer-bearing mouse models and human patients. The mechanisms behind cytotoxic actions and cytokine release are analyzed across four NK cell maturation stages. This understanding highlights the potential of using healthy donor NK cells for immunotherapy, alongside the role of memory NK cells in treatments. While NK cell-based therapies show promise in studies, challenges remain in sustaining their effectiveness and durability. This review also discusses strategies to improve production and boost the efficiency of donor NK cell therapies. Full article
Show Figures

Figure 1

Back to TopTop