Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = nanovesicular carrier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 3987 KB  
Review
Niosomes as Vesicular Carriers: From Formulation Strategies to Stimuli-Responsive Innovative Modulations for Targeted Drug Delivery
by Andra Ababei-Bobu, Bianca-Ștefania Profire, Andreea-Teodora Iacob, Oana-Maria Chirliu, Florentina Geanina Lupașcu and Lenuța Profire
Pharmaceutics 2025, 17(11), 1473; https://doi.org/10.3390/pharmaceutics17111473 - 14 Nov 2025
Viewed by 803
Abstract
Niosomes (NIOs), a class of nanovesicular drug delivery system, have garnered significant attention due to their unique architecture, resulting from the self-assembly of non-ionic surfactants (with or without cholesterol) in aqueous media. This bilayered structure enables the encapsulation of both hydrophilic agents in [...] Read more.
Niosomes (NIOs), a class of nanovesicular drug delivery system, have garnered significant attention due to their unique architecture, resulting from the self-assembly of non-ionic surfactants (with or without cholesterol) in aqueous media. This bilayered structure enables the encapsulation of both hydrophilic agents in the aqueous core and lipophilic compounds within the lipid bilayer, offering remarkable versatility in therapeutic applications. This article provides an overview of the key principles underlying niosomal formulations, including their composition, preparation methods, formulation conditions and the critical physicochemical parameters influencing vesicle formation and performance. Special emphasis is placed on recent innovations in surface and content modifications that have led to the development of stimuli-responsive niosomal systems, with precise and controlled drug release. These smart carriers are designed to respond to endogenous stimuli (such as pH variations, redox gradients, enzymatic activity, or local temperature changes in pathological sites), as well as to exogenous triggers (including light, ultrasound, magnetic or electric fields, and externally applied hyperthermia), thereby enhancing therapeutic precision. These surface and content modulation strategies effectively transform conventional NIOs into intelligent, stimuli-responsive platforms, reinforcing their innovative role in drug delivery and highlighting their significant potential in the development of smart nanomedicine. Full article
Show Figures

Graphical abstract

26 pages, 2841 KB  
Review
Modified Phospholipid Vesicular Gel for Transdermal Drug Delivery: The Influence of Glycerin and/or Ethanol on Their Lipid Bilayer Fluidity and Penetration Characteristics
by Marwa H. Abdallah, Mona M. Shahien, Hemat El-Sayed El-Horany and Enas Haridy Ahmed
Gels 2025, 11(5), 358; https://doi.org/10.3390/gels11050358 - 13 May 2025
Cited by 8 | Viewed by 2909
Abstract
This review explores the enhanced transdermal therapy of several skin disorders with the application of carriers comprising phospholipid vesicular gel systems. Topical drug delivery has several advantages compared to other administration methods, including enhanced patient compliance, the avoidance of the first-pass impact associated [...] Read more.
This review explores the enhanced transdermal therapy of several skin disorders with the application of carriers comprising phospholipid vesicular gel systems. Topical drug delivery has several advantages compared to other administration methods, including enhanced patient compliance, the avoidance of the first-pass impact associated with oral administration, and the elimination of the need for repeated doses. Nonetheless, the skin barrier obstructs the penetration of drugs, hence affecting its therapeutic efficacy. Carriers with phospholipid soft vesicles comprise a novel strategy used to augment drug delivery into the skin and boost therapeutic efficacy. These vesicles encompass chemicals that possess the ability to fluidize phospholipid bilayers, producing a pliable vesicle that facilitates penetration into the deeper layers of the skin. Phospholipid-based vesicular carriers have been extensively studied for improved drug delivery through dermal and transdermal pathways. Traditional liposomes are limited to the stratum corneum of the skin and do not penetrate the deeper layers. Ethosomes, glycerosomes, and glycethosomes are nanovesicular systems composed of ethanol, glycerol, or a combination of ethanol and glycerol, respectively. Their composition produce pliable vesicles by fluidizing the phospholipid bilayers, facilitating deeper penetration into the skin. This article examines the impact of ethanol and glycerol on phospholipid vesicles, and outlines their respective manufacturing techniques. Thus far, these discrepancies have not been analyzed comparatively. The review details several active compounds integrated into these nanovesicular gel systems and examined through in vitro, in vivo, or clinical human trials involving compositions with various active molecules for the treatment of various dermatological conditions. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

23 pages, 2502 KB  
Review
Advancements in Plant-Derived sRNAs Therapeutics: Classification, Delivery Strategies, and Therapeutic Applications
by Qianru Rao, Hua Hua and Junning Zhao
Int. J. Mol. Sci. 2025, 26(9), 4277; https://doi.org/10.3390/ijms26094277 - 30 Apr 2025
Cited by 1 | Viewed by 1546
Abstract
Plant-derived small RNAs (sRNAs) have garnered significant attention in nucleic acid therapeutics, driven by their distinctive cross-kingdom regulatory capabilities and extensive therapeutic promise. These sRNAs exhibit a wide range of pharmacological effects, including pulmonary protection, antiviral, anti-inflammatory, and antitumor activities, underscoring their substantial [...] Read more.
Plant-derived small RNAs (sRNAs) have garnered significant attention in nucleic acid therapeutics, driven by their distinctive cross-kingdom regulatory capabilities and extensive therapeutic promise. These sRNAs exhibit a wide range of pharmacological effects, including pulmonary protection, antiviral, anti-inflammatory, and antitumor activities, underscoring their substantial potential for clinical translation. A key advantage lies in their delivery, facilitated by plant-specific nanovesicular carriers—such as plant exosomes, herbal decoctosomes, and bencaosomes—which protect sRNAs from gastrointestinal degradation and enable precise, tissue-specific targeting. This review provides a comprehensive analysis of plant-derived sRNAs, detailing their classification, gene-silencing mechanisms, and nanovesicle-mediated cross-kingdom delivery strategies. It further explores their therapeutic potential and underlying molecular mechanisms in major human diseases. Additionally, we critically evaluate current technical challenges and propose future directions to advance the development of plant-derived sRNAs for precision therapeutics. This work aims to offer a robust theoretical framework and practical guidance for the clinical advancement of plant-derived sRNA-based therapies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

58 pages, 5341 KB  
Review
Vesicular Carriers for Phytochemical Delivery: A Comprehensive Review of Techniques and Applications
by Shery Jacob, Fathima Sheik Kather, Sai H. S. Boddu, Rekha Rao and Anroop B. Nair
Pharmaceutics 2025, 17(4), 464; https://doi.org/10.3390/pharmaceutics17040464 - 2 Apr 2025
Cited by 14 | Viewed by 3589
Abstract
Natural substances, especially those derived from plants, exhibit a diverse range of therapeutic benefits, such as antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. Nevertheless, their use in clinical settings is frequently impeded by inadequate solubility, limited bioavailability, and instability. Nanovesicular carriers, such as liposomes, [...] Read more.
Natural substances, especially those derived from plants, exhibit a diverse range of therapeutic benefits, such as antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. Nevertheless, their use in clinical settings is frequently impeded by inadequate solubility, limited bioavailability, and instability. Nanovesicular carriers, such as liposomes, niosomes, ethosomes, transferosomes, transethosomes, and cubosomes, have emerged as innovative phytochemical delivery systems to address these limitations. This review highlights recent developments in vesicular nanocarriers for phytochemical delivery, emphasizing preparation techniques, composition, therapeutic applications, and the future potential of these systems. Phytosomes, along with their key advantages and various preparation techniques, are extensively described. Various in vitro and in vivo characterization techniques utilized for evaluating these nanovesicular carriers are summarized. Completed clinical trials and patents granted for nanovesicles encapsulating phytochemicals designed for systemic delivery are tabulated. Phytochemical delivery via vesicular carriers faces challenges such as low stability, limited active loading, scalability issues, and high production costs. Additionally, immune clearance and regulatory hurdles hinder clinical application, requiring improved carrier design and formulation techniques. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems for Natural Extracts)
Show Figures

Figure 1

19 pages, 3814 KB  
Article
The Exploitation of Sodium Deoxycholate-Stabilized Nano-Vesicular Gel for Ameliorating the Antipsychotic Efficiency of Sulpiride
by Marwa H. Abdallah, Mona M. Shahien, Alia Alshammari, Somaia Ibrahim, Enas Haridy Ahmed, Hanan Abdelmawgoud Atia and Hemat A. Elariny
Gels 2024, 10(4), 239; https://doi.org/10.3390/gels10040239 - 31 Mar 2024
Cited by 11 | Viewed by 2847
Abstract
The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box–Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. [...] Read more.
The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box–Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. The optimized bilosomes were assessed based on their vesicle size, entrapment efficiency (% EE), and the amount of Sulpiride released. The Sulpiride-loaded bilosomal gel was generated by incorporating the optimized Su-BLs into a hydroxypropyl methylcellulose polymer. The obtained gel was examined for its physical properties, ex vivo permeability, and in vivo pharmacokinetic performance. The optimum Su-BLs exhibited a vesicle size of 211.26 ± 10.84 nm, an encapsulation efficiency of 80.08 ± 1.88% and a drug loading capacity of 26.69 ± 0.63%. Furthermore, the use of bilosomal vesicles effectively prolonged the release of Su over a period of twelve hours. In addition, the bilosomal gel loaded with Su exhibited a three-fold increase in the rate at which Su transferred through the skin, in comparison to oral-free Sulpiride. The relative bioavailability of Su-BL gel was almost four times as high as that of the plain Su suspension and approximately two times as high as that of the Su gel. Overall, bilosomes could potentially serve as an effective technique for delivering drugs through the skin, specifically enhancing the anti-psychotic effects of Sulpiride by increasing its ability to penetrate the skin and its systemic bioavailability, with few adverse effects. Full article
Show Figures

Graphical abstract

22 pages, 2892 KB  
Review
The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin
by Elka Touitou and Hiba Natsheh
Pharmaceutics 2024, 16(2), 267; https://doi.org/10.3390/pharmaceutics16020267 - 13 Feb 2024
Cited by 11 | Viewed by 3728
Abstract
This review focuses on nanovesicular carriers for enhanced delivery of molecules into and across the skin, from their design to recent emerging technologies. During the last four decades, several approaches have been used aiming to design new nanovesicles, some of them by altering [...] Read more.
This review focuses on nanovesicular carriers for enhanced delivery of molecules into and across the skin, from their design to recent emerging technologies. During the last four decades, several approaches have been used aiming to design new nanovesicles, some of them by altering the properties of the classic phospholipid vesicle, the liposome. Phospholipid nanovesicular systems, including the phospholipid soft vesicles as well as the non-phospholipid vesicular carries, are reviewed. The altered nanovesicles have served in the manufacture of various cosmetic products and have been investigated and used for the treatment of a wide variety of skin conditions. The evolution and recent advances of these nanovesicular technologies are highlighted in this review. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

19 pages, 2681 KB  
Article
Film Forming Systems for Delivery of Active Molecules into and across the Skin
by Elka Touitou, Hiba Natsheh and Jana Zailer
Pharmaceutics 2023, 15(2), 397; https://doi.org/10.3390/pharmaceutics15020397 - 24 Jan 2023
Cited by 7 | Viewed by 4221
Abstract
We have investigated delivery systems that can form a structured matrix film on the skin after their application. In a previous work, we have shown that Weblike film forming systems (also called Pouches Drug Delivery Systems, PDDS) enable enhanced skin delivery of the [...] Read more.
We have investigated delivery systems that can form a structured matrix film on the skin after their application. In a previous work, we have shown that Weblike film forming systems (also called Pouches Drug Delivery Systems, PDDS) enable enhanced skin delivery of the incorporated molecules. These delivery systems are composed of one or more phospholipids, a short-chain alcohol, a polymer and optionally water. In this work, we continue the investigation and characterization of Weblike carriers focusing on some factors affecting the delivery properties such as components concentration and mode of application on the skin. Upon non-occluded application on the skin, the systems dry rapidly, forming a web-like structured film. Lidocaine, Ibuprofen, FITC and Cannabidiol are molecules with various physico-chemical properties that were incorporated in the carrier. The systems were tested in a number of in vitro and in vivo experiments. Results of the in vitro permeation of Ibuprofen through porcine skin indicated two-fold delivery through the skin of Ibuprofen when applied from our Weblike system in comparison with a nanovesicular carrier, the ethosome. We also have investigated weblike systems containing hemp seed oil (HSO). This addition enhanced the film’s ability to deliver lipophilic molecules to the deeper skin layers, leading to an improved pharmacodynamic effect. In analgesic tests carried out in a pain mice model following one hour application of CBD in Weblike system with and without HSO, the number of writhing episodes was decreased from 29 in the untreated animals to 9.5 and 18.5 writhes, respectively. The results of our work open the way towards a further investigation of Weblike film forming systems containing drugs for improved dermal and transdermal treatment of various ailments. Full article
Show Figures

Figure 1

14 pages, 2216 KB  
Article
Novasomes as Nano-Vesicular Carriers to Enhance Topical Delivery of Fluconazole: A New Approach to Treat Fungal Infections
by Iman Fatima, Akhtar Rasul, Shahid Shah, Malik Saadullah, Nayyer Islam, Ahmed Khames, Ahmad Salawi, Muhammad Masood Ahmed, Yosif Almoshari, Ghulam Abbas, Mohammed A. S. Abourehab, Sajid Mehmood Khan, Zunera Chauhdary, Meshal Alshamrani, Nader Ibrahim Namazi and Demiana M. Naguib
Molecules 2022, 27(9), 2936; https://doi.org/10.3390/molecules27092936 - 4 May 2022
Cited by 38 | Viewed by 4730
Abstract
The occurrence of fungal infections has increased over the past two decades. It is observed that superficial fungal infections are treated by conventional dosage forms, which are incapable of treating deep infections due to the barrier activity possessed by the stratum corneum of [...] Read more.
The occurrence of fungal infections has increased over the past two decades. It is observed that superficial fungal infections are treated by conventional dosage forms, which are incapable of treating deep infections due to the barrier activity possessed by the stratum corneum of the skin. This is why the need for a topical preparation with advanced penetration techniques has arisen. This research aimed to encapsulate fluconazole (FLZ) in a novasome in order to improve the topical delivery. The novasomes were prepared using the ethanol injection technique and characterized for percent entrapment efficiency (EE), particle size (PS), zeta potential (ZP), drug release, Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and antifungal activity. The FN7 formulation with 94.45% EE, 110 nm PS and −24 ZP proved to be the best formulation. The FN7 formulation showed a 96% release of FLZ in 8 h. FTIR showed the compatibility of FLZ with excipients and DSC studies confirmed the thermal stability of FLZ in the developed formulation. The FN7 formulation showed superior inhibition of the growth of Candida albicans compared to the FLZ suspension using a resazurin reduction assay, suggesting high efficacy in inhibiting fungal growth. Full article
(This article belongs to the Special Issue Recent Advances in Nano-Based Drug Delivery System)
Show Figures

Figure 1

38 pages, 2494 KB  
Review
Lipid-Based Nanovesicular Drug Delivery Systems
by Tania Limongi, Francesca Susa, Monica Marini, Marco Allione, Bruno Torre, Roberto Pisano and Enzo di Fabrizio
Nanomaterials 2021, 11(12), 3391; https://doi.org/10.3390/nano11123391 - 14 Dec 2021
Cited by 73 | Viewed by 8735
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions [...] Read more.
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood–brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles. Full article
(This article belongs to the Special Issue Biobased Nanoscale Drug Delivery Systems)
Show Figures

Figure 1

17 pages, 2766 KB  
Article
Short Onset and Enhanced Analgesia Following Nasal Administration of Non-Controlled Drugs in Nanovesicular Systems
by Elka Touitou, Hiba Natsheh, Shatha Boukeileh and Rania Awad
Pharmaceutics 2021, 13(7), 978; https://doi.org/10.3390/pharmaceutics13070978 - 28 Jun 2021
Cited by 10 | Viewed by 3131
Abstract
Nasal nanovesicular delivery systems (NVS) containing the noncontrolled analgesic drugs Ketoprofen, Butorphanol or Tramadol, incorporated in a phospholipid nanovesicular carrier, were designed and investigated. The systems were first characterized for their physicochemical properties. Due to their composition, comprising propylene glycol as a lipid [...] Read more.
Nasal nanovesicular delivery systems (NVS) containing the noncontrolled analgesic drugs Ketoprofen, Butorphanol or Tramadol, incorporated in a phospholipid nanovesicular carrier, were designed and investigated. The systems were first characterized for their physicochemical properties. Due to their composition, comprising propylene glycol as a lipid bilayers fluidizer, these systems contain soft vesicles. Pharmacokinetic profiles of Tramadol in plasma and brain and of Ketoprofen in plasma were also assessed. The analgesic effect of each of the three tested drugs was evaluated in the acetic acid mice model for pain. One important result obtained in this work is that the concentration of Tramadol in rats’ plasma and brain increased rapidly after administration, reaching a peak value 10 min after administration with a Cmax of 2 to 5 folds greater than that for the oral or nasal non-vesicular treatments, respectively. In the case of Ketoprofen, the peak of the drug level in plasma was measured 10 min post nasal administration in NVS. The Cmax was three-fold higher relative to oral administration of this drug. In the experiment testing analgesia, a rapid and improved analgesia was observed for the tested drugs when delivered nasally in the nanocarrier. On the other hand, a weaker analgesic effect was observed for oral and nasal control systems. This new approach suggests that nasal delivery of non-controlled drugs in soft nanovesicles may open the way for better and noninvasive treatment of severe pain. Full article
Show Figures

Figure 1

19 pages, 1102 KB  
Review
Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine
by Spencer R. Marsh, Zachary J. Williams, Kevin J. Pridham and Robert G. Gourdie
J. Cardiovasc. Dev. Dis. 2021, 8(5), 52; https://doi.org/10.3390/jcdd8050052 - 5 May 2021
Cited by 28 | Viewed by 7331 | Correction
Abstract
Connexin (Cx43)-formed channels have been linked to cardiac arrhythmias and diseases of the heart associated with myocardial tissue loss and fibrosis. These pathologies include ischemic heart disease, ischemia-reperfusion injury, heart failure, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and Duchenne muscular dystrophy. A number [...] Read more.
Connexin (Cx43)-formed channels have been linked to cardiac arrhythmias and diseases of the heart associated with myocardial tissue loss and fibrosis. These pathologies include ischemic heart disease, ischemia-reperfusion injury, heart failure, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and Duchenne muscular dystrophy. A number of Cx43 mimetic peptides have been reported as therapeutic candidates for targeting disease processes linked to Cx43, including some that have advanced to clinical testing in humans. These peptides include Cx43 sequences based on the extracellular loop domains (e.g., Gap26, Gap 27, and Peptide5), cytoplasmic-loop domain (Gap19 and L2), and cytoplasmic carboxyl-terminal domain (e.g., JM2, Cx43tat, CycliCX, and the alphaCT family of peptides) of this transmembrane protein. Additionally, RYYN peptides binding to the Cx43 carboxyl-terminus have been described. In this review, we survey preclinical and clinical data available on short mimetic peptides based on, or directly targeting, Cx43, with focus on their potential for treating heart disease. We also discuss problems that have caused reluctance within the pharmaceutical industry to translate peptidic therapeutics to the clinic, even when supporting preclinical data is strong. These issues include those associated with the administration, stability in vivo, and tissue penetration of peptide-based therapeutics. Finally, we discuss novel drug delivery technologies including nanoparticles, exosomes, and other nanovesicular carriers that could transform the clinical and commercial viability of Cx43-targeting peptides in treatment of heart disease, stroke, cancer, and other indications requiring oral or parenteral administration. Some of these newly emerging approaches to drug delivery may provide a path to overcoming pitfalls associated with the drugging of peptide therapeutics. Full article
(This article belongs to the Special Issue Cardiomyopathy at the Sub-Cellular Level)
Show Figures

Figure 1

68 pages, 4979 KB  
Review
Recent Advances in Nanomaterials for Dermal and Transdermal Applications
by Amani Zoabi, Elka Touitou and Katherine Margulis
Colloids Interfaces 2021, 5(1), 18; https://doi.org/10.3390/colloids5010018 - 18 Mar 2021
Cited by 78 | Viewed by 13392
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the [...] Read more.
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review. Full article
(This article belongs to the Special Issue Colloidal Systems: Formation and Applications of Nanomaterials)
Show Figures

Figure 1

8 pages, 331 KB  
Proceeding Paper
Enhancement of the Solubility of Rosuvastatin Calcium by Nanovesicular Formulation: A Systematic Study Based on a Quality by Design Approach
by Marwa H. S. H. S. Dawoud, Ahmed M. M. Fayez, Reem A. A. Mohamed and Nabila M. M. Sweed
Proceedings 2021, 78(1), 34; https://doi.org/10.3390/IECP2020-08698 - 1 Dec 2020
Cited by 2 | Viewed by 2093
Abstract
Rosuvastatin calcium (Rsv) is an effective statin, with a potent antihyperlipidemic effect. However, it suffers poor bioavailability owing to its poor solubility. Thus; encapsulating Rsv into a nanovesicular structure could overcome this problem. The aim of this work is to investigate the potential [...] Read more.
Rosuvastatin calcium (Rsv) is an effective statin, with a potent antihyperlipidemic effect. However, it suffers poor bioavailability owing to its poor solubility. Thus; encapsulating Rsv into a nanovesicular structure could overcome this problem. The aim of this work is to investigate the potential of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) in enhancing the solubility of Rsv, using the quality by design (QbD) concept. A complete risk assessment study has been conducted, where the critical process parameters (CPPs), material attributes (MAs), and critical quality attributes have been identified using Ishikawa diagrams. Selected CPPs/MAs were screened and further upgraded to a 24 full-factorial design to develop a design space with the optimized formula. The screened CPPs/MAs were tested on the particle size, the polydispersity index (PDI), the zeta potential (ζ-pot), and the entrapment efficiency (EE%). A comprehensive approach for Rsv nanovesicular carriers has been conducted, where the NLCs showed better results than the SLNs. The optimized formula was prepared with 3% total lipid content, 0.154% surfactant, and 9.4 mg drug. The optimized formula had a particle size of 310.5 nm, with 0.243 PDI, a ζ-pot of −24.7 mV, and an EE% of 93.87%, and showed a sustained release of the drug for up to 72 h. It successfully lowered total cholesterol, low density lipoprotein, and triglycerides, and elevated the levels of high density lipoprotein in rats, with better results as compared to the standard drug. Thus, a complete QbD study was conducted to explore experimental regions for many successful nanovesicular carriers for the enhancement of the solubility of poorly soluble drugs. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Pharmaceutics)
Show Figures

Figure 1

14 pages, 3548 KB  
Article
Cu Nanoparticle-Loaded Nanovesicles with Antibiofilm Properties. Part I: Synthesis of New Hybrid Nanostructures
by Lucia Sarcina, Pablo García-Manrique, Gemma Gutiérrez, Nicoletta Ditaranto, Nicola Cioffi, Maria Matos and Maria del Carmen Blanco-López
Nanomaterials 2020, 10(8), 1542; https://doi.org/10.3390/nano10081542 - 6 Aug 2020
Cited by 13 | Viewed by 3689
Abstract
Copper nanoparticles (CuNPs) stabilized by quaternary ammonium salts are well known as antimicrobial agents. The aim of this work was to study the feasibility of the inclusion of CuNPs in nanovesicular systems. Liposomes are nanovesicles (NVs) made with phospholipids and are traditionally used [...] Read more.
Copper nanoparticles (CuNPs) stabilized by quaternary ammonium salts are well known as antimicrobial agents. The aim of this work was to study the feasibility of the inclusion of CuNPs in nanovesicular systems. Liposomes are nanovesicles (NVs) made with phospholipids and are traditionally used as delivery vehicles because phospholipids favor cellular uptake. Their capacity for hydrophilic/hydrophobic balance and carrier capacity could be advantageous to prepare novel hybrid nanostructures based on metal NPs (Me-NPs). In this work, NVs were loaded with CuNPs, which have been reported to have a biofilm inhibition effect. These hybrid materials could improve the effect of conventional antibacterial agents. CuNPs were electro-synthesized by the sacrificial anode electrolysis technique in organic media and characterized in terms of morphology through transmission electron microscopy (TEM). The NVs were prepared by the thin film hydration method in aqueous media, using phosphatidylcholine (PC) and cholesterol as a membrane stabilizer. The nanohybrid systems were purified to remove non-encapsulated NPs. The size distribution, morphology and stability of the NV systems were studied. Different quaternary ammonium salts in vesicular systems made of PC were tested as stabilizing surfactants for the synthesis and inclusion of CuNPs. The entrapment of charged metal NPs was demonstrated. NPs attached preferably to the membrane, probably due to the attraction of their hydrophobic shell to the phospholipid bilayers. The high affinity between benzyl-dimethyl-hexadecyl-ammonium chloride (BDHAC) and PC allowed us to obtain stable hybrid NVs c.a. 700 nm in diameter. The stability of liposomes increased with NP loading, suggesting a charge-stabilization effect in a novel antibiofilm nanohybrid material. Full article
(This article belongs to the Special Issue Recent Progress in Antimicrobial Nanomaterials)
Show Figures

Graphical abstract

13 pages, 1955 KB  
Article
Buspirone Nanovesicular Nasal System for Non-Hormonal Hot Flushes Treatment
by Elka Touitou, Hiba Natsheh and Shaher Duchi
Pharmaceutics 2018, 10(3), 82; https://doi.org/10.3390/pharmaceutics10030082 - 3 Jul 2018
Cited by 12 | Viewed by 6443
Abstract
The aim of this work was to design and characterize a new nanovesicular nasal delivery system (NDS) containing buspirone, and investigate its efficiency in an animal model for the treatment of hot flushes. The presence of multilamellar vesicles with a mean size distribution [...] Read more.
The aim of this work was to design and characterize a new nanovesicular nasal delivery system (NDS) containing buspirone, and investigate its efficiency in an animal model for the treatment of hot flushes. The presence of multilamellar vesicles with a mean size distribution of 370 nm was evidenced by transition electron microscopy (TEM), cryo-scanning electron microscopy (Cryo-SEM), and dynamic light scattering (DLS) tests. Pharmacodynamic evaluation of the nasal treatment efficacy with the new system was carried out in ovariectomized (OVX) rat—an animal model for hot flushes—and compared with other treatments. We found that the nasal administration of a buspirone NDS resulted in a significant reduction in tail skin temperature (TST). This effect was not observed in the control buspirone-treated groups. Buspirone levels in the plasma and brain of nasally-treated normal rats were quantified and compared with those of rats that had received oral administration by a LC-MS/MS assay. A significantly higher bioavailability was achieved with the new treatment relative to an oral administration of the same drug dose. No pathological changes in the nasal cavity were observed following sub-chronic nasal administration of buspirone NDS. In conclusion, the data of our investigation show that buspirone in the new nanovesicular nasal carrier could be considered for further studies for the development of a treatment for the hot flushes ailment. Full article
(This article belongs to the Special Issue Smart Nanovesicles for Drug Targeting and Delivery)
Show Figures

Figure 1

Back to TopTop