Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = natural ferromagnetic resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2296 KiB  
Article
Magnetoelectric Effects in Bilayers of PZT and Co and Ti Substituted M-Type Hexagonal Ferrites
by Sujoy Saha, Sabita Acharya, Sidharth Menon, Rao Bidthanapally, Michael R. Page, Menka Jain and Gopalan Srinivasan
J. Compos. Sci. 2025, 9(7), 336; https://doi.org/10.3390/jcs9070336 - 27 Jun 2025
Viewed by 290
Abstract
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization [...] Read more.
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization in an applied magnetic field. The focus here is the nature of magnetoelectric (ME) interactions in the bilayers of ferroelectric PZT and Co and Ti substituted BaM and SrM. The ME coupling in the ferrite-PZT bilayers arise due to the transfer of magnetostriction-induced mechanical deformation in a magnetic field in the ferrite resulting in an induced electric field in PZT. Polycrystalline Co and Ti doped ferrites, Ba (CoTi)x Fe12−2xO19, (BCTx), and Sr (CoTi)x Fe12−2xO19 (SCTx) (x = 0–4) were found to be free of impurity phases for all x-values except for SCTx, which had a small amount of α-Fe2O3 in the X-ray diffraction patterns for x ≤ 2.0. The magnetostriction for the ferrites increased with applied filed H to a maximum value of around 2 to 6 ppm for H~5 kOe. BCTx/SCTx samples showed ferromagnetic resonance (FMR) for x = 1.5–2.0, and the estimated anisotropy field was on the order of 5 kOe. The magnetization increased with the amount of Co and Ti doping, and it decreased rapidly with x for x > 1.0. Measurements of ME coupling strengths were conducted on the bilayers of BCTx/SCTx platelets bonded to PZT. The bilayer was subjected to an AC and DC magnetic field H, and the magnetoelectric voltage coefficient (MEVC) was measured as a function of H and frequency of the AC field. For BCTx-PZT, the maximum value of MEVC at low frequency was ~5 mV/cm Oe, and a 40-fold increase at electromechanical resonance (EMR). SCTx–PZT composites also showed a similar behavior with the highest MEVC value of ~14 mV/cm Oe at low frequencies and ~200 mV/cm Oe at EMR. All the bilayers showed ME coupling for zero magnetic bias due to the magnetocrystalline anisotropy field in the ferrite that provided a built-in bias field. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

16 pages, 4092 KiB  
Article
Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film
by Mingkun Zheng, Wancheng Zhang, You Lv, Yong Liu, Rui Xiong, Zhenhua Zhang and Zhihong Lu
Nanomaterials 2025, 15(10), 762; https://doi.org/10.3390/nano15100762 - 19 May 2025
Viewed by 547
Abstract
The low-symmetry Weyl semimetallic Td-phase WTe2 exhibits both a distinct out-of-plane damping torque (τDL) and exceptional charge–spin interconversion efficiency enabled by strong spin-orbit coupling, positioning it as a prime candidate for spin–orbit torque (SOT) applications in two-dimensional transition metal [...] Read more.
The low-symmetry Weyl semimetallic Td-phase WTe2 exhibits both a distinct out-of-plane damping torque (τDL) and exceptional charge–spin interconversion efficiency enabled by strong spin-orbit coupling, positioning it as a prime candidate for spin–orbit torque (SOT) applications in two-dimensional transition metal dichalcogenides. Herein, we report on thickness-dependent unconventional out-of-plane τDL in chemically vapor-deposited (CVD) polycrystalline Td-WTe2 (t)/Ni80Fe20/MgO/Ti (Td-WTN-t) heterostructures. Angle-resolved spin-torque ferromagnetic resonance measurements on the Td-WTN-12 structure showed significant spin Hall conductivities of σSH,y = 4.93 × 103 (ℏ/2e) Ω−1m−1 and σSH,z = 0.81 × 103 (ℏ/2e) Ω−1m−1, highlighting its potential for wafer-scale spin–orbit torque device applications. Additionally, a detailed examination of magnetotransport properties in polycrystalline few-layer Td-WTe2 films as a function of thickness revealed a marked amplification of the out-of-plane magnetoresistance, which can be ascribed to the anisotropic nature of charge carrier scattering mechanisms within the material. Spin pumping measurements in Td-WTN-t heterostructures further revealed thickness-dependent spin transport properties of Td-WTe2, with damping analysis yielding an out-of-plane spin diffusion length of λSD ≈ 14 nm. Full article
Show Figures

Figure 1

17 pages, 3373 KiB  
Review
Materials with Negative Permittivity or Negative Permeability—Review, Electrodynamic Modelling, and Applications
by Jerzy Krupka
Materials 2025, 18(2), 423; https://doi.org/10.3390/ma18020423 - 17 Jan 2025
Cited by 2 | Viewed by 1936
Abstract
A review of natural materials that exhibit negative permittivity or permeability, including gaseous plasma, metals, superconductors, and ferromagnetic materials, is presented. It is shown that samples made of such materials can store large amount of the electric (magnetic) energy and create plasmonic resonators [...] Read more.
A review of natural materials that exhibit negative permittivity or permeability, including gaseous plasma, metals, superconductors, and ferromagnetic materials, is presented. It is shown that samples made of such materials can store large amount of the electric (magnetic) energy and create plasmonic resonators for certain values of permittivity, permeability, and dimensions. The electric and the magnetic plasmon resonances in spherical samples made of such materials are analyzed using rigorous electrodynamic methods, and the results of the analysis are compared to experimental data and to results obtained with other methods. The results of free oscillation and Mie scattering theories are compared. Similarities and differences between permittivity and permeability tensors for magnetized plasma and magnetized ferromagnetic materials are underlined. Several physical phenomena are explained on the grounds of rigorous electrodynamic analysis and experiments. These phenomena include unequal electric and magnetic energies stored in plasmonic resonators, the small influence of dielectric losses on the Q-factors of magnetic plasmon resonances, the role of radiation and dissipation losses on the properties of plasmonic resonators, and the theoretical possibility of the existence of lightning plasma balls. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

17 pages, 6933 KiB  
Article
Evidence for a Giant Magneto-Electric Coupling in Bulk Composites with Coaxial Fibers of Nickel–Zinc Ferrite and PZT
by Bingfeng Ge, Jitao Zhang, Sujoy Saha, Sabita Acharya, Chaitrali Kshirsagar, Sidharth Menon, Menka Jain, Michael R. Page and Gopalan Srinivasan
J. Compos. Sci. 2024, 8(8), 309; https://doi.org/10.3390/jcs8080309 - 8 Aug 2024
Cited by 2 | Viewed by 1754
Abstract
This report is on magneto-electric (ME) interactions in bulk composites with coaxial fibers of nickel–zinc ferrite and PZT. The core–shell fibers of PZT and Ni1−xZnxFe2O4 (NZFO) with x = 0–0.5 were made by electrospinning. Both kinds [...] Read more.
This report is on magneto-electric (ME) interactions in bulk composites with coaxial fibers of nickel–zinc ferrite and PZT. The core–shell fibers of PZT and Ni1−xZnxFe2O4 (NZFO) with x = 0–0.5 were made by electrospinning. Both kinds of fibers, either with ferrite or PZT core and with diameters in the range of 1–3 μm were made. Electron and scanning probe microscopy images indicated well-formed fibers with uniform core and shell structures and defect-free interface. X-ray diffraction data for the fibers annealed at 700–900 °C did not show any impurity phases. Magnetization, magnetostriction, ferromagnetic resonance, and polarization P versus electric field E measurements confirmed the ferroic nature of the fibers. For ME measurements, the fibers were pressed into disks and rectangular platelets and then annealed at 900–1000 °C for densification. The strengths of strain-mediated ME coupling were measured by the H-induced changes in remnant polarization Pr and by low-frequency ME voltage coefficient (MEVC). The fractional change in Pr under H increased in magnitude, from +3% for disks of NFO–PZT to −82% for NZFO (x = 0.3)-PZT, and a further increase in x resulted in a decrease to a value of −3% for x = 0.5. The low-frequency MEVC measured in disks of the core–shell fibers ranged from 6 mV/cm Oe to 37 mV/cm Oe. The fractional changes in Pr and the MEVC values were an order of magnitude higher than for bulk samples containing mixed fibers with a random distribution of NZFO and PZT. The bulk composites with coaxial fibers have the potential for use as magnetic field sensors and in energy-harvesting applications. Full article
(This article belongs to the Special Issue Discontinuous Fiber Composites, Volume III)
Show Figures

Figure 1

9 pages, 1994 KiB  
Article
Influence of the Structure on Magnetic Properties of Calcium-Phosphate Systems Doped with Iron and Vanadium Ions
by Dania Racolta, Constantin Andronache, Maria Balasoiu, Leonard Mihaly-Cozmuta, Vadim Sikolenko, Oleg Orelovich, Andrey Rogachev, Gheorghe Borodi and Gheorghe Iepure
Int. J. Mol. Sci. 2023, 24(8), 7366; https://doi.org/10.3390/ijms24087366 - 17 Apr 2023
Cited by 3 | Viewed by 1633
Abstract
The aim of this study was to prepare and characterize the glasses made of x(Fe2O3∙V2O5)∙(100 − x)[P2O5∙CaO] with x ranging of 0–50%. The contribution of Fe2O3 and V [...] Read more.
The aim of this study was to prepare and characterize the glasses made of x(Fe2O3∙V2O5)∙(100 − x)[P2O5∙CaO] with x ranging of 0–50%. The contribution of Fe2O3 and V2O5 amount on the structure of P2O5·CaO matrix was investigated. The vitreous materials were characterized by XRD (X-ray diffraction analysis), EPR (Electron Paramagnetic Resonance) spectroscopy, and magnetic susceptibility measurements. A hyperfine structure typical for isolated V4+ ions was noticed to all spectra containing low amount of V2O5. The XRD spectra show the amorphous nature of samples, apart x = 50%. An overlap of the EPR spectrum of a broad line without the hyperfine structure characteristic of clustered ions was observed with increasing V2O5 content. The results of magnetic susceptibility measurements explain the antiferromagnetic or ferromagnetic interactions expressed between the iron and vanadium ions in the investigated glass. Full article
Show Figures

Figure 1

15 pages, 4289 KiB  
Article
Comparative Study on Carbon Erosion of Nickel Alloys in the Presence of Organic Compounds under Various Reaction Conditions
by Alexander M. Volodin, Roman M. Kenzhin, Yury I. Bauman, Sofya D. Afonnikova, Arina R. Potylitsyna, Yury V. Shubin, Ilya V. Mishakov and Aleksey A. Vedyagin
Materials 2022, 15(24), 9033; https://doi.org/10.3390/ma15249033 - 17 Dec 2022
Cited by 1 | Viewed by 1660
Abstract
The processes of carbon erosion of nickel alloys during the catalytic pyrolysis of organic compounds with the formation of carbon nanofibers in a flow-through reactor as well as under reaction conditions in a close volume (Reactions under Autogenic Pressure at Elevated Temperature, RAPET) [...] Read more.
The processes of carbon erosion of nickel alloys during the catalytic pyrolysis of organic compounds with the formation of carbon nanofibers in a flow-through reactor as well as under reaction conditions in a close volume (Reactions under Autogenic Pressure at Elevated Temperature, RAPET) were studied. The efficiency of the ferromagnetic resonance method to monitor the appearance of catalytically active nickel particles in these processes has been shown. As found, the interaction of bulk Ni-Cr alloy with the reaction medium containing halogenated hydrocarbons (1,2-dichloroethane, 1-iodobutane, 1-bromobutane) results in the appearance of ferromagnetic particles of similar dimensions (~200–300 nm). In the cases of hexachlorobenzene and hexafluorobenzene, the presence of a hydrogen source (hexamethylbenzene) in the reaction mixture was shown to be highly required. The microdispersed samples of Ni-Cu and Ni-Mo alloys were prepared by mechanochemical alloying of powders and by reductive thermolysis of salts-precursors, accordingly. Their interaction with polymers (polyethylene and polyvinyl chloride) under RAPET conditions and with ethylene and 1,2-dichloroethane in a flow-through reactor are comparatively studied as well. According to microscopic data, the morphology of the formed carbon nanofibers is affected by the alloy composition and by the nature of the used organic substrate. Full article
(This article belongs to the Special Issue Advanced Materials in Catalysis and Adsorption)
Show Figures

Figure 1

14 pages, 3728 KiB  
Article
Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate
by Ying Liu, Peng Zhou, Rao Bidthanapally, Jitao Zhang, Wei Zhang, Michael R. Page, Tianjin Zhang and Gopalan Srinivasan
J. Compos. Sci. 2022, 6(7), 203; https://doi.org/10.3390/jcs6070203 - 12 Jul 2022
Cited by 4 | Viewed by 3318
Abstract
This report is on the nature of strain in thin films of yttrium iron garnet (YIG) on yttrium aluminum garnet (YAG) substrates due to film-substrate lattice mismatch and the resulting induced magnetic anisotropy. Films with thickness 55 nm to 380 nm were deposited [...] Read more.
This report is on the nature of strain in thin films of yttrium iron garnet (YIG) on yttrium aluminum garnet (YAG) substrates due to film-substrate lattice mismatch and the resulting induced magnetic anisotropy. Films with thickness 55 nm to 380 nm were deposited on (100), (110), and (111) YAG substrates using pulsed laser deposition (PLD) techniques and characterized by structural and magnetic characterization techniques. The in-plane strain determined to be compressive using X-ray diffraction (XRD). It varied from −0.12% to −0.98% and increased in magnitude with increasing film thickness and was relatively large in films on (100) YAG. The out-of-plane strain was tensile and also increased with increasing film thickness. The estimated strain-induced magnetic anisotropy field, found from XRD data, was out of plane; its value increased with film thickness and ranged from 0.47 kOe to 3.96 kOe. Ferromagnetic resonance (FMR) measurements at 5 to 21 GHz also revealed the presence of a perpendicular magnetic anisotropy that decreased with increasing film thickness and its values were smaller than values obtained from XRD data. The PLD YIG films on YAG substrates exhibiting a perpendicular anisotropy field have the potential for use in self-biased sensors and high-frequency devices. Full article
(This article belongs to the Special Issue Metal Composites)
Show Figures

Figure 1

12 pages, 2105 KiB  
Article
Electromagnetic Properties of Carbon Nanotube/BaFe12−xGaxO19/Epoxy Composites with Random and Oriented Filler Distributions
by Olena S. Yakovenko, Lyudmila Yu. Matzui, Ludmila L. Vovchenko, Victor V. Oliynyk, Volodymyr V. Zagorodnii, Sergei V. Trukhanov and Alex V. Trukhanov
Nanomaterials 2021, 11(11), 2873; https://doi.org/10.3390/nano11112873 - 28 Oct 2021
Cited by 109 | Viewed by 3212
Abstract
The microwave properties of epoxy composites filled with 30 wt.% of BaFe12–xGaxO19 (0.1 ≤ x ≤ 1.2) and with 1 wt.% of multi-walled carbon nanotubes (CNTs) were investigated in the frequency range 36–55 GHz. A sufficient increase [...] Read more.
The microwave properties of epoxy composites filled with 30 wt.% of BaFe12–xGaxO19 (0.1 ≤ x ≤ 1.2) and with 1 wt.% of multi-walled carbon nanotubes (CNTs) were investigated in the frequency range 36–55 GHz. A sufficient increase in the microwave shielding efficiency was found for ternary 1 wt.%CNT/30 wt.% BaFe12–xGaxO19/epoxy composites compared with binary 1% CNT/epoxy and 30 wt.% BaFe12–xGaxO19/epoxy due to the complementary contributions of dielectric and magnetic losses. Thus, the addition of only 1 wt.% of CNTs along with 30 wt.% of barium hexaferrite into epoxy resin increased the frequency range where electromagnetic radiation is intensely attenuated. A correlation between the cation Ga3+ concentration in the BaFe12–xGaxO19 filler and amplitude–frequency characteristics of the natural ferromagnetic resonance (NFMR) in 1 wt.%CNT/30 wt.% BaFe12–xGaxO19/epoxy composites was determined. Higher values of the resonance frequency fres (51.8–52.4 GHz) and weaker dependence of fres on the Ga3+ concentration were observed compared with pressed polycrystalline BaFe12–xGaxO19 (fres = 49.6–50.4 GHz). An increase in the NFMR amplitude on the applied magnetic field for both random and aligned 1 wt.% CNT/30 wt.% BaFe12–xGaxO19/epoxy composites was found. The frequency of NFMR was approximately constant in the range of the applied magnetic field, H = 0–5 kOe, for the random 1 wt.% CNT/30 wt.% BaFe12–xGaxO19/epoxy composite, and it slightly increased for the aligned 1 wt.% CNT/30 wt.% BaFe12–xGaxO19/epoxy composite. Full article
(This article belongs to the Special Issue Functional Magnetic Oxides and Composites)
Show Figures

Figure 1

19 pages, 3894 KiB  
Article
Highly Efficient Wideband Microwave Absorbers Based on Zero-Valent Fe@γ-Fe2O3 and Fe/Co/Ni Carbon-Protected Alloy Nanoparticles Supported on Reduced Graphene Oxide
by Francisco Mederos-Henry, Julien Mahin, Benoit P. Pichon, Marinela M. Dîrtu, Yann Garcia, Arnaud Delcorte, Christian Bailly, Isabelle Huynen and Sophie Hermans
Nanomaterials 2019, 9(9), 1196; https://doi.org/10.3390/nano9091196 - 25 Aug 2019
Cited by 24 | Viewed by 4214
Abstract
Electronic systems and telecommunication devices based on low-power microwaves, ranging from 2 to 40 GHz, have massively developed in the last decades. Their extensive use has contributed to the emergence of diverse electromagnetic interference (EMI) phenomena. Consequently, EMI shielding has become a ubiquitous [...] Read more.
Electronic systems and telecommunication devices based on low-power microwaves, ranging from 2 to 40 GHz, have massively developed in the last decades. Their extensive use has contributed to the emergence of diverse electromagnetic interference (EMI) phenomena. Consequently, EMI shielding has become a ubiquitous necessity and, in certain countries, a legal requirement. Broadband absorption is considered the only convincing EMI shielding solution when the complete disappearance of the unwanted microwave is required. In this study, a new type of microwave absorber materials (MAMs) based on reduced graphene oxide (rGO) decorated with zero-valent Fe@γ-Fe2O3 and Fe/Co/Ni carbon-protected alloy nanoparticles (NPs) were synthesized using the Pechini sol-gel method. Synthetic parameters were varied to determine their influence on the deposited NPs size and spatial distribution. The deposited superparamagnetic nanoparticles were found to induce a ferromagnetic resonance (FMR) absorption process in all cases. Furthermore, a direct relationship between the nanocomposites’ natural FMR frequency and their composition-dependent saturation magnetization (Ms) was established. Finally, the microwave absorption efficiency (0.4 MHz to 20 GHz) of these new materials was found to range from 60% to 100%, depending on the nature of the metallic particles grafted onto rGO. Full article
Show Figures

Graphical abstract

Back to TopTop